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Feynman9# I*rcface 

These are the lectures in physics that I gave last year and the year before to the 

freshman and sophomore classes at Caltech. The lectures are, of course, not 

verbatim—they have been edited, sometimes extensively and sometimes less so. 

The lectures form only part of the complete course. The whole group of 180 

students gathered in a big lecture room twice a week to hear these lectures and 

then they broke up into small groups of 15 to 20 students in recitation sections 
under the guidance of a teaching assistant. In addition, there was a laboratory 

session once a week. 

The special problem we tried to get at with these lectures was to maintain the 

interest of the very enthusiastic and rather smart students coming out of the high 

schools and into Caltech. They have heard a lot about how interesting and excit¬ 

ing physics is—the theory of relativity, quantum mechanics, and other modern 

ideas. By the end of two years of our previous course, many would be very dis¬ 

couraged because there were really very few grand, new, modern ideas presented 
to them. They were made to study inclined planes, electrostatics, and so forth, 

and after two years it was quite stultifying. The problem was whether or not we 
could make a course which would save the more advanced and excited student by 

maintaining his enthusiasm. 
The lectures here are not in any way meant to be a survey course, but are very 

serious. 1 thought to address them to the most intelligent in the class and to make 

sure, if possible, that even the most intelligent student was unable to completely 

encompass everything that was in the lectures—by putting in suggestions of appli¬ 

cations of the ideas and concepts in various directions outside the main line of 

attack. For this reason, though, I tried very hard to make all the statements as 

accurate as possible, to point out in every case where the equations and ideas fitted 

into the body of physics, and how—when they learned more—things would be 

modified. I also felt that for such students it is important to indicate what it is 

that they should—if they are sufficiently clever—be able to understand by deduc¬ 

tion from what has been said before, and what is being put in as something new. 

When new ideas came in, 1 would try either to deduce them if they were deducible, 

or to explain that it was a new idea which hadn’t any basis in terms of things they 

had already learned and which was not supposed to be provable—but was just 

added in 
At the start of these lectures, I assumed that the students knew something when 

they came out of high school—such things as geometrical optics, simple chemistry 

ideas, and so on. I also didn’t see that there was any reason to make the lectures 
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in a definite order, in the sense that I would not be allowed to mention something 

until I was ready to discuss it in detail. There was a great deal of mention of things 

to come, without complete discussions. These more complete discussions would 

come later when the preparation became more advanced. Examples are the dis¬ 

cussions of inductance, and of energy levels, which are at first brought in in a 

very qualitative way and are later developed more completely. 

At the same time that I was aiming at the more active student, I also wanted 

to take care of the fellow for whom the extra fireworks and side applications are 

merely disquieting and who cannot be expected to learn most of the material in 

the lecture at all. For such students I wanted there to be at least a central core or 

backbone of material which he could get. Even if he didn’t understand everything 

in a lecture, I hoped he wouldn’t get nervous. I didn’t expect him to understand 

everything, but only the central and most direct features. It takes, of course, a 
certain intelligence on his part to see which are the central theorems and central 

ideas, and which are the more advanced side issues and applications which he may 

understand only in later years. 

In giving these lectures there was one serious difficulty: in the way the course 

was given, there wasn’t any feedback from the students to the lecturer to indicate 

how well the lectures were going over. This is indeed a very serious difficulty, 

and I don’t know how good the lectures really are. The whole thing was essentially 

an experiment. And if I did it again I wouldn’t do it the same way—I hope I 

don't have to do it again! I think, though, that things worked out—so far as the 

physics is concerned—quite satisfactorily in the first year. 
In the second year I was not so satisfied. In the first part of the course, dealing 

with electricity and magnetism, I couldn’t think of any really unique or different 

way of doing it—of any way that would be particularly more exciting than the 

usual way of presenting it. So I don’t think I did very much in the lectures on 

electricity and magnetism. At the end of the second year I had originally intended 

to go on, after the electricity and magnetism, by giving some more lectures on the 

properties of materials, but mainly to take up things like fundamental modes, 
solutions of the diffusion equation, vibrating systems, orthogonal functions, . .. 

developing the first stages of what are usually called “the mathematical methods of 
physics.” In retrospect, I think that if I were doing it again I would go back to 

that original idea. But since it was not planned that I would be giving these lec¬ 
tures again, it was suggested that it might be a good idea to try to give an introduc¬ 

tion to the quantum mechanics—what you will find in Volume III. 

It is perfectly clear that students who will major in physics can wait until their 

third year for quantum mechanics. On the other hand, the argument was made 

that many of the students in our course study physics as a background for their 

primary interest in other fields. And the usual way of dealing with quantum 

mechanics makes that subject almost unavailable for the great majority of students 

because they have to take so long to learn it. Yet, in its real applications—espe¬ 

cially in its more complex applications, such as in electrical engineering and chem¬ 

istry—the full machinery of the differential equation approach is not actually 

used. So I tried to describe the principles of quantum mechanics in a way which 
wouldn’t require that one first know the mathematics of partial differential equa¬ 

tions. Even for a physicist I think that is an interesting thing to try to do—to 

present quantum mechanics in this reverse fashion—for several reasons which 

may be apparent in the lectures themselves. However, I think that the experiment 

in the quantum mechanics part was not completely successful—in large part 

because I really did not have enough time at the end (I should, for instance, have 

had three or four more lectures in order to deal more completely with such matters 

as energy bands and the spatial dependence of amplitudes). Also, I had never 

presented the subject this way before, so the lack of feedback was particularly 

serious. I now believe the quantum mechanics should be given at a later time. 

Maybe I’ll have a chance to do it again someday. Then I’ll do it right. 

The reason there are no lectures on how to solve problems is because there were 

recitation sections. Although I did put in three lectures in the first year on how to 

solve problems, they are not included here. Also there was a lecture on inertial 
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guidance which certainly belongs after the lecture on rotating systems, but which 

was, unfortunately, omitted. The fifth and sixth lectures are actually due to 

Matthew Sands, as I was out of town. 

The question, of course, is how well this experiment has succeeded. My own 

point of view—which, however, does not seem to be shared by most of the people 

who worked with the students—is pessimistic. I don’t think 1 did very well by the 

students. When 1 look at the way the majority of the students handled the problems 

on the examinations, 1 think that the system is a failure Of course, my friends 

point out to me that there were one or two dozen students who—very surprisingly 

—understood almost everything in all of the lectures, and who were quite active 

in working with the material and worrying about the many points in an excited 

and interested way. These people have now, I believe, a first-rate background in 

physics—and they are, after all, the ones I was trying to get at. But then, “The 

power of instruction is seldom of much efficacy except in those happy dispositions 
where it is almost superfluous ” (Gibbons) 

Still, I didn’t want to leave any student completely behind, as perhaps I did. 

I think one way we could help the students more would be by putting more hard 

work into developing a set of problems which would elucidate some of the ideas 

m the lectures. Problems give a good opportunity to fill out the material of the 

lectures and make more realistic, more complete, and more settled in the mind 

the ideas that have been exposed. 

1 think, however, that there isn’t any solution to this problem of education 
other than to realize that the best teaching can be done only when there is a direct 

individual relationship between a student and a good teacher—a situation m which 

the student discusses the ideas, thinks about the things, and talks about the things. 

It’s impossible to learn very much by simply sitting in a lecture, or even by simply 

doing problems that are assigned. But in our modern times we have so many 

students to teach that we have to try to find some substitute for the ideal. Perhaps 

my lectures can make some contribution. Perhaps in some small place where 

there are individual teachers and students, they may get some inspiration or some 

ideas from the lectures. Perhaps they will have fun thinking them through—or 

going on to develop some of the ideas further. 

Richard P. Feynman 

June, 1963 
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Foreword 

For some forty years Richard P. Feynman focussed his curiosity on the mys¬ 

terious workings of the physical world, and bent his intellect to searching out the 

order in its chaos. Now, he has given two years of his ability and his energy to 

his Lectures on Physics for beginning students. For them he has distilled the 

essence of his knowledge, and has created in terms they can hope to grasp a 

picture of the physicist’s universe. To his lectures he has brought the brilliance 

and clarity of his thought, the originality and vitality of his approach, and the 

contagious enthusiasm of his delivery. It was a joy to behold. 

The first year’s lectures formed the basis for the first volume of this set of 

books. We have tried in this the second volume to make some kind of a record 

of a part of the second year’s lectures—which were given to the sophomore 

class during the 1962-1963 academic year. The rest of the second year’s lec¬ 

tures will make up Volume III. 
Of the second year of lectures, the first two-thirds were devoted to a fairly 

complete treatment of the physics of electricity and magnetism. Its presentation 

was intended to serve a dual purpose. We hoped, first, to give the students a 

complete view of one of the great chapters of physics—from the early gropings 

of Franklin, through the great synthesis of Maxwell, on to the Lorentz electron 

theory of material properties, and ending with the still unsolved dilemmas of 

the electromagnetic self-energy. And we hoped, second, by introducing at the 

outset the calculus of vector fields, to give a solid introduction to the mathe¬ 

matics of field theories To emphasize the general utility of the mathematical 

methods, related subjects from other parts of physics were sometimes analyzed 

together with their electric counterparts. We continually tried to drive home 

the generality of the mathematics. (“The same equations have the same solu¬ 

tions.”) And we emphasized this point by the kinds of exercises and examina¬ 

tions we gave with the course. 
Following the electromagnetism there are two chapters each on elasticity and 

fluid flow. In the first chapter of each pair, the elementary and practical aspects 

are treated. The second chapter on each subject attempts to give an overview of 

the whole complex range of phenomena which the subject can lead to. These 

four chapters can well be omitted without serious loss, since they are not at all a 

necessary preparation for Volume III. 
The last quarter, approximately, of the second year was dedicated to an intro¬ 

duction to quantum mechanics. This material has been put into the third volume. 

In this record of the Feynman Lectures we wished to do more than provide a 

transcription of what was said. We hoped to make the written version as clear 

an exposition as possible of the ideas on which the original lectures were based 

For some of the lectures this could be done by making only minor adjustments 

of the wording in the original transcript. For others of the lectures a major re¬ 

working and rearrangement of the material was required. Sometimes we felt 

we should add some new material to improve the clarity or balance of the pres¬ 

entation. Throughout the process we benefitted from the continual help and 

advice of Professor Feynman 
The translation of over 1,000,000 spoken words into a coherent text on a 

tight schedule is a formidable task, particularly when it is accompanied by the 
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other onerous burdens which come with the introduction of a new course— 

preparing for recitation sections, and meeting students, designing exercises and 

examinations, and grading them, and so on. Many hands—and heads—were 

involved. In some instances we have, I believe, been able to render a faithful 

image—or a tenderly retouched portrait—of the original Feynman. In other 

instances we have fallen far short of this ideal. Our successes are owed to all 

those who helped. The failures, we regret. 

As explained in detail in the Foreword to Volume I, these lectures were but 

one aspect of a program initiated and supervised by the Physics Course Revision 

Committee (R. B. Leighton, Chairman, H. V. Neher, and M. Sands) at the 

California Institute of Technology, and supported financially by the Ford Foun¬ 

dation. In addition, the following people helped with one aspect or another of 

the preparation of textual material for this second volume: T. K. Caughey, 

M. L. Clayton, J. B. Curcio, J. B. Hartle, T. W. H. Harvey, M. H. Israel, 

W. J. Karzas, R. W. Kavanagh, R. B. Leighton, J. Mathews, M. S. Plesset, 

F. L. Warren, W. Whaling, C. H. Wilts, and B. Zimmerman. Others con¬ 

tributed indirectly through their work on the course: J. Blue, G. F. Chapline, 

M. J. Clauser, R. Dolen, H. H. Hill, and A. M. Title. Professor Gerry Neuge- 

bauer contributed in all aspects of our task with a diligence and devotion far 

beyond the dictates of duty. 

The story of physics you find here would, however, not have been, except for 

the extraordinary ability and industry of Richard P. Feynman. 

Matthew Sands 

March, 1964 
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1 

Electromagnetism 

1-1 Electrical forces 

Consider a force like gravitation which varies predominantly inversely as the 

square of the distance, but which is about a billion-billion-billion-billion times 

stronger. And with another difference. There are two kinds of “matter,” which 

we can call positive and negative. Like kinds repel and unlike kinds attract— 

unlike gravity where there is only attraction. What would happen? 

A bunch of positives would repel with an enormous force and spread out in 

all directions. A bunch of negatives would do the same. But an evenly mixed 

bunch of positives and negatives would do something completely different. The 

opposite pieces would be pulled together by the enormous attractions. The net 

result would be that the terrific forces would balance themselves out almost per¬ 

fectly, by forming tight, fine mixtures of the positive and the negative, and between 

two separate bunches of such mixtures there would be practically no attraction or 

repulsion at all. 

There is such a force: the electrical force. And all matter is a mixture of posi¬ 

tive protons and negative electrons which are attracting and repelling with this 

great force. So perfect is the balance, however, that when you stand near someone 

else you don’t feel any force at all. If there were even a little bit of unbalance you 

would know it. If you were standing at arm’s length from someone and each of 

you had one percent more electrons than protons, the repelling force would be in¬ 

credible. How great? Enough to lift the Empire State Building? No! To lift 

Mount Everest? No! The repulsion would be enough to lift a “weight” equal to 

that of the entire earth! 

With such enormous forces so perfectly balanced in this intimate mixture, it 

not hard to understand that matter, trying to keep its positive and negative 

charges in the finest balance, can have a great stiffness and strength. The Empire 

State Building, for example, swings only eight feet in the wind because the electrical 

forces hold every electron and proton more or less in its proper place. On the other 

$and, if we look at matter on a scale small enough that we see only a few atoms, 
any small piece will not, usually, have an equal number of positive and negative 

charges, and so there will be strong residual electrical forces. Even when there are 

equal numbers of both charges in two neighboring small pieces, there may still be 

large net electrical forces because the forces between individual charges vary 

Aversely as the square of the distance. A net force can arise if a negative charge of 

Ifie piece is closer to the positive than to the negative charges of the other piece. 
The attractive forces can then be larger than the repulsive ones and there can be a 

net attraction between two small pieces with no excess charges. The force that holds 

the atoms together, and the chemical forces that hold molecules together, are 

really electrical forces acting in regions where the balance of charge is not perfect, 
or where the distances are very small. 

You know, of course, that atoms are made with positive protons in the 

nucleus and with electrons outside. You may ask: “If this electrical force is so 

terrific, why don’t the protons and electrons just get on top of each other? If they 

want to be in an intimate mixture, why isn’t it still more intimate?” The answer 

has to do with the quantum effects. If we try to confine our electrons in a region 

^tat is very close to the protons, then according to the uncertainty principle they 

must have some mean square momentum which is larger the more we try to con- 

fine them. It is this motion, required by the laws of quantum mechanics, that keeps 

the electrical attraction from bringing the charges any closer together. 

1-1 Electrical forces 

1-2 Electric and magnetic fields 

1-3 Characteristics of vector fields 

1-4 The laws of electromagnetism 

1-5 What are the fields? 

1-6 Electromagnetism in science 

and technology 

Review: Chapter 12, Vol. I, Character¬ 

istics of Force 
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There is another question: “What holds the nucleus together”? In a nucleus 

there are several protons, all of which are positive. Why don’t they push them¬ 

selves apart? It turns out that in nuclei there are, in addition to electrical forces, 

nonelectrical forces, called nuclear forces, which are greater than the electrical 

forces and which are able to hold the protons together in spite of the electrical 

repulsion. The nuclear forces, however, have a short range—their force falls off 

much more rapidly than l/r2. And this has an important consequence. If a 

nucleus has too many protons in it, it gets too big, and it will not stay together. An 

example is uranium, with 92 protons. The nuclear forces act mainly between each 

proton (or neutron) and its nearest neighbor, while the electrical forces act over 

larger distances, giving a repulsion between each proton and all of the others in 

the nucleus. The more protons in a nucleus, the stronger is the electrical repulsion, 

until, as in the case of uranium, the balance is so delicate that the nucleus is almost 

ready to fly apart from the repulsive electrical force. If such a nucleus is just 

“tapped” lightly (as can be done by sending in a slow neutron), it breaks into two 

pieces, each with positive charge, and these pieces fly apart by electrical repulsion. 

The energy which is liberated is the energy of the atomic bomb. This energy is 

usually called “nuclear” energy, but it is really “electrical” energy released when 

electrical forces have overcome the attractive nuclear forces. 
We may ask, finally, what holds a negatively charged electron together (since 

it has no nuclear forces). If an electron is all made of one kind of substance, each 

part should repel the other parts. Why, then, doesn’t it fly apart? But does the 

electron have “parts”? Perhaps we should say that the electron is just a point and 

that electrical forces only act between different point charges, so that the electron 

does not act upon itself. Perhaps. All we can say is that the question of what 

holds the electron together has produced many difficulties in the attempts to form 

a complete theory of electromagnetism. The question has never been answered. 

We will entertain overselves by discussing this subject some more in later chapters. 

As we have seen, we should expect that it is a combination of electrical forces 

and quantum-mechanical effects that will determine the detailed structure of 

materials in bulk, and, therefore, their properties. Some materials are hard, some 
are soft. Some are electrical “conductors”—because their electrons are free to 

move about; others are “insulators”—because their electrons are held tightly to 

individual atoms. We shall consider later how some of these properties come about, 

but that is a very complicated subject, so we will begin by looking at the electrical 

forces only in simple situations. We begin by treating only the laws of electricity— 

including magnetism, which is really a part of the same subject. 

We have said that the electrical force, like a gravitational force, decreases 

inversely as the square of the distance between charges. This relationship is called 

Coulomb’s law. But it is not precisely true when charges are moving—the elec¬ 

trical forces depend also on the motions of the charges in a complicated way. One 

part of the force between moving charges we call the magnetic force. It is really 

one aspect of an electrical effect. That is why we call the subject “electromag¬ 

netism.” 
There is an important general principle that makes it possible to treat elec¬ 

tromagnetic forces in a relatively simple way. We find, from experiment, that the 

force that acts on a particular charge—no matter how many other charges there 

are or how they are moving—depends only on the position of that particular 

charge, on the velocity of the charge, and on the amount of charge. We can write 

the force fona charge q moving with a velocity v as 

F=q(E+vXB). (1.1) 

We call E the electric field and B the magnetic field at the location of the charge. 

The important thing is that the electrical forces from all the other charges in the 

universe can be summarized by giving just these two vectors. Their values will 

depend on where the charge is, and may change with time. Furthermore, if we 

replace that charge with another charge, the force on the new charge will be just 
in proportion to the amount of charge so long as all the rest of the charges in the 
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world do not change their positions or motions. (In real situations, of course, each 
charge produces forces on all other charges in the neighborhood and may cause 
these other charges to move, and so in some cases the fields can change if we replace 
our particular charge by another.) 

We know from Vol. I how to find the motion of a particle if we know the force 
on it. Equation (1.1) can be combined with the equation of motion to give 

d_ 

dt 

_mv 

(1 - v2/c2)112 
= F = q(E + v X B). (1.2) 

So if E and B are given, we can find the motions. Now we need to know how the 
E*s and B*s are produced. 

One of the most important simplifying principles about the way the fields are 
produced is this: Suppose a number of charges moving in some manner would 
produce a field El, and another set of charges would produce E2- If both sets of 
charges are in place at the same time (keeping the same locations and motions 
they had when considered separately), then the field produced is just the sum 

E = Ei + E%. (1.3) 

This fact is called the principle of superposition of fields. It holds also for magnetic 
fields. 

This principle means that if we know the law for the electric and magnetic 
fields produced by a single charge moving in an arbitrary way, then all the laws of 
electrodynamics are complete. If we want to know the force on charge A we need 
only calculate the E and B produced by each of the charges B, C, D, etc., and then 
add the E's and B's from all the charges to find the fields, and from them the 
forces acting on charge A. If it had only turned out that the field produced by a 
single charge was simple, this would be the neatest way to describe the laws of 
electrodynamics. We have already given a description of this law (Chapter 28, 
Vol. I) and it is, unfortunately, rather complicated. 

It turns out that the form in which the laws of electrodynamics are simplest 
are not what you might expect. It is not simplest to give a formula for the force that 
one charge produces on another. It is true that when charges are standing still the 
Coulomb force law is simple, but when charges are moving about the relations are 
complicated by delays in time and by the effects of acceleration, among others. 
As a result, we do not wish to present electrodynamics only through the force 
laws between charges; we find it more convenient to consider another point of 
view—a point of view in which the laws of electrodynamics appear to be the most 
easily manageable. 

1-2 Electric and magnetic fields 

First, we must extend, somewhat, our ideas of the electric and magnetic 
vectors, E and B. We have defined them in terms of the forces that are felt by a 
charge. We wish now to speak of electric and magnetic fields at a point even when 
there is no charge present. We are saying, in effect, that since there are forces 
“acting on” the charge, there is still “something” there when the charge is removed. 
If a charge located at the point (*, y, z) at the time t feels the force F given by 
Eq. (1.1) we associate the vectors E and B with the point in space (x, yt z). We may 
think of E(x, y, z, t) and B{x, y, z, /) as giving the forces that would be experienced 
at the time t by a charge located at (x, y, z), with the condition that placing the charge 
there did not disturb the positions or motions of all the other charges responsible 
for the fields. 

Following this idea, we associate with every point (x, y, z) in space two vectors 
E and B, which may be changing with time. The electric and magnetic fields are, 
then, viewed as vector functions of x, y, z, and t. Since a vector is specified by its 
components, each of the fields E(x} y, z, /) and B(x, y, z, t) represent three mathe¬ 
matical functions of x, y, z, and t. 
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Fig. 1-1. A vector field may be 

represented by drawing a set of arrows 

whose magnitudes and directions indicate 

the values of the vector field at the points 

from which the arrows are drawn. 

Fig. 1-2. A vector field can be 

represented by drawing lines which are 

tangent to the direction of the field vector 

at each point, and by drawing the density 

of lines proportional to the magnitude of 

the field vector. 

Fig. 1-3. The flux of a vector field 

through a surface is defined as the 

average value of the normal component 

of the vector times the area of the surface. 

It is precisely because E (or B) can be specified at every point in space that it is 
called a “field.” A “field” is any physical quantity which takes on different values 
at different points in space. Temperature, for example, is a field—in this case a 
scalar field, which we write as T(x, y, z). The temperature could also vary in time, 
and we would say the temperature field is time-dependent, and write T(x, y, z, t). 
Another example is the “velocity field” of a flowing liquid. We write v{x, y, z, t) 

for the velocity of the liquid at each point in space at the time t. It is a vector field. 
Returning to the electromagnetic fields—although they are produced by 

charges according to complicated formulas, they have the following important 
characteristic: the relationships between the values of the fields at one point and 
the values at a nearby point are very simple. With only a few such relationships in 
the form of differential equations we can describe the fields completely. It is in 
terms of such equations that the laws of electrodynamics are most simply written. 

There have been various inventions to help the mind visualize the behavior of 
fields. The most correct is also the most abstract: we simply consider the fields as 
mathematical functions of position and time. We can also attempt to get a mental 
picture of the field by drawing vectors at many points in space, each of which gives 
the field strength and direction at that point. Such a representation is shown in 
Fig. 1-1. We can go further, however, and draw lines which are everywhere 
tangent to the vectors—which, so to speak, follow the arrows and keep track of 
the direction of the field. When we do this we lose track of the lengths of the 
vectors, but we can keep track of the strength of the field by drawing the lines far 
apart when the field is weak and close together when it is strong. We adopt the 
convention that the number of lines per unit area at right angles to the lines is pro¬ 
portional to the field strength. This is, of course, only an approximation, and it 
will require, in general, that new lines sometimes start up in order to keep the 
number up to the strength of the field. The field of Fig. 1-1 is represented by 
field lines in Fig. 1-2. 

1-3 Characteristics of vector fields 

There are two mathematically important properties of a vector field which 
we will use in our description of the laws of electricity from the field point of view. 
Suppose we imagine a closed surface of some kind and ask whether we are losing 
“something” from the inside; that is, does the field have a quality of “outflow”? 
For instance, for a velocity field we might ask whether the velocity is always out¬ 
ward on the surface or, more generally, whether more fluid flows out (per unit 
time) than comes in. We call the net amount of fluid going out through the surface 
per unit time the “flux of velocity” through the surface. The flow through an 
element of a surface is just equal to the component of the velocity perpendicular 
to the surface times the area of the surface. For an arbitrary closed surface, the 
net outward flow—or flux—is the average outward normal component of the 
velocity, times the area of the surface: 

Flux = (average normal component)-(surface area). (1.4) 

In the case of an electric field, we can mathematically define something 
analogous to an outflow, and we again call it the flux, but of course it is not the 
flow of any substance, because the electric field is not the velocity of anything. It 
turns out, however, that the mathematical quantity which is the average normal 
component of the field still has a useful significance. We speak, then, of the 
electric flux—also defined by Eq. (1.4). Finally, it is also useful to speak of the 
flux not only through a completely closed surface, but through any bounded sur¬ 
face. As before, the flux through such a surface is defined as the average normal 
component of a vector times the area of the surface. These ideas are illustrated in 
Fig. 1-3. 

There is a second property of a vector field that has to do with a line, rather 
than a surface. Suppose again that we think of a velocity field that describes the 
flow of a liquid. We might ask this interesting question: Is the liquid circulating? 
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By that we mean: Is there a net rotational motion around some loop? Suppose 
that we instantaneously freeze the liquid everywhere except inside of a tube which 
is of uniform bore, and which goes in a loop that closes back on itself as in 
Fig. 1-4. Outside of the tube the liquid stops moving, but inside the tube it may 
keep on moving because of the momentum in the trapped liquid—that is, if there is 
more momentum heading one way around the tube than the other. We define a 
quantity called the circulation as the resulting speed of the liquid in the tube times its 
circumference. We can again extend our ideas and define the “circulation” for any 
vector field (even when there isn’t anything moving). For any vector field the 
circulation around any imagined closed curve is defined as the average tangential 
component of the vector (in a consistent sense) multiplied by the circumference 
of the loop (Fig. 1-5). 

Circulation = (average tangential component)* (distance around). (1.5) 

You will see that this definition does indeed give a number which is proportional 
to the circulation velocity in the quickly frozen tube described above. 

With just these two ideas—flux and circulation—we can describe all the laws 
of electricity and magnetism at once. You may not understand the significance of 
the laws right away, but they will give you some idea of the way the physics of 
electromagnetism will be ultimately described. 

1-4 The laws of electromagnetism 

The first law of electromagnetism describes the flux of the electric field: 

The flux of E through any closed surface = the net charge inside # £) 
Co 

where €0 is a convenient constant. (The constant e0 is usually read as “epsilon- 
zero” or “epsifon-naught”.) If there are no charges inside the surface, even though 
there are charges nearby outside the surface, the average normal component of E 

is zero, so there is no net flux through the surface. To show the power of this 
type of statement, we can show that Eq. (1.6) is the same as Coulomb’s law, pro¬ 
vided only that we also add the idea that the field from a single charge is spherically 
symmetric. For a point charge, we draw a sphere around the charge. Then the 
average normal component is just the value of the magnitude of E at any point, 
since the field must be directed radially and have the same strength for all points on 
the sphere. Our rule now says that the field at the surface of the sphere, times the 
area of the sphere—that is, the outgoing flux—is proportional to the charge inside. 
If we were to make the radius of the sphere bigger, the area would increase as 
the square of the radius. The average normal component of the electric field times 
that area must still be equal to the same charge inside, and so the field must decrease 
as the square of the distance—we get an “inverse square” field. 

If we have an arbitrary curve in space and measure the circulation of the 
electric field around the curve, we will find that it is not, in general, zero (although 
it is for the Coulomb field). Rather, for electricity there is a second law that states: 
for any surface S (not closed) whose edge is the curve C, 

Circulation of E around C = ~ (flux of B through S). (1.7) 

We can complete the laws of the electromagnetic field by writing two corre¬ 
sponding equations for the magnetic field B. 

Flux of B through any closed surface = 0. (1.8) 

For a surface S bounded by the curve C, 

c2(circulation of B around C) = ^ (flux of E through S) 

flux of electric current through S ^ ^ 

€o 

Fig. 1 -4. (a) The velocity field in a 

liquid. Imagine a tube of uniform cross 

section that follows an arbitrary closed 

curve as in (b). If the liquid were suddenly 

frozen everywhere except inside the 

tube, the liquid in the tube would circulate 

as shown in (c). 

Fig. 1-5. The circulation of a vector 

field is the average tangential compo¬ 

nent of the vector (in a consistent sense) 

times the circumference of the loop. 
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The constant c2 that appears in Eq. (1.9) is the square of the velocity of light. 
It appears because magnetism is in reality a relativistic effect of electricity. The 
constant e0 has been stuck in to make the units of electric current come out in a 
convenient way. 

Equations (1.6) through (1.9), together with Eq. (1.1), are all the laws of 
electrodynamics*. As you remember, the laws of Newton were very simple to 
write down, but they had a lot of complicated consequences and it took us a long 
time to learn about them all. These laws are not nearly as simple to write down, 
which means that the consequences are going to be more elaborate and it will take 
us quite a lot of time to figure them all out. 

We can illustrate some of the laws of electrodynamics by a series of small 
experiments which show qualitatively the interrelationships of electric and 
magnetic fields. You have experienced the first term of Eq. (1.1) when combing 
your hair, so we won’t show that one. The second part of Eq. (1.1) can be demon¬ 
strated by passing a current through a wire which hangs above a bar magnet, as 
shown in Fig. 1-6. The wire will move when a current is turned on because of the 
force F — qv X B. When a current exists, the charges inside the wire are moving, 
so they have a velocity v, and the magnetic field from the magnet exerts a force on 
them, which results in pushing the wire sideways. 

When the wire is pushed to the left, we would expect that the magnet must 
feel a push to the right. (Otherwise we could put the whole thing on a wagon and 
have a propulsion system that didn’t conserve momentum!) Although the force is 
too small to make movement of the bar magnet visible, a more sensitively sup¬ 
ported magnet, like a compass needle, will show the movement. 

How does the wire push on the magnet? The current in the wire produces a 
magnetic field of its own that exerts forces on the magnet. According to the last 

* We need only to add a remark about some conventions for the sign of the circulation. 
1-6 



term in Eq. (1.9), a current must have a circulation of B—in this case, the lines of 
B are loops around the wire, as shown in Fig. 1-7. This 5-field is responsible for 
the force on the magnet. 

Equation (1.9) tells us that for a fixed current through the wire the circulation 
of B is the same for any curve that surrounds the wire. For curves—say circles— 
that are farther away from the wire, the circumference is larger, so the tangential 
component of B must decrease. You can see that we would, in fact, expect B to 
decrease linearly with the distance from a long straight wire. 

Now, we have said that a current through a wire produces a magnetic field, 
and that when there is a magnetic field present there is a force on a wire carrying a 
current. Then we should also expect that if we make a magnetic field with a current 
in one wire, it should exert a force on another wire which also carries a current. 
This can be shown by using two hanging wires as shown in Fig. 1-8. When the 
currents are in the same direction, the two wires attract, but when the currents are 
opposite, they repel. 

In short, electrical currents, as well as magnets, make magnetic fields. But wait, 
what is a magnet, anyway? If magnetic fields are produced by moving charges, is 
it not possible that the magnetic field from a piece of iron is really the result of 
currents? It appears to be so. We can replace the bar magnet of our experiment 
with a coil of wire, as shown in Fig. 1-9. When a current is passed through the 
coil—as well as through the straight wire above it—we observe a motion of the 
wire exactly as before, when we had a magnet instead of a coil. In other words, 
the current in the coil imitates a magnet. It appears, then, that a piece of iron acts 
as though it contains a perpetual circulating current. We can, in fact, understand 
magnets in terms of permanent currents in the atoms of the iron. The force on the 
magnet in Fig. 1-7 is due to the second term in Eq. (1.1). 
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Where do the currents come from? One possibility would be from the motion 
of the electrons in atomic orbits. Actually, that is not the case for iron, although 
it is for some materials. In addition to moving around in an atom, an electron 
also spins about on its own axis—something like the spin of the earth—and it is 
the current from this spin that gives the magnetic field in iron. (We say “some¬ 
thing like the spin of the earth” because the question is so deep in quantum me¬ 
chanics that the classical ideas do not really describe things too well.) In most 
substances, some electrons spin one way and some spin the other, so the mag¬ 
netism cancels out, but in iron—for a mysterious reason which we will discuss 
later—many of the electrons are spinning with their axes lined up, and that is the 
source of the magnetism. 

Since the fields of magnets are from currents, we do not have to add any extra 
term to Eqs. (1.8) or (1.9) to take care of magnets. We just take all currents, 
including the circulating currents of the spinning electrons, and then the law is 
right. You should also notice that Eq. (1.8) says that there are no magnetic 
“charges” analogous to the electrical charges appearing on the right side of 
Eq. (1.6). None has been found. 

Fig. 1-10. The circulation of B 

around the curve C is given either by the 

current passing through the surface Si, 

or by the rate of change of the flux of F 

through the surface S2. 

The first term on the right-hand side of Eq. (1.9) was discovered theoretically 
by Maxwell and is of great importance. It says that changing electric fields produce 
magnetic effects. In fact, without this term the equation would not make sense, 
because without it there could be no currents in circuits that are not complete 
loops. But such currents do exist, as we can see in the following example. Imagine 
a capacitor made of two flat plates. It is being charged by a current that flows 
toward one plate and away from the other, as shown in Fig. 1-10. We draw a 
curve C around one of the wires and fill it in with a surface which crosses the wire, 
as shown by the surface Si in the figure. According to Eq. (1.9), the circulation of 
B around C is given by the current in the wire (times c2). But what if we fill in the 
curve with a different surface S2, which is shaped like a bowl and passes between 
the plates of the capacitor, staying always away from the wire? There is certainly 
no current through this surface. But, surely, just changing the location of an 
imaginary surface is not going to change a real magnetic field! The circulation of 
B must be what it was before. The first term on the right-hand side of Eq. (1.9) 
does, indeed, combine with the second term to give the same result for the two 
surfaces S\ and S2> For S2 the circulation of B is given in terms of the rate of 
change of the flux of E between the plates of the capacitor. And it works out that 
the changing E is related to the current in just the way required for Eq. (1.9) to be 
correct. Maxwell saw that it was needed, and he was the first to write the complete 
equation. 

With the setup shown in Fig. 1-6 we can demonstrate another of the laws of 
electromagnetism. We disconnect the ends of the hanging wire from the battery 
and connect them to a galvanometer which tells us when there is a current through 
the wire. When we push the wire sideways through the magnetic field of the 
magnet, we observe a current. Such an effect is again just another consequence of 
Eq. (1.1)—the electrons in the wire feel the force F — qv X B. The electrons 
have a sidewise velocity because they move with the wire. This v with a vertical B 

from the magnet results in a force on the electrons directed along the wire, which 
starts the electrons moving toward the galvanometer. 
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Suppose, however, that we leave the wire alone and move the magnet. We 
guess from relativity that it should make no difference, and indeed, we observe a 
similar current in the galvanometer. How does the magnetic field produce forces on 
charges at rest? According to Eq. (1.1) there must be an electric field. A moving 
magnet must make an electric field. How that happens is said quantitatively by 
Eq. (1.7). This equation describes many phenomena of great practical interest, 
such as those that occur in electric generators and transformers. 

The most remarkable consequence of our equations is that the combination of 
Eq. (1.7) and Eq. (1.9) contains the explanation of the radiation of electromag¬ 
netic effects over large distances. The reason is roughly something like this: 
suppose that somewhere we have a magnetic field which is increasing because, 
say, a current is turned on suddenly in a wire. Then by Eq. (1.7) there must be a 
circulation of an electric field. As the electric field builds up to produce its circula¬ 
tion, then according to Eq. (1.9) a magnetic circulation will be generated. But the 
building up of this magnetic field will produce a new circulation of the electric 
field, and so on. In this way fields work their way through space without the need 
of charges or currents except at their source. That is the way we see each other! 
It is all in the equations of the electromagnetic fields. 

1-5 What are the fields? 

We now make a few remarks on our way of looking at this subject. You may 
be saying: “All this business of fluxes and circulations is pretty abstract. There are 
electric fields at every point in space; then there are these ‘laws.’ But what is 
actually happening? Why can’t you explain it, for instance, by whatever it is that 
goes between the charges.” Well, it depends on your prejudices. Many physicists 
used to say that direct action with nothing in between was inconceivable. (How 
could they find an idea inconceivable when it had already been conceived?) They 
would say: “Look, the only forces we know are the direct action of one piece of 
matter on another. It is impossible that there can be a force with nothing to trans¬ 
mit it.” But what really happens when we study the “direct action” of one piece of 
matter right against another? We discover that it is not one piece right against 
the other; they are slightly separated, and there are electrical forces acting on a 
tiny scale. Thus we find that we are going to explain so-called direct-contact action 
in terms of the picture for electrical forces. It is certainly not sensible to try to 
insist that an electrical force has to look like the old, familiar, muscular push or 
pull, when it will turn out that the muscular pushes and pulls are going to be inter¬ 
preted as electrical forces! The only sensible question is what is the most con¬ 

venient way to look at electrical effects. Some people prefer to represent them as 
the interaction at a distance of charges, and to use a complicated law. Others love 
the field lines. They draw field lines all the time, and feel that writing E's and B’s 
is too abstract. The field lines, however, are only a crude way of describing a field, 
and it is very difficult to give the correct, quantitative laws directly in terms of field 
lines. Also, the ideas of the field lines do not contain the deepest principle of 
electrodynamics, which is the superposition principle. Even though we know how 
the field lines look for one set of charges and what the field lines look like for an¬ 
other set of charges, we don’t get any idea about what the field line patterns will 
look like when both sets are present together. From the mathematical stand¬ 
point, on the other hand, superposition is easy—we simply add the two vectors. 
The field lines have some advantage in giving a vivid picture, but they also have 
some disadvantages. The direct interaction way of thinking has great advantages 
when thinking of electrical charges at rest, but has great disadvantages when dealing 
with charges in rapid motion. 

The best way is to use the abstract field idea. That it is abstract is unfortunate, 
but necessary. The attempts to try to represent the electric field as the motion of 
some kind of gear wheels, or in terms of lines, or of stresses in some kind of mate¬ 
rial have used up more effort of physicists than it would have taken simply to get 
the right answers about electrodynamics. It is interesting that the correct equations 
for the behavior of light in crystals were worked out by McCullough in 1843. But 
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people said to him: “Yes, but there is no real material whose mechanical properties 
could possibly satisfy those equations, and since light is an oscillation that must 
vibrate in something, we cannot believe this abstract equation business.” If people 
had been more open-minded, they might have believed in the right equations for 
the behavior of light a lot earlier than they did. 

In the case of the magnetic field we can make the following point: Suppose 
that you finally succeeded in making up a picture of the magnetic field in terms of 
some kind of lines or of gear wheels running through space. Then you try to 
explain what happens to two charges moving in space, both at the same speed and 
parallel to each other. Because they are moving, they will behave like two currents 
and will have a magnetic field associated with them (like the currents in the wires 
of Fig. 1-8). An observer who was riding along with the two charges, however, 
would see both charges as stationary, and would say that there is no magnetic field. 
The “gear wheels” or “lines” disappear when you ride along with the object! All 
we have done is to invent a new problem. How can the gear wheels disappear?! 
The people who draw field lines are in a similar difficulty. Not only is it not pos¬ 
sible to say whether the field lines move or do not move with charges—they may 
disappear completely in certain coordinate frames 

What we are saying, then, is that magnetism is really a relativistic effect. In 
the case of the two charges we just considered, travelling parallel to each other, we 
would expect to have to make relativistic corrections to their motion, with terms of 
order v2/c2. These corrections must correspond to the magnetic force. But what 
about the force between the two wires in our experiment (Fig. 1-8). There the 
magnetic force is the whole force. It didn’t look like a “relativistic correction.” 
Also, if we estimate the velocities of the electrons in the wire (you can do this 
yourself), we find that their average speed along the wire is about 0.01 centimeter 
per second. So v2/c2 is about 10-25. Surely a negligible “correction.” But no! 
Although the magnetic force is, in this case, 10~25 of the “normal” electrical force 
between the moving electrons, remember that the “normal” electrical forces have 
disappeared because of the almost perfect balancing out—because the wires have 
the same number of protons as electrons. The balance is much more precise than 
one part in 1025, and the small relativistic term which we call the magnetic force is 
the only term left. It becomes the dominant term. 

It is the near-perfect cancellation of electrical effects which allowed relativity 
effects (that is, magnetism) to be studied and the correct equations—to order 
v2/c2—to be discovered, even though physicists didn’t know that’s what was 
happening. And that is why, when relativity was discovered, the electromagnetic 
laws didn’t need to be changed. They—unlike mechanics—were already correct 
to a precision of v2/c2. 

1-6 Electromagnetism in science and technology 

Let us end this chapter by pointing out that among the many phenomena 
studied by the Greeks there were two very strange ones; that if you rubbed a piece 
of amber you could lift up little pieces of papyrus, and that there was a strange 
rock from the island of Magnesia which attracted iron. It is amazing to think that 
these were the only phenomena known to the Greeks in which the effects of elec¬ 
tricity or magnetism were apparent. The reason that these were the only phe¬ 
nomena that appeared is due primarily to the fantastic precision of the balancing 
of charges that we mentioned earlier. Study by scientists who came after the Greeks 
uncovered one new phenomena after another that were really some aspect of these 
amber and/or lodestone effects. Now we realize that the phenomena of chemical 
interaction and, ultimately, of life itself are to be understood in terms of electro¬ 
magnetism. 

At the same time that an understanding of the subject of electromagnetism 
was being developed, technical possibilities that defied the imagination of the people 
that came before were appearing: it became possible to signal by telegraph over 
long distances, and to talk to another person miles away without any connections 
between, and to run huge power systems—a great water wheel, connected by 
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filaments over hundreds of miles to another engine that turns in response to the 
master wheel—many thousands of branching filaments—ten thousand engines in 
ten thousand places running the machines of industries and homes—all turning 
because of the knowledge of the laws of electromagnetism. 

Today we are applying even more subtle effects. The electrical forces, enor¬ 
mous as they are, can also be very tiny, and we can control them and use them in 
very many ways. So delicate are our instruments that we can tell what a man is 
doing by the way he affects the electrons in a thin metal rod hundreds of miles 
away. All we need to do is to use the rod as an antenna for a television receiver! 

From a long view of the history of mankind—seen from, say, ten thousand 
years from now—there can be little doubt that the most significant event of the 
19th century will be judged as Maxwell’s discovery of the laws of electrodynamics. 
The American Civil War will pale into provincial insignificance in comparison with 
this important scientific event of the same decade. 

l-ll 



2 

Differential Calculus of Vector Fields 

2-1 Understanding physics 

The physicist needs a facility in looking at problems from several points of 
view. The exact analysis of real physical problems is usually quite complicated, 
and any particular physical situation may be too complicated to analyze directly 
by solving the differential equation. But one can still get a very good idea of the 
behavior of a system if one has some feel for the character of the solution in differ¬ 
ent circumstances. Ideas such as the field lines, capacitance, resistance, and in¬ 
ductance are, for such purposes, very useful. So we will spend much of our time 
analyzing them. In this way we will get a feel as to what should happen in different 
electromagnetic situations. On the other hand, none of the heuristic models, such 
as field lines, is really adequate and accurate for all situations. There is only one 
precise way of presenting the laws, and that is by means of differential equations. 
They have the advantage of being fundamental and, so far as we know, precise. 
If you have learned the differential equations you can always go back to them. 
There is nothing to unlearn. 

It will take you some time to understand what should happen in different 
circumstances. You will have to solve the equations. Each time you solve the 
equations, you will learn something about the character of the solutions. To keep 
these solutions in mind, it will be useful also to study their meaning in terms of field 
lines and of other concepts. This is the way you will really “understand” the equa¬ 
tions. That is the difference between mathematics and physics. Mathematicians, 
or people who have very mathematical minds, are often led astray when “studying” 
physics because they lose sight of the physics. They say: “Look, these differential 
equations—the Maxwell equations—are all there is to electrodynamics; it is 
admitted by the physicists that there is nothing which is not contained in the equa¬ 
tions. The equations are complicated, but after all they are only mathematical 
equations and if I understand them mathematically inside out, I will understand 
the physics inside out.” Only it doesn’t work that way. Mathematicians who study 
physics with that point of view—and there have been many of them—usually 
make little contribution to physics and, in fact, little to mathematics. They fail 
because the actual physical situations in the real world are so complicated that it is 
necessary to have a much broader understanding of the equations. 

What it means really to understand an equation—that is, in more than a 
strictly mathematical sense—was described by Dirac. He said: “I understand what 
an equation means if I have a way of figuring out the characteristics of its solution 
without actually solving it.” So if we have a way of knowing what should happen 
in given circumstances without actually solving the equations, then we “under¬ 
stand” the equations, as applied to these circumstances. A physical understanding 
is a completely unmathematical, imprecise, and inexact thing, but absolutely neces¬ 
sary for a physicist. 

* Ordinarily, a course like this is given by developing gradually the physical 
ideas—by starting with simple situations and going on to more and more compli¬ 
cated situations. This requires that you continuously forget things you previously 
learned—things that are true in certain situations, but which are not true in general. 
For example, the “law” that the electrical force depends on the square of the 
distance is not always true. We prefer the opposite approach. We prefer to take 
first the complete laws, and then to step back and apply them to simple situa¬ 
tions, developing the physical ideas as we go along. And that is what we are going 
to do. 

2-1 Understanding physics 

2-2 Scalar and vector fields—T 
and h 

2-3 Derivatives of fields—the 
gradient 

2-4 The operator V 

2-5 Operations with V 

2-6 The differential equation of 
heat flow 

2-7 Second derivatives of vector 
fields 

2-8 Pitfalls 

Review: Chapter 11, Vol. I, Vectors 
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Our approach is completely opposite to the historical approach in which one 
develops the subject in terms of the experiments by which the information was 
obtained. But the subject of physics has been developed over the past 200 years 
by some very ingenious people, and as we have only a limited time to acquire our 
knowledge, we cannot possibly cover everything they did. Unfortunately one of 
the things that we shall have a tendency to lose in these lectures is the historical, 
experimental development. It is hoped that in the laboratory some of this lack can 
be corrected. You can also fill in what we must leave out by reading the Ency¬ 
clopedia Brittanica, which has excellent historical articles on electricity and on 
other parts of physics. You will also find historical information in many textbooks 
on electricity and magnetism. 

2-2 Scalar and vector fields—T and h 
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We begin now with the abstract, mathematical view of the theory of electricity 
and magnetism. The ultimate idea is to explain the meaning of the laws given in 
Chapter 1. But to do this we must first explain a new and peculiar notation that 
we want to use. So let us forget electromagnetism for the moment and discuss the 
mathematics of vector fields. It is of very great importance, not only for electro¬ 
magnetism, but for all kinds of physical circumstances. Just as ordinary differential 
and integral calculus is so important to all branches of physics, so also is the 
differential calculus of vectors. We turn to that subject. 

Listed below are a few facts from the algebra of vectors. It is assumed that 
you already know them. 

B = scalar = AXBX + AyBy -f AzBt 

AyBx 

A X B = vector 

(/4 X B)g = AxBy 

{A X B)x — AyBz AgBy 

(A X B\ = AZBX - AXBZ 

A X A = 0 

A • (A X B) = 0 

A • (fi^X C) = (A X B) * C 

AX (BX C) = B(A'C) - C(A • B) 

Also we will want to use the two following equalities from the calculus: 

A/(W) = g A* + + ^Az, 

(2.1) 

(2.2) 

S2f = J?j_ 
dx dy dy dx 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

The first equation (2.7) is, of course, true only in the limit that Ax, Ay, and Az 
go toward zero. 

The simplest possible physical field is a scalar field. By a field, you remember, 
we mean a quantity which depends upon position in space. By a scalar field we 
merely mean a field which is characterized at each point by a single number—a 
scalar. Of course the number may change in time, but we need not worry about 
that for the moment. We will talk about what the field looks like at a given instant. 
As an example of a scalar field, consider a solid block of material which has been 
heated at some places and cooled at others, so that the temperature of the body 
varies from point to point in a complicated way. Then the temperature will be a 
function of x, y, and z, the position in space measured in a rectangular coordinate 
system. Temperature is a scalar field. 
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Fig. 2-1. Temperature T is an example of a 

scalar field. With each point (x, y, z) in space 

there is associated a number T[x, y, z). All points on 

the surface marked T = 20° (shown as a curve at 

z — O) are at the same temperature. The arrows 

are samples of the heat flow vector h. 

One way of thinking about scalar fields is to imagine “contours” which are 
imaginary surfaces drawn through all points for which the field has the same value, 
just as contour lines on a map connect points with the same height. For a tempera¬ 
ture field the contours are called “isothermal surfaces” or isotherms. Figure 2-1 
illustrates a temperature field and shows the dependence of T on x and y when 
z = 0. Several isotherms are drawn. 

There are also vector fields. The idea is very simple. A vector is given for each 
point in space. The vector varies from point to point. As an example, consider a 
rotating body. The velocity of the material of the body at any point is a vector 
which is a function of position (Fig. 2-2). As a second example, consider the flow 
of heat in a block of material. If the temperature in the block is high at one place 
and low at another, there will be a flow of heat from the hotter places to the colder. 
The heat will be flowing in different directions in different parts of the block. The 
heat flow is a directional quantity which we call h. Its magnitude is a measure of 
how much heat is flowing. Examples of the heat flow vector are also shown 
in Fig. 2-1. 

Fig. 2-3. Heat flow is a vector field. The vector 

h points along the direction of the flow. Its magni¬ 

tude is the energy transported per unit time across a 

surface element oriented perpendicular to the flow, 

divided by the area of the surface element. 

z 

Fig. 2-2. The velocity of the atoms 

in a rotating object is an example of a 

vector field. 

Let’s maxe a more precise definition of k: The magnitude of the vector heat 
flow at a point is the amount of thermal energy that passes, per unit time and per 
unit area, through an infinitesimal surface element, at right angles to the direction 
of flow. The vector points in the direction of flow (see Fig. 2-3). In symbols: If A J 

is the thermal energy that passes per unit time through the surface element Aa, then 

AJ 
(2.9) 

A a 

where e/ is a unit vector in the direction of flow. 
The vector h can be defined in another way—in terms of its components. We 

ask how much heat flows through a small surface at any angle with respect to the 
flow. In Fig. 2-4 we show a small surface Aa2 inclined with respect to Aa!, which 
is perpendicular to the flow. The unit vector n is normal to the surface Aa2. The 
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Fig. 2-4. The heat flow through Ao2 

is the same as through Aai. 



angle 6 between n and h is the same as the angle between the surfaces (since h is nor¬ 

mal to Ac/i). Now what is the heat flow per unit area through Aa2? The flow 

through Aa2 is the same as through Aax; only the areas are different. In fact, 

Acti = A<3 2 cos 0. The heat flow through Aa2 is 

AJ AJ _ . 
- — -cos B — h ■ n. (2.10) 
Aa2 A^i 

We interpret this equation: the heat flow (per unit time and per unit area) through 

any surface element whose unit normaLis «, is given by h ‘ n. Equally, we could 

say: the component of the heat flow perpendicular to the surface element Aa2 is 

h * n. We can, if we wish, consider that these statements define h. We will be apply¬ 

ing the same ideas to other vector fields. 

2-3 Derivatives of fields—the gradient 

When fields vary in time, we can describe the variation by giving their deriva¬ 

tives with respect to t. We want to describe the variations with position in a similar 

way, because we are interested in the relationship between, say, the temperature in 

one place and the temperature at a nearby place. How shall we take the derivative 

of the temperature with respect to position? Do we differentiate the temperature 

with respect to *? Or with respect to y, or z? 

Useful physical laws do not depend upon the orientation of the coordinate 

system. They should, therefore, be written in a form in which either both sides are 

scalars or both sides are vectors. What is the derivative of a scalar field, say 

dT/dx*! Is it a scalar, or a vector, or what? It is neither a scalar nor a vector, as 

you can easily appreciate, because if we took a different x-axis, dT/dx would cer¬ 

tainly be different. But notice: We have three possible derivatives: dT/dx, dT/dys 

and dT/dz. Since there are three kinds of derivatives and we know that it takes 

three numbers to form a vector, perhaps these three derivatives are the components 

of a vector: 

dT dT ar\ ^ 

,dx ’ dy ’ dz ) 
a vector. (2.11) 

Of course it is not generally true that any three numbers form a vector. It is 

true only if, when we rotate the coordinate system, the components of the vector 

transform among themselves in the correct way. So it is necessary to analyze how 

these derivatives are changed by a rotation of the coordinate system. We shall 

show that (2.11) is indeed a vector. The derivatives do transform in the correct 

way when the coordinate system is rotated. 

We can see this in several ways. One way is to ask a question whose answer is 

independent of the coordinate system, and try to express the answer in an “in¬ 

variant” form. For instance, if 5 — A * B, and if A and B are vectors, we know— 

because we proved it in Chapter 11 of Vol. I—that S is a scalar. We know that S 
is a scalar without investigating whether it changes with changes in coordinate 

systems. It can't, because it’s a dot product of two vectors. Similarly, if we know 

that A is a vector, and we have three numbers BUB2, and B3, and we find out that 

AXB i + AyB2 + AZB 3 = S, (2.12) 

where S is the same for any coordinate system, then it must be that the three 

numbers Bu B2, B3 are the components Bz, Bv, Bz of some vector B. 

Now let’s think of the temperature field. Suppose we take two points Pi and 

P2) separated by the small interval AR. The temperature at Pi is Ti and at P2 is 

T2, and the difference AT = T2 — 7V The temperatures at these real, physical 

points certainly do not depend on what axis we choose for measuring the coordi¬ 

nates. In particular, AT is a number independent of the coordinate system. It is a 
scalar. 
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If we choose some convenient set of axes, we could write Ti = T(x, y, z) and 

T2 — T(x + Ax, y -f Ay, z + Az), where Ax, Ay, and Az are the components of 

the vector AR (Fig. 2-5). Remembering Eq. (2.7), we can write 

+ + (2-13) 

The left side of Eq. (2.13) is a scalar. The right side is the sum of three products 

with Ax, Ay, and Az, which are the components of a vector. It follows that the 

three numbers 

dT dT dT 
dx 5 dy 9 dz 

are also the x-, y-, and z-components of a vector. We write this new vector with 

the symbol VT. The symbol V (called “del”) is an upside-down A, and is supposed 

to remind us of differentiation. People read VT in various ways: “del-T,” or 

“gradient of T” or “grad T;” 

•mt-vt-(§•%’*)■' (2u> 
Using this notation, we can rewrite Eq. (2.13) in the more compact form 

AT = VT • AR. (2.15) 

In words, this equation says that the difference in temperature between two nearby 

points is the dot product of the gradient of T and the vector displacement between 

the points. The form of Eq. (2.15) also illustrates clearly our proof above that 

VT is indeed a vector. 

Perhaps you are still not convinced? Let’s prove it in a different way. (Al¬ 

though if you look carefully, you may be able to see that it’s really the same proof 

in a longer-winded form!) We shall show that the components of VT transform in 

just the same way that components of If do. If they do, VT is a vector according to 

our original definition of a vector in Chapter 11 of Vol. I. We take a new coordi¬ 

nate system x', /, z', and in this new system we calculate dT/dx', dT/dyf, and 

dT/dzf. To make things a little simpler, we let z = zr, so that we can forget about 

the z-coordinate. (You can check out the more general case for yourself.) 

We take an xy-system rotated an angle 9 with respect to the xy-system, as 

in Fig. 2-6(a). For a point (x, y) the coordinates in the prime system are 

x' = x cos 6 + y sin 6, (2.16) 

y' = —x sin 6 + y cos 6. (2.17) 

Or, solving for x and y, 

x — x' cos 9 — y sin 6, (2.18) 

y = x' sin 9 + / cos 9. (2.19) 

If any pair of numbers transforms with these equations in the same way that x 

and y do, they are the components of a vector. 
Now let’s look at the difference in temperature between the two nearby 

points Pi and P2, chosen as in Fig, 2-6(b). If we calculate with the x- and y- 

coordinates, we would write 

AT = — Ax (2.20) 
OX 

—since Ay is zero. 

* In our notation, the expression {a, b, c) represents a vector with components a, b, 
and c. If you like to use the unit vectors i,j, and k, you may write 

VT 
.ar , ,ar , ,ar 
'Tx+]Ty+kTz- 

Fig. 2-5. The vector AR, whose com¬ 

ponents are Ax, Ay, and Az. 

,V . 

Fig. 2-6. (a) Transformation to a 

rotated coordinate system, (b) Special 

case of an interval AR parallel to the 

x-axis. 
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If we choose some convenient set of axes, we could write Ti = T(x> y, z) and 

T2 — T(x -f Ax, y -f Ay, z + Az), where Ax, Ay, and Az are the components of 

the vector AR (Fig. 2-5). Remembering Eq. (2.7), we can write 

AT = 
dT 
dx 

. , ar . , ar A 
^ + ^Ay + TzAz- 

(2.13) 

The left side of Eq. (2.13) is a scalar. The right side is the sum of three products 

with Ax, Ay, and Az, which are the components of a vector. It follows that the 

three numbers 

ar ar ar 
dx 9 dy 9 dz 

are also the x-, y-, and z-components of a vector. We write this new vector with 

the symbol VT. The symbol V (called “del”) is an upside-down A, and is supposed 
to remind us of differentiation. People read VT in various ways: “del-77’ or 

“gradient of T” or “grad T;” 

(S’® •§)’ 

Using this notation, we can rewrite Eq. (2.13) in the more compact form 

AT = VT • AR. (2.15) 

In words, this equation says that the difference in temperature between two nearby 

points is the dot product of the gradient of T and the vector displacement between 

the points. The form of Eq. (2.15) also illustrates clearly our proof above that 

VT is indeed a vector. 

Perhaps you are still not convinced? Let’s prove it in a different way. (Al¬ 

though if you look carefully, you may be able to see that it’s really the same proof 

in a longer-winded form!) We shall show that the components of VT transform in 

just the same way that components of If do. If they do, VT is a vector according to 

our original definition of a vector in Chapter 11 of Vol. I. We take a new coordi¬ 

nate system x', y', z', and in this new system we calculate dT/dx', dT/dyf, and 

dT/dz'. To make things a little simpler, we let z = z', so that we can forget about 

the z-coordinate. (You can check out the more general case for yourself.) 

We take an xy-system rotated an angle 9 with respect to the xy-system, as 

in Fig. 2-6(a). For a point (x, y) the coordinates in the prime system are 

x' = x cos 6 + y sin 6, (2.16) 

y = —x sin 6 + y cos 0. (2.17) 

Or, solving for x and y, 

x — x' cos 6 — y sin 6, (2.18) 

y = x' sin 0 + y cos 9. (2.19) 

If any pair of numbers transforms with these equations 

and y do, they are the components of a vector. 

in the same way that x 

Now let’s look at the difference in temperature between the two nearby 

points Pi and P2> chosen as in Fig, 2-6(b). If we calculate with the x- and y- 

coordinates, we would write 

AT = ~ Ax (2.20) 
ox 

—since Ay is zero. 

* In our notation, the expression {a, b, c) represents a vector with components a, b, 
and c. If you like to use the unit vectors /, j, and k, you may write 

VT 
.dT . .ar , ,ar 
'te+JTy+kTz- 

Fig. 2-5. The vector AR, whose com¬ 

ponents are Ax, Ay, and Az. 

•A ’ 

Fig. 2-6. (a) Transformation to a 

rotated coordinate system, (b) Special 

case of an interval AR parallel to the 

x-axis. 
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What would a computation in the prime system give? We would have written 

ar-S^ + f«' 
(2.21) 

Looking at Fig. 2-6(b), we see that 

Ax' = Ax cos 8 (2.22) 
and 

Ay = —Ax sin 0, (2.23) 

since Ay is negative when Ax is positive. Substituting these in Eq. (2.21), we find 
that 

ar-2 
dx' dy' 

Ax sin 6 

-t dT a dT ■ a cos e — — sin e 
dx' dy' 

^ Ax. 

Comparing Eq. (2.25) with (2.20), we see that 

(2-24) 

(2.25) 

dT 

dx 

dT 
= dx'COs8- 

dT 

W 
sin 9. (2.26) 

This equation says that dT/dx is obtained from dT/dx' and dT/dyjust as x is 

obtained from x' and y' in Eq. (2.18). So dT/dx is the x-component of a vector. 

The same kind of arguments would show that dT/dy and dT/dz are j;- and z-com- 

ponents. So VT is definitely a vector. It is a vector field derived from the scalar 

field T. 

2-4 The operator V 

Now we can do something that is extremely amusing and ingenious—and 

characteristic of the things that make mathematics beautiful. The argument that 

grad T, or VT, is a vector did not depend upon what scalar field we were differ¬ 

entiating. All the arguments would go the same if T were replaced by any scalar 

field. Since the transformation equations are the same no matter what we differ¬ 

entiate, we could just as well omit the T and replace Eq. (2.26) by the operator 
equation 

-k = £pcose-^ysine- (2-27) 

We leave the operators, as Jeans said, “hungry for something to differentiate.” 

Since the differential operators themselves transform as the components of a 

vector should, we can call them components of a vector operator. We can write 

which means, of course. 

Vx 
d 

dx ’ 

(2.28) 

(2.29) 

We have abstracted the gradient away from the T—that is the wonderful idea. 

You must always remember, of course, that V is an operator. Alone, it 

means nothing. If V by itself means nothing, what does it mean if we multiply 

it by a scalar—say T—~to get the product TV? (One can always multiply a vector 

by a scalar.) It still does not mean anything. Its x-component is 

(2.30) 

which is not a number, but is still some kind of operator. However, according to 

the algebra of vectors we would still call TV a vector. 
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Now let’s multiply V by a scalar on the other side, so that we have the product 

(VT). In ordinary algebra 
TA - AT, (2.31) 

but we have to remember that operator algebra is a little different from ordinary 

vector algebra. With operators we must always keep the sequence right, so that 

the operations make proper sense. You will have no difficulty if you just remember 

that the operator V obeys the same convention as the derivative notation. What is 
to be differentiated must be placed on the right of the V. The order is important. 

Keeping in mind this problem of order, we understand that TV is an operator, 

but the product VT is no longer a hungry operator; the operator is completely 

satisfied. It is indeed a physical vector having a meaning. It represents the spatial 

rate of change of T. The x-component of VT is how fast T changes in the x-dSec¬ 

tion. What is the direction of the vector VT1 We know that the rate of change of 

T in any direction is the component of VT in that direction (see Eq. 2.15). It 

follows that the direction of VT is that in which it has the largest possible com¬ 

ponent—in other words, the direction in which T changes the fastest. The gradient 

of T has the direction of the steepest uphill slope (in T). 

2-5 Operations with V 

Can we do any other algebra with the vector operator V? Let us try combining 

it with a vector. We can combine two vectors by making a dot product. We could 

make the products 

(a vector) • V, or V * (a vector). 

The first one doesn’t mean anything yet, because it is still an operator. What it 

might ultimately mean would depend on what it is made to operate on. The 

second product is some scalar field. {A • B is always a scalar.) 

Let's try the dot product of V with a vector field we know, say h. We write 

out the components: 

V • h = Vxhx + Vyhy + Vzhz (2.32) 
or 

V • h 
dhx dhy dhj, 

dx dy ^ dz 
(2.33) 

The sum is invariant under a coordinate transformation. If we were to choose a 

different system (indicated by primes), we would have* 

which is the same number as would be gotten from Eq. (2.33), even though it 
looks different. That is, 

V'h =Vk (2.35) 

for every point in space. So V • h is a scalar field, which must represent some 

physical quantity. You should realize that the combination of derivatives in 

V *h is rather special. There are all sorts of other combinations like dhy/dx, 

which are neither scalars nor components of vectors. 

The scalar quantity V • (a vector) is extremely useful in physics. It has been 
given the name the divergence. For example, 

V • h = div h ~ “divergence of h(2.36) 

M we did for VT, we can ascribe a physical significance to V * h. We shall, how¬ 
ever, postpone that until later. 

* We think of A as a physical quantity that depends on position in space, and not 
strictly as a mathematical function of three variables. When h is “differentiated” with 
respect to x, y, and z, or with respect to x', /, and z\ the mathematical expression for h 
must first be expressed as a function of the appropriate variables. 
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(to 

Fig. 2-7. (a) Heat flow through 

slab, (b) An infinitesimal slab parallel 

an isothermal surface in a large block. 

First, we wish to see what else we can cook up with the vector operator V. 
What about a cross product? We must expect that 

V X h ~ a vector. (2.37) 

It is a vector whose components we can write by the usual rule for cross products 
(see Eq. 2.2): 

(V X h% = Vzhy - Vyhr = dJ±-d-k. (2.38) 

Similarly, 

(V X A), = VA - ^ (2.39) 

and 

(V X h)y = VA - VA = ^ • (2.40) 

The combination V X h is called “the curl of hThe reason for the name 

and the physical meaning of the combination will be discussed later. 

Summarizing, we have three kinds of combinations with V: 

VT ~ grad T — a vector, 

V * h = div h - a scalar, 

V X h - curl h - a vector. 

Using these combinations, we can write about the spatial variations of fields in a 

convenient way—in a way that is general, in that it doesn’t depend on any particular 
set of axes. 

As an example of the use of our vector differential operator V, we write a set 

of vector equations which contain the same laws of electromagnetism that we gave 

in words in Chapter 1. They are called Maxwell's equations. 

Maxwell's Equations 

(1) vE=£- 
€(\ 

(2) V X £ = - (2 41) 

(3) V B = 0 

(4) c2TX« = |+f 
Ol €o 

where p (rho), the “electric charge density,” is the amount of charge per unit 

volume, and j, the “electric current density,” is the rate at which charge flows 

through a unit area per second. These four equations contain the complete 

classical theory of the electromagnetic field. You see what an elegantly simple 

form we can get with our new notation! 

2-6 The differential equation of heat flow 

Let us give another example of a law of physics written in vector notation. 

The law is not a precise one, but for many metals and a number of other sub¬ 

stances that conduct heat it is quite accurate. You know that if you take a slab of 

material and heat one face to temperature T2 and cool the other to a different 

temperature Tu the heat will flow through the material from T2 to T\ [Fig. 2-7(a)]. 

The heat flow is proportional to the area A of the faces, and to the temperature 

difference. It is also inversely proportional to d, the distance between the plates. 

(For a given temperature difference, the thinner the slab the greater the heat flow.) 

Letting J be the thermal energy that passes per unit time through the slab, we write 

J = k(T2 - 7Y) ■ (2.42) 

The constant of proportionality k (kappa) is called the thermal conductivity. 
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What will happen in a more complicated case? Say in an odd-shaped block of 
material in which the temperature varies in peculiar ways? Suppose we look at a 

tiny piece of the block and imagine a slab like that of Fig. 2-7(a) on a miniature 

scale. We orient the faces parallel to the isothermal surfaces, as in Fig. 2-7 (b), so 

that Eq. (2.42) is correct for the small slab. 

If the area of the small slab is A A, the heat flow per unit time is 

A a 
AJ ~ k AT (2.43) 

where As is the thickness of the slab. Now AJ/AA we have defined earlier as the 

magnitude of A, whose direction is the heat flow. The heat flow will be from 

Ti -f AT toward Tu and so it will be perpendicular to the isotherms, as drawn in 

Fig. 2-7(b). Also, AT/As is just the rate of change of T with position. And since 

the position change is perpendicular to the isotherms, our AT/as is the maximum 

rate of change. It is, therefore, just the magnitude of VT Now since the direction 

of VT is opposite to that of h, we can write (2.43) as a vector equation: 

h — —k VT, (2.44) 

(The minus sign is necessary because heat flows “downhill” in temperature.) 

Equation (2.44) is the differential equation of heat conduction in bulk materials. 

You see that it is a proper vector equation. Each side is a vector if k is just a num¬ 

ber. It is the generalization to arbitrary cases of the special relation (2.42) for 

rectangular slabs. Later we should learn to write all sorts of elementary physics 

relations like (2.42) in the more sophisticated vector notation. This notation is 

useful not only because it makes the equations look simpler. It also shows most 

clearly the physical content of the equations without reference to any arbitrarily 

chosen coordinate system. 

2-7 Second derivatives of vector fields 

So far we have had only first derivatives. Why not second derivatives? We 

could have several combinations: 

(a) V • (VT) 

(b) V X (VT) 

(c) V(V • h) (2.45) 

(d) T • (v X h) 

(e) VX(TXA) 

You can check that these are all the possible combinations. 

Let’s look first at the second one, (b). It has the same form as 

A X (AT) = (AX A)T = 0, 

since A X A is always zero. So we should have 

curl (grad T) = V X (VT) = 0. (2.46) 

We can see how this equation comes about if we go through once with the com¬ 
ponents: 

[v X (VT)]. = Vx(VT)v - Vv(VT)x . 

<2-47> 

^hich is zero (by Eq. 2.8). It goes the same for the other components. So V X 

(VT) — 0, for any temperature distribution—in fact, for any scalar function. 
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Now let us take another example. Let us see whether we can find another 

zero. The dot product of a vector with a cross product which contains that vector 

is zero: 

A ■ (A X B) = 0, (2.48) 

because A X B is perpendicular to A, and so has no components in the direction A. 

The same combination appears in (d) of (2.45), so we have 

V • (V X h) = div (curl h) = 0. (2.49) 

Again, it is easy to show that it is zero by carrying through the operations with 

components. 

Now we are going to state two mathematical theorems that we will not prove. 

They are very interesting and useful theorems for physicists to know. 

In a physical problem we frequently find that the curl of some quantity—say 

of the vector field A—is zero. Now we have seen (Eq. 2.46) that the curl of a 

gradient is zero, which is easy to remember because of the way the vectors work. 

It could certainly be. then, that A is the gradient of some quantity, because then 

its curl would necessarily be zero. The interesting theorem is that if the curl A is 

zero, then A is always the gradient of something—there is some scalar field ^ (psi) 
such that A is equal to grad In other words, we have the 

Theorem: 

If v X A = 0 

there is a \f/ 

such that A = V$. (2.50) 

There is a similar theorem if the divergence of A is zero. We have seen in 

Eq. (2.49) that the divergence of a curl of something is always zero. If you come 

across a vector field D for which div D is zero, then you can conclude that D is 

the curl of some vector field C. 

Theorem: 
If V D = 0 

there is a C 

such that D = V X C. (2.51) 

In looking at the possible combinations of two V operators, we have found 

that two of them always give zero. Now we look at the ones that are not zero. 

Take the combination V • (VT), which was first on our list. It is not, in general, 

zero. We write out the components: 

Then 
VT = VXT + VyT + V*r. 

V * (VT) = VX(V,T) + Vy(VyT) + V2(V,n 

d2T d2T d2T 

dx2 dy2 ^ dz2 ' 
(2.52) 

which would, in general, come out to be some number. It is a scalar field. 
You see that we do not need to keep the parentheses, but can write, without 

any chance of confusion. 

V • (VT) = V • VT - (V • V)T = V2T. (2.53) 

We look at V2 as a new operator. It is a scalar operator. Because it appears often 

in physics, it has been given a special name—the Laplacian. 

Laplacian = V2 = ^ ~ + ~ • (2.54) 

2-10 



Since the Laplacian is a scalar operator, we may operate with it on a vector— 

by which we mean the same operation on each component in rectangular coor¬ 

dinates: 
V2* = (V%, v%, v%). 

Let’s look at one more possibility: V X (V X h), which was (e) in the list 

(2.45). Now the curl of the curl can be written differently if we use the vector 

equality (2.6): 

A X (B X C) = B(A'C) - C(A- B). (2.55) 

In order to use this formula, we should replace A and B by the operator V and 

put C = h. If we do that, we get 

V X (V X h) — V(V * h) — h(V * V) . . . ??? 

Wait a minute! Something is wrong. The first two terms are vectors all right 

(the operators are satisfied), but the last term doesn’t come out to anything. It’s 
still an operator. The trouble is that we haven’t been careful enough about keeping 

the order of our terms straight. If you look again at Eq. (2.55), however, you see 

that we could equally well have written it as 

A X (B X C) = B(A • C) - (A • B)C. (2.56) 

The order of terms looks better. Now let’s make our substitution in (2.56). We get 

V x (V X h) * V(V • h) - (V • V)h. (2.57) 

This form looks all right. It is, in fact, correct, as you can verify by computing the 

components. The last term is the Laplacian, so we can equally well write 

V X (V X h) - V(V ■ h) - V2k. (2.58) 

We have had something to say about all of the combinations in our list of 

double V’s, except for (c), V(V * A). It is a possible vector field, but there is nothing 

special to say about it. It’s just some vector field which may occasionally come up. 

It will be convenient to have a table of our conclusions: 

(a) V ■ (VT) = V2T ~ a scalar field 

(b) V X (VT) = 0 

(c) V(V * h) = a vector field 

(d) V(VXA) = 0 <2‘59> 

(e) V X (V X h) = V(V * h) - V2h 

(f) (V • V)h = V2h — a vector field 

You may notice that we haven’t tried to invent a new vector operator (V X V). 

Do you see why? 

2-8 Pitfalls 

We have been applying our knowledge of ordinary vector algebra to the alge¬ 

bra of the operator V. We have to be careful, though, because it is possible to go 

astray. There are two pitfalls which we will mention, although they will not come 

up in this course. What would you say about the following expression, that in¬ 

volves the two scalar functions and <t> (phi): 

(V£> X (V*)? 

You might want to say: it must be zero because it’s just like 

(Aa) X (Ab% 
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which is zero because the cross product of two equal vectors A X A is always zero. 

But in our example the two operators V are not equal! The first one operates on 

one function, the other operates on a different function, <f>. So although we rep¬ 

resent them by the same symbol V, they must be considered as different operators. 

Clearly, the direction of TV depends on the function so it is not likely to be 

parallel to TV. 

(V\f/) X (V0) 5* 0 (generally). 

Fortunately, we won’t have to use such expressions. (What we have said doesn’t 

change the fact that V X TV = 0 for any scalar field, because here both V*$ 

operate on the same function.) 

Pitfall number two (which, again, we need not get into in our course) is the 

following: The rules that we have outlined here are simple and nice when we use 

rectangular coordinates. For example, if we have V2h and we want the x-com- 
ponent, it is 

(v2^=+-&+S) h> =vih- 

The same expression would not work if we were to ask for the radial component 

of V2h. The radial component of V2h is not equal to V2hr. The reason is that 

when we are dealing with the algebra of vectors, the directions of the vectors are 

all quite definite. But when we are dealing with vector fields, their directions are 

different at different places. If we try to describe a vector field in, say, polar coordi¬ 

nates, what we call the “radial” direction varies from point to point. So we can 

get into a lot of trouble when we start to differentiate the components. For ex¬ 

ample, even for a constant vector field, the radial component changes from point 

to point. 

It is usually safest and simplest just to stick to rectangular coordinates and 

avoid trouble, but there is one exception worth mentioning: Since the Laplacian 

V2, is a scalar, we can write it in any coordinate system we want to (for example, 

in polar coordinates). But since it is a differential operator, we should use it only 

on vectors whose components are in a fixed direction—that means rectangular 

coordinates. So we shall express all of our vector fields in terms of their x-, y-, 

and z-components when we write our vector differential equations out in com¬ 
ponents. 
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3 

Vector Integral Calculus 

3-1 Vector integrals; the line integral of V*F 

We found in Chapter 2 that there were various ways of taking derivatives of 

fields. Some gave vector fields; some gave scalar fields. Although we developed 

many different formulas, everything in Chapter 2 could be summarized in one rule: 
the operators d/dx, d/dy, and d/dz are the three components of a vector operator 

V. We would now like to get some understanding of the significance of the deriva¬ 
tives of fields. We will then have a better feeling for what a vector field equation 

means. 

We have already discussed the meaning of the gradient operation (V on a 

scalar). Now we turn to the meanings of the divergence and curl operations. 

The interpretation of these quantities is best done in terms of certain vector 

integrals and equations relating such integrals. These equations cannot, unfor¬ 

tunately, be obtained from vector algebra by some easy substitution, so you will 

just have to learn them as something new. Of these integral formulas, one is 

practically trivial, but the other two are not. We will derive them and explain their 

implications. The equations we shall study are really mathematical theorems. 

They will be useful not only for interpreting the meaning and the content of the 

divergence and the curl, but also in working out general physical theories. These 

mathematical theorems are, for the theory of fields, what the theorem of the con¬ 

servation of energy is to the mechanics of particles. General theorems like these 

are important for a deeper understanding of physics. You will find, though, that 

they are not very useful for solving problems—except in the simplest cases. It is 

delightful, however, that in the beginning of our subject there will be many simple 

problems which can be solved with the three integral formulas we are going to 

treat. We will see, however, as the problems get harder, that we can no longer use 

these simple methods. 

We take up first an integral formula involving the gradient. The relation 

contains a very simple idea: Since the gradient represents the rate of change of a 

field quantity, if we integrate that rate of change, we should get the total change. 

Suppose we have the scalar field $(x, y, z). At any two points (1) and (2), the 

function $ will have the values ^(1) and ^(2), respectively. [We use a convenient 

notation, in which (2) represents the point (x2, y2, z2) and ^(2) means the same 

thing as ^(x2, y2, z2)-] If T(gamma) is any curve joining (1) and (2), as in Fig. 3-1, 

the following relation is true: 

Theorem 1. f(2) 
*(2) - *(1) - / (Vt)-ds. (3.1) 

along T 

The integral is a line integral, from (1) to (2) along the curve T, of the dot product 

of —a vector—with ds—another vector which is an infinitesimal line element 

of the curve r (directed away from (1) and toward (2)). 

First, we should review what we mean by a line integral. Consider a scalar 

function f(x, y, z), and the curve T joining two points (1) and (2). We mark off 

the curve at a number of points and join these points by straight-line segments, as 

shown in Fig. 3-2. Each segment has the length As%9 where i is an index that runs 

1, 2, 3,... By the line integral 
(2) 

fds 
D 

along T 

3-1 Vector integrals; the line 
integral of V*F 

3-2 The flux of a vector field 

3-3 The flux from a cube; Gauss’ 

theorem 

3-4 Heat conduction; the diffusion 

equation 

3-5 The circulation of a vector field 

3-6 The circulation around a square; 

Stokes’ theorem 

3-7 Curl-free and divergence-free 

fields 

3-8 Summary 

Fig. 3-1. The terms used in Eq. (3.1). 

The vector is evaluated at the line 

element ds. 

Fig. 3-2. The line integral is the 

limit of a sum. 
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we mean the limit of the sum 

E/i Ait, 

where f% is the value of the function at the ith segment. The limiting value is what 

the sum approaches as we add more and more segments (in a sensible way, so that 

the largest Asi —> 0). 
The integral in our theorem, Eq, (3.1), means the same thing, although it 

looks a little different. Instead of /, we have another scalar—the component of 
in the direction of As. If we write (v^), for this tangential component, it is 

clear that 
(V*)« As = (V£) • As. (3.2) 

The integral in Eq. (3.1) means the sum of such terms. 

Now let’s see why Eq. (3.1) is true. In Chapter 1, we showed that the com¬ 

ponent of V\f/ along a small displacement AR was the rate of change of $ in the 

direction of AR. Consider the line segment As from (1) to point a in Fig. 3-2. 

According to our definition, 

&fri = *Kfl) ~ lAO) = (yt)i *Asi. (3.3) 
Also, we have 

— ^(a) = (V*)2 • As2, (3.4) 

where, of course, (v£h means the gradient evaluated at the segment Asi, and 

(V*)2, the gradient evaluated at As2- If we add Eqs. (3.3) and (3.4), we get 

*(« ~ *0) = (y*)i * Asi + (V*)2 * As2. (3.5) 

You can see that if we keep adding such terms, we get the result 

*(2)-*(!)= E(m*‘ As,. (3.6) 

The left-hand side doesn’t depend on how we choose our intervals—if (1) and (2) 

are kept always the same—so we can take the limit of the right-hand side. We have 

therefore proved Eq. (3.1). 
You can see from our proof that just as the equality doesn’t depend on how 

the points a, 6, c,... , are chosen, similarly it doesn’t depend on what we choose 

for the curve r to join (1) and (2). Our theorem is correct for any curve from (1) 

to (2). 
One remark on notation: You will see that there is no confusion if we write, 

for convenience, 
(V^) • ds = Vf • ds, (3.7) 

With this notation, our theorem is 

Fig. 3-3. The closed surface S 

defines the volume V. The unit vector n 

is the outward normal to the surface 

element da, and h is the heat-flow vector 

at the surface element. 

Theorem 1. ri 2) 

*(2) - *(1) = / v* 
7(1) 

any curve from 
(1) to (2) 

ds. (3.8) 

3-2 The flux of a vector field 

Before we consider our next integral theorem—a theorem about the divergence 

—we would like to study a certain idea which has an easily understood physical 

significance in the case of heat flow. We have defined the vector h, which represents 

the heat that flows through a unit area in a unit time. Suppose that inside a block 

of material we have some closed surface S which encloses the volume V (Fig. 3-3). 

We would like to find out how much heat is flowing out of this volume. We can, 

of course, find it by calculating the total heat flow out of the surface S. 

We write da for the area of an element of the surface. The symbol stands for 

a two-dimensional differential. If, for instance, the area happened to be in the 

xy-plane we would have 

da = dxdy. 
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Later we shall have integrals over volume and for these it is convenient to con¬ 
sider a differential volume that is a little cube. So when we write dV we mean 

dV ~ dxdydz. 

Some people like to write d2a instead of da to remind themselves that it is 

kind of a second-order quantity. They would also write d3 V instead of dV. We 

will use the simpler notation, and assume that you can remember that an area 
has two dimensions and a volume has three. 

The heat flow out through the surface element da is the area times the com¬ 

ponent of h perpendicular to da. We have already defined n as a unit vector pointing 

outward at right angles to the surface (Fig. 3-3). The component of k that we 
want is 

hn = hn. (3.9) 

The heat how out through da is then 

hnda. (3.10) 

To get the total heat flow through any surface we sum the contributions from all 

the elements of the surface. In other words, we integrate (3.10) over the whole 

surface: 

Total heat flow outward through S — f h- n da. (3.11) 
Js 

We are also going to call this surface integral “the flux of h through the sur¬ 

face.” Originally the word flux meant flow, so that the surface integral just means 

the flow of h through the surface. We may think: h is the “current density” of 

heat flow and the surface integral of it is the total heat current directed out of the 

surface; that is, the thermal energy per unit time (joules per second). 

We would like to generalize this idea to the case where the vector does not 

represent the flow of anything; for instance, it might be the electric field. We can 

certainly still integrate the normal component of the electric field over an area if 

we wish. Although it is not the flow of anything, we still call it the “flux.” We say 

Flux of E through the surface S =[ E • n da. (3.12) 
Js 

We generalize the word “flux” to mean the “surface integral of the normal com¬ 

ponent” of a vector. We will also use the same definition even when the surface 

considered is not a closed one, as it is here. 

Returning to the special case of heat flow, let us take a situation in which 

heat is conserved. For example, imagine some material in which after an initial 

heating no further heat energy is generated or absorbed. Then, if there is a net 
heat flow out of a closed surface, the heat content of the volume inside must 

decrease. So, in circumstances in which heat would be conserved, we say that 

/,*■**--£• (3,3) 
where Q is the heat inside the surface. The heat flux out of S is equal to minus the 

rate of change with respect to time of the total heat Q inside of S. This interpreta¬ 

tion is possible because we are speaking of heat flow and also because we supposed 

that the heat was conserved. We could not, of course, speak of the total heat 

inside the volume if heat were being generated there. 

Now we shall point out an interesting fact about the flux of any vector. You 

may think of the heat flow vector if you wish, but what we say will be true for any 

vector field C. Imagine that we have a closed surface S that encloses the volume V. 
We now separate the volume into two parts by some kind of a “cut,” as in Fig. 

3-4. Now we have two closed surfaces and volumes. The volume Vi is enclosed 

in the surface S which is made up of part of the original surface Sa and of the 

surface of the cut, Sab. The volume V2 is enclosed by S2, which is made up of 

the rest of the original surface Sb and closed off by the cut Sab. Now consider the 
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Fig. 3-4. A volume V contained inside the surface 

S is divided into two pieces by a "cut” at the surface 

Safa. We now have the volume Vi enclosed in the 

surface Si = Sa + Sab and the volume V2 enclosed 

in the surface S2 = $b + S0b. 

following question: Suppose we calculate the flux out through surface Si and 

add to it the flux through surface S2. Does the sum equal the flux through the 

whole surface that we started with? The answer is yes. The flux through the part 

of the surfaces Sab common to both Si and S2 just exactly cancels out. For the 

flux of the vector C out of Vu we can write 

Flux through Si = f C * nda + 
Jsa 

and for the flux out of V2i 

Flux through S2 = ( C ■ nda + 
J Sf) 

Note that in the second integral we have written «i for the outward normal for 

Sab when it belongs to Si, and n2 when it belongs to S2, as shown in Fig. 3-4. 

Clearly, /ii = — ji2, so that 

Fig. 3-5. Computation of the flux of 

C out of a small cube. 

If we now add Eqs. (3.14) and (3.15), we see that the sum of the fluxes through 

Si and S2 is just the sum of two integrals which, taken together, give the flux 

through the original surface S = Sa + S&. 
We see that the flux through the complete outer surface S can be considered 

as the sum of the fluxes from the two pieces into which the volume was broken. 

We can similarly subdivide again—say by cutting V\ into two pieces. You see 

that the same arguments apply. So for any way of dividing the original volume, it 

must be generally true that the flux through the outer surface, which is the original 

integral, is equal to a sum of the fluxes out of all the little interior pieces. 

3-3 The flux from a cube; Gauss’ theorem 

We now take the special case of a small cube* and find an interesting formula 

for the flux out of it. Consider a cube whose edges are lined up with the axes as in 

Fig. 3-5. Let us suppose that the coordinates of the corner nearest the origin 

are x, y, z. Let Ax be the length of the cube in the xr-direction, Ay be the length 

in the ^-direction, and Az be the length in the 2-direction. We wish to find the 

flux of a vector field C through the surface of the cube. We shall do this by making 
a sum of the fluxes through each of the six faces. First, consider the face marked 

1 in the figure. The flux outward on this face is the negative of the x-component 

of C, integrated over the area of the face. This flux is 

dz. 

Since we are considering a small cube, we can approximate this integral by the 

* The following development applies equally well to any rectangular parallelepiped. 
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value of Cx at the center of the face—which we call the point (1)—multiplied by 

the area of the face, Ay Az: 

Flux out of 1 = — Cx( 1) Ay Az. 

Similarly, for the flux out of face 2, we write 

Flux out of 2 = Cx(2) Ay Az. 

Now Cx(1) and Cx(2) are, in general, slightly different. If Ax is small enough, we 
can write 

c*(2) = Cx(l) + ^Ax. 

There are, of course, more terms, but they will involve (A*)2 and higher powers, 

and so will be negligible if we consider only the limit of small Ax. So the flux 
through face 2 is 

Flux out of 2 = |cx(l) + ^ Axj Ay Az. 

Summing the fluxes for faces 1 and 2, we get 

Flux out of 1 and 2 = Ax Ay Az. 
ox 

The derivative should really be evaluated at the center of face 1; that is, at 

[jc, y + (Ay/2), z + (Az/2)]. But in the limit of an infinitesimal cube, we make 

a negligible error if we evaluate it at the corner (x, y, z). 

Applying the same reasoning to each of the other pairs of faces, we have 

and 

dC 
Flux out of 3 and 4 = Ax Ay Az 

dy 

ciC 
Flux out of 5 and 6 = Ax Ay Az. 

The total flux through all the faces is the sum of these terms. We find that 

I c-ttda = (^r+^ + ^)AxAyAz’ 
cube 

and the sum of the derivatives is just V • C. Also, Ax Ay Az = AF, the volume of 
the cube. So we can say that for an infinitesimal cube 

J C• nda = (V • C)AV. (3.17) 

surface 

We have shown that the outward flux from the surface of an infinitesimal cube is 

equal to the divergence of the vector multiplied by the volume of the cube. We 

now see the "meaning” of the divergence of a vector. The divergence of a vector 

at the point P is the flux—the outgoing "flow” of C—per unit volume, in the neigh¬ 
borhood of P. 

We have connected the divergence of C to the flux of C out of each infinitesimal 

volume. For any finite volume we can use the fact we proved above—that the 

total flux from a volume is the sum of the fluxes out of each part. We can, that is, 

integrate the divergence over the entire volume. This gives us the theorem that the 

integral of the normal component of any vector over any closed surface can also be 

written as the integral of the divergence of the vector over the volume enclosed 

by the surface. This theorem is named after Gauss. 

Gauss’ Theorem. 

= • C dV, (3.18) 

where 5 is any closed surface and F is the volume inside it. 
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3-4 Heat conduction; the diffusion equation 

Let’s consider an example of the use of this theorem, just to get familiar 

with it. Suppose we take again the case of heat flow in, say, a metal. Suppose we 

have a simple situation in which all the heat has been previously put in and the 

body is just cooling off. There are no sources of heat, so that heat is conserved. 

Then how much heat is there inside some chosen volume at any time? It must be 

decreasing by just the amount that flows out of the surface of the volume. If our 

volume is a little cube, we would write, following Eq. (3.17), 

Heat out — J A * nda — V • h AV. (3.19) 

cube 

But this must equal the rate of loss of the heat inside the cube. If q is the heat per 

unit volume, the heat in the cube is q AK, and the rate of loss is 

- jz(?AF) = - (3.20) 

Comparing (3.19) and (3.20), we see that 

-§=V-A. (3.21) 

Take careful note of the form of this equation; the form appears often in phys¬ 

ics. It expresses a conservation law—here the conservation of heat. We have 

expressed the same physical fact in another way in Eq. (3.13). Here we have the 

differential form of a conservation equation, while Eq. (3.13) is the integral form. 

We have obtained Eq. (3.21) by applying Eq. (3.13) to an infinitesimal cube. 

We can also go the other way. For a big volume V bounded by S, Gauss’ law 
says that 

j k-nda = j V hdV. (3.22) 

Fig. 3-6. In the region near a point 

source of heat, the heat flow is radially 

outward. 

Using (3.21), the integral on the right-hand side is found to be just —dQ/dt, 
and again we have Eq. (3.13). 

Now let’s consider a different case. Imagine that we have a block of material 

and that inside it there is a very tiny hole in which some chemical reaction is 

taking place and generating heat. Or we could imagine that there are some wires 

running into a tiny resistor that is being heated by an electric current. We shall 

suppose that the heat is generated practically at a point, and let W represent the 

energy liberated per second at that point. We shall suppose that in the rest of the 

volume heat is conserved, and that the heat generation has been going on for a 

long time—so that now the temperature is no longer changing anywhere. The 

problem is: What does the heat vector h look like at various places in the metal? 
How much heat flow is there at each point? 

We know that if we integrate the normal component of h over a closed surface 
that encloses the source, we will always get W. All the heat that is being generated 

at the point source must flow out through the surface, since we have supposed 

that the flow is steady. We have the difficult problem of finding a vector field 

which, when integrated over any surface, always gives W. We can, however, find 

the field rather easily by taking a somewhat special surface. We take a sphere of 

radius 7?, centered at the source, and assume that the heat flow is radial (Fig. 3-6). 

Our intuition tells us that h should be radial if the block of material is large and 

we don’t get too close to the edges, and it should also have the same magnitude 

at all points on the sphere. You see that we are adding a certain amount of guess¬ 

work—usually called “physical intuition”—to our mathematics in order to find 
the answer. 

When h is radial and spherically symmetric, the integral of the normal com¬ 
ponent of h over the area is very simple, because the normal component is just 
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the magnitude of k and is constant. The area over which we integrate is 4irR2, 
We have then that 

/. h* nda = h * 4wR2 (3.23) 

(where h is the magnitude of A). This integral should equal W, the rate at which 

heat is produced at the source. We get 

or 

W 
[ 4tt/?2 ’ 

W 
~ 4irR2 er’ 

(3.24) 

where, as usual, er represents a unit vector in the radial direction. Our result 

says that h is proportional to W and varies inversely as the square of the distance 
from the source. 

The result we have just obtained applies to the heat flow in the vicinity of a 

point source of heat. Let’s now try to find the equations that hold in the most 

general kind of heat flow, keeping only the condition that heat is conserved. 

We will be dealing only with what happens at places outside of any sources or 

absorbers of heat. 

The differential equation for the conduction of heat was derived in Chapter 2. 

According to Eq. (2.44), 
h = -k VT. (3.25) 

(Remember that this relationship is an approximate one, but fairly good for some 

materials like metals.) It is applicable, of course, only in regions of the material 

where there is no generation or absorption of heat. We derived above another 
relation, Eq. (3.21), that holds when heat is conserved. If we combine that equation 

with (3.25), we get 

- % = V • h = - V ■ (/c VT), 

or 

^ = k V • VT = k V2r, (3.26) 

if k is a constant. You remember that q is the amount of heat in a unit volume 

and V • V = V2 is the Laplacian operator 

V* = il + il + il. 
dx2 ay2 dz2 

If we now make one more assumption we can obtain a very interesting equa¬ 

tion. We assume that the temperature of the material is proportional to the heat 

content per unit volume—that is, that the material has a definite specific heat. 

When this assumption is valid (as it often is), we can write 

or 
Aq — cv AT 

dq dT 

di~ CvTt' 
(3.27) 

The rate of change of heat is proportional to the rate of change of temperature. 

The constant or proportionality cv is, here, the specific heat per unit volume of 

the material. Using Eq. (3.27) with (3.26), we get 

^ = - V2r. (3.28) 
dt cv v 

We find that the time rate of change of T—at every point—is proportional to the 

Laplacian of T, which is the second derivative of its spatial dependence. We have 

a differential equation—in x, y, z, and t—for the temperature T. 
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c 

Fig. 3-7. The circulation of C around 

the curve T is the line integral of O, the 

tangential component of G 

(1) 

Fig. 3-8. The circulation around the 

whole loop is the sum of the circulations 

around the two loops: Ti = ra + ra6 

and r2 = Tb + Tab. 

The differential equation (3.28) is called the heat diffusion equation. It is 

often written as 

^ = D V2r, (3.29) 
at 

where D is called the diffusion constant, and is here equal to k/cv. 

The diffusion equation appears in many physical problems—in the diffusion 

of gases, in the diffusion of neutrons, and in others. We have already discussed 
the physics of some of these phenomena in Chapter 43 of Vol. I. Now you have 

the complete equation that describes diffusion in the most general possible situa¬ 

tion. At some later time we will take up ways of solving the diffusion equation 

to find how the temperature varies in particular cases. We turn back now to 

consider other theorems about vector fields. 

3-5 The circulation of a vector field 

We wish now to look at the curl in somewhat the same way we looked at the 

divergence. We obtained Gauss’ theorem by considering the integral over a 

surface, although it was not obvious at the beginning that we were going to be 

dealing with the divergence. How did we know that we were supposed to integrate 

over a surface in order to get the divergence? It was not at all clear that this would 

be the result. And so with an apparent equal lack of justification, we shall calculate 

something else about a vector and show that it is related to the curl. This time we 

calculate what is called the circulation of a vector field. If C is any vector field, 

we take its component along a curved line and take the integral of this component 

all the way around a complete loop. The integral is called the circulation of the 

vector field around the loop. We have already considered a line integral of 

earlier in this chapter. Now we do the same kind of thing for any vector field C. 

Let r be any closed loop in space—imaginary, of course. An example is given 

in Fig. 3-7. The line integral of the tangential component of C around the loop 

is written as 

j^Ctds = j^C-ds. (3.30) 

You should note that the integral is taken all the way around, not from one point 

to another as we did before. The little circle on the integral sign is to remind us 

that the integral is to be taken all the way around. This integral is called the 

circulation of the vector field around the curve T. The name came originally from 

considering the circulation of a liquid. But the name—like flux—has been extended 

to apply to any field even when there is no material “circulating.” 

Playing the same kind of game we did with the flux, we can show that the 

circulation around a loop is the sum of the circulations around two partial loops. 

Suppose we break up our curve of Fig. 3-7 into two loops, by joining two points 

(1) and (2) on the original curve by some line that cuts across as shown in Fig. 

3-8. There are now two loops, Ti and r2. T i is made up of Ta, which is that part 

of the original curve to the left of (1) and (2), plus Tab, the “short cut.” r2 is made 

up of the rest of the original curve plus the short cut. 

The circulation around r t is the sum of an integral along Ta and along Tab- 

Similarly, the circulation around r2 is the sum of two parts, one along Tb and the 

other along Tab. The integral along ra& will have, for the curve r2, the opposite 

sign from what it has for Tu because the direction of travel is opposite—we must 

take both our line integrals with the same “sense” of rotation. 

Following the same kind of argument we used before, you can see that the 

sum of the two circulations will give just the line integral around the original curve 

r. The parts due to Tab cancel. The circulation around the one part plus the cir¬ 

culation around the second part equals the circulation about the outer line. 

We can continue the process of cutting the original loop into any number of smaller 

loops. When we add the circulations of the smaller loops, there is always a can¬ 

cellation of the parts on their adjacent portions, so that the sum is equivalent to the 

circulation around the original single loop. 
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Now let us suppose that the original loop is the boundary of some surface. 
There are, of course, an infinite number of surfaces which all have the original 

loops as the boundary. Our results will not, however, depend on which surface 
we choose. First, we break our original loop into a number of small loops that all 

lie on the surface we have chosen, as in Fig. 3-9. No matter what the shape of 
the surface, if we choose our small loops small enough, we can assume that each 

of the small loops will enclose an area which is essentially flat. Also, we can choose 

our small loops so that each is very nearly a square. Now we can calculate the 

circulation around the big loop T by finding the circulations around all of the 

little squares and then taking their sum. 

3-6 The circulation around a square; Stokes’ theorem 

How shall we find the circulation for each little square? One question is, 

how is the square oriented in space? We could easily make the calculation if it 

had a special orientation. For example, if it were in one of the coordinate planes. 

Since we have not assumed anything as yet about the orientation of the coordinate 

axes, we can just as well choose the axes so that the one little square we are con¬ 
centrating on at the moment lies in the xy-plane, as in Fig. 3-10. If our result is 

expressed in vector notation, we can say that it will be the same no matter what the 

particular orientation of the plane. 

We want now to find the circulation of the field C around our little square. 
It will be easy to do the line integral if we make the square small enough that the 

vector C doesn’t change much along any one side of the square. (The assumption 

is better the smaller the square, so we are really talking about infinitesimal squares.) 

Starting at the point (x, y)—the lower left corner of the figure—we go around in 

the direction indicated by the arrows. Along the first side—marked (1)—the 
tangential component is C^(l) and the distance is Ax. The first part of the integral 

is C,(l)Ax. Along the second leg, we get Cv(2)Ay. Along the third, we get 

— Cx(3)Ax, and along the fourth, — Cy{4) Ay. The minus signs are required 

because we want the tangential component in the direction of travel. The whole 

line integral is then 

Fig. 3-9. Some surface bounded by 

the loop T is chosen. The surface is 

divided into a number of small areas, 

each approximately a square. The 

circulation around T is the sum of the 

circulations around the little loops. 

y 

C - ds =■ Cx( 1) Ax + Cv{2) Ay — Cx{3) Ax — Cy{4) Ay. 

Now let’s look at the first and third pieces. Together they are 

[C,< 1) - Cx(3)] Ax. 

(3.31) Fig. 3-10. Computing the circulation 

of C around a small square. 

(3.32) 

You might think that to our approximation the difference is zero. That is true to 
the first approximation. We can be more accurate, however, and take into account 

the rate of change of Cx. If we do, we may write % 

Cr(3) = CUl) + Ay. (3.33) 

If we included the next approximation, it would involve terms in (Ay)2, but since 

we will ultimately think of the limit as Ay —> 0, such terms can be neglected. 

Putting (3.33) together with (3.32), we find that 

[C*(l) - C*(3)] Ay = Ax Ay. (3.34) 

The derivative can, to our approximation, be evaluated at (x, y). 

Similarly, for the other two terms in the circulation, we may write 

AC 
C„(2) Ay - Cv(4) Ay = ^ Ax Ay. (3.35) 

The circulation around our square is then 
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Vx C 

Fig. 3-11. The circulation of C 

around T is the surface integral of the 

normal component of V X C. 

(2) 

(1) 

Fig. 3-12, If V X C is zero, the 

circulation around the closed curve T is 

zero. The line integral of C • d* from (1) 

to (2) along a must be the same as the 

line integral along b. 

which is interesting, because the two terms in the parentheses are just the z-com- 

ponent of the curl. Also, we note that Ax Ay is the area of our square. So we 

can write our circulation (3.36) as 

(V X C% Aa. 

But the z-component really means the component normal to the surface element. 

We can, therefore, write the circulation around a differential square in an invariant 

vector form: 

j>C ds = (V X C)„ Aa = (V X C) • n Aa, (3.37) 

Our result is: the circulation of any vector C around an infinitesimal square 

is the component of the curl of C normal to the surface, times the area of the square. 

The circulation around any loop V can now be easily related to the curl of 

the vector field. We fill in the loop with any convenient surface S, as in Fig. 3-11, 

and add the circulations around a set of infinitesimal squares in this surface. The 

sum can be written as an integral. Our result is a very useful theorem called Stokes’ 

theorem (after Mr. Stokes). 

Stokes’ Theorem. 

£ C'ds = j (v X C)nda, (3.38) 

where S is any surface bounded by T. 

We must now speak about a convention of signs. In Fig. 3-10 the z-axis 

would point toward you in a “usual”—that is, “right-handed”—system of axes. 

When we took our line integral with a “positive” sense of rotation, we found that 

the circulation was equal to the z-component of V X C. If we had gone around 

the other way, we would have gotten the opposite sign. Now how shall we know, 

in general, what direction to choose for the positive direction of the “normal” 

component of V X C? The “positive” normal must always be related to the 

sense of rotation, as in Fig. 3-10. It is indicated for the general case in Fig. 3-11. 
One way of remembering the relationship is by the “right-hand rule.” If you 

make the fingers of your right hand go around the curve r, with the fingertips 

pointed in the direction of the positive sense of ds, then your thumb points in the 

direction of the positive normal to the surface S. 

3-7 Curl-free and divergence-free fields 

We would like, now, to consider some consequences of our new theorems. 

Take first the case of a vector whose curl is everywhere zero. Then Stokes’ theorem 

says that the circulation around any loop is zero. Now if we choose two points 

(1) and (2) on a closed curve (Fig. 3-12), it follows that the line integral of the 
tangential component from (1) to (2) is independent of which of the two possible 

paths is taken. We can conclude that the integral from (1) to (2) can depend only 

on the location of these points—that is to say, it is some function of position only. 

The same logic was used in Chapter 14 of Vol. I, where we proved that if the integral 

around a closed loop of some quantity is always zero, then that integral can be 

represented as the difference of a function of the position of the two ends. This 

fact allowed us to invent the idea of a potential. We proved, furthermore, that the 

vector field was the gradient of this potential function (see Eq. 14.13 of Vol. I). 

It follows that any vector field whose curl is zero is equal to the gradient of 

some scalar function. That is, if V X C = 0, everywhere, there is some 0 (psi) for 

which C = V\j,—a useful idea. We can, if we wish, describe this special kind of 

vector field by means of a scalar field. 
Let’s show something else. Suppose we have any scalar field 0 (phi). If we 

take its gradient, V<p, the integral of this vector around any closed loop must be 

zero. Its line integral from point (1) to point (2) is [0(2) — 0(1)]. If (1) and (2) 
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are the same points, our Theorem 1, Eq. (3.8), tells us that the line integral is zero: 

f V<f> ■ ds = 0. 

loop 

Using Stokes* theorem, we can conclude that 

j V X (V<P) da = 0 

over any surface. But if the integral is zero over any surface, the integrand must 

be zero. So 

V X (V0) = 0, always. 

We proved the same result in Section 2-7 by vector algebra. 

Let’s look now at a special case in which we fill in a small loop r with a large 

surface 5, as indicated in Fig. 3-13. We would like, in fact, to see what happens 

when the loop shrinks down to a point, so that the surface boundary disappears— 

the surface becomes closed. Now if the vector C is everywhere finite, the line 

integral around V must go to zero as we shrink the loop—the integral is roughly 

proportional to the circumference of T, which goes to zero. According to Stokes’ 

theorem, the surface integral of (V X C)n must also vanish. Somehow, as we 

close the surface we add in contributions that cancel out what was there before. 

So we have a new theorem: 

j (V X C)„ da = 0. (3.39) 

any closed 
surface 

Now this is interesting, because we already have a theorem about the surface 

integral of a vector field. Such a surface integral is equal to the volume integral 

of the divergence of the vector, according to Gauss’ theorem (Eq. 3.18). Gauss’ 

theorem, applied to V X C, says 

j (VXQnda= J V • (v X C)dV. (3.40) 

closed volume 
surface inside 

So we conclude that the second integral must also be zero: 

I V ■ (V X C) dV = 0, (3.41) 

any 
volume 

and this is true for any vector field C whatever. Since Eq. (3.41) is true for any 

volume, it must be true that at every point in space the integrand is zero. We have 

V ’ (V X C) = 0, always. 

But this is the same result we got from vector algebra in Section 2-7. Now we 

begin to see how everything fits together. 

3-8 Summary 

Let us summarize what we have found about the vector calculus. These are 

really the salient points of Chapters 2 and 3: 

1. The operators d/dx, d/dy, and d/dz can be considered as the three 

components of a vector operator V, and the formulas which result from vector 

algebra by treating this operator as a vector are correct: 

2. The difference of the values of a scalar field at two points is equal to the 

line integral of the tangential component of the gradient of that scalar along 
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Fig, 3-13. Going to the limit of a 

closed surface, we find that the surface 

integral of (V X C)„ must vanish. 



any curve at all between the first and second points: 

1H2) - iHl) = /<2) V* • ds. (3.42) 
h i) 

any curve 

3. The surface integral of the normal component of an arbitrary vector 

over a closed surface is equal to the integral of the divergence of the vector over 

the volume interior to the surface: 

j C• nda — J V-CdV. (3.43) 

closed volume 
surface inside 

4. The line integral of the tangential component of an arbitrary vector 

around a closed loop is equal to the surface integral of the normal component 

of the curl of that vector over any surface which is bounded by the loop. 

I C ■ ds — j (V X C) •»da. (3.44) 

boundary surface 
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4 

Electrostatic* 

4-1 Statics 

We begin now our detailed study of the theory of electromagnetism. All of 

electromagnetism is contained in the Maxwell equations. 

Maxwell's equations: 

V E = 
«o 

(4.1) 

(4.2) 

(4.3) 

V • B = 0. (4.4) 

The situations that are described by these equations can be very complicated. 
We will consider first relatively simple situations, and learn how to handle them 

before we take up more complicated ones. The easiest circumstance to treat is one 

in which nothing depends on the time—called the static case. All charges are 

permanently fixed in space, or if they do move, they move as a steady flow in a 

circuit (so p and j are constant in time). In these circumstances, all of the terms in 

the Maxwell equations which are time derivatives of the field are zero. In this 

case, the Maxwell equations become: 

Electrostatics: 

v E = —. 
«o 

(4.5) 

V X E = 0. (4.6) 

Magnetostatics: 

(4.7) 

V • B = 0. (4.8) 

4-1 Statics 

4-2 Coulomb’s law; superposition 

4-3 Electric potential 

4-4 E = -V<t> 

4-5 The flux of E 

4-6 Gauss’ law; the divergence of E 

4-7 Field of a sphere of charge 

4-8 Field lines; equipotential 

surfaces 

Review: Chapters 13 and 14, Vol. I, 

Work and Potential Energy 

You will notice an interesting thing about this set of four equations. It can 

be separated into two pairs. The electric field E appears only in the first two, and 

the magnetic field B appears only in the second two. The two fields are not inter¬ 

connected. This means that electricity and magnetism are distinct phenomena so 
long as charges and currents are static. The interdependence of E and B does not 

appear until there are changes in charges or currents, as when a condensor is 

charged, or a magnet moved. Only when there are sufficiently rapid changes, so 
that the time derivatives in Maxwell’s equations become significant, will E and B 

depend on each other. 

Now if you look at the equations of statics you will see that the study of the 

two subjects we call electrostatics and magnetostatics is ideal from the point of 

view of learning about the mathematical properties of vector fields. Electrostatics 

is a neat example of a vector field with zero curl and a given divergence. Magnet¬ 

ostatics is a neat example of a field with zero divergence and a given curl. The more 

conventional—and you may be thinking, more satisfactory—way of presenting 
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the theory of electromagnetism is to start first with electrostatics and thus to learn 

about the divergence. Magnetostatics and the curl are taken up later. Finally, 

electricity and magnetism are put together. We have chosen to start with the 

complete theory of vector calculus. Now we shall apply it to the special case of 

electrostatics, the field of E given by the first pair of equations. 

We will begin with the simplest situations—ones in which the positions of all 

charges are specified. If we had only to study electrostatics at this level (as we 

shall do in the next two chapters), life would be very simple—in fact, almost 
trivial. Everything can be obtained from Coulomb’s law and some integration, 

as you will see. In many real electrostatic problems, however, we do not know, 

initially, where the charges are. We know only that they have distributed them¬ 

selves in ways that depend on the properties of matter. The positions that the 

charges take up depend on the E field, which in turn depends on the positions of 

the charges. Then things can get quite complicated. If, for instance, a charged 

body is brought near a conductor or insulator, the electrons and protons in the 

conductor or insulator will move around. The charge density p in Eq. (4.5) may 

have one part that we know about, from the charge that we brought up; but there 

will be other parts from charges that have moved around in the conductor. And 

all of the charges must be taken into account. One can get into some rather subtle 

and interesting problems. So although this chapter is to be on electrostatics, it will 

not cover the more beautiful and subtle parts of the subject. It will treat only the 

situation where we can assume that the positions of all the charges are known. 

Naturally, you should be able to do that case before you try to handle the other 

ones. 

4-2 Coulomb’s law; superposition 

It would be logical to use Eqs. (4.5) and (4.6) as our starting points. It will 

be easier, however, if we start somewhere else and come back to these equations. 

The results will be equivalent. We will start with a law that we have talked about 

before, called Coulomb’s law, which says that between two charges at rest there is 

a force directly proportional to the product of the charges and inversely propor¬ 

tional to the square of the distance between. The force is along the straight line 

from one charge to the other. 

Coulomb’s law: 
Fi 

1 
47T€0 

41?2 „ 
72~Cl2 - 

12 

-F2. (4.9) 

Fi is the force on charge qe12 is the unit vector in the direction to qx from q2, 

and r x 2 is the distance between q\ and q2. The force F2 on q2 is equal and opposite 

to Ei. 

The constant of proportionality, for historical reasons, is written as 1/4tt€0. 

In the system of units which we use—the mks system—it is defined as exactly 

10-7 times the speed of light squared. Now since the speed of light is approxi¬ 

mately 3 X 108 meters per second, the constant is approximately 9 X 109, and 

the unit turns out to be newton-meter2 per coulomb2 or volt-meter per coulomb. 

= 10~7c2 (by definition) 

= 9.0 X 109 (by experiment). (4.10) 

Unit: newton-meter2/coulomb2, 

or volt-meter/coulomb. 

When there are more than two charges present—the only really interesting 

times—we must supplement Coulomb’s law with one other fact of nature: the 

force on any charge is the vector sum of the Coulomb forces from each of the other 

charges. This fact is called “the principle of superposition.” That’s all there is to 
electrostatics. If we combine the Coulomb law and the principle of superposition, 

there is nothing else. Equations (4.5) and (4.6)—the electrostatic equations—say 

no more and no less. 
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When applying Coulomb’s law, it is convenient to introduce the idea of an 

electric field. We say that the field E(\) is the force per unit charge on qx (due to 
all other charges). Dividing Eq. (4.9) by ql9 we have, for one other charge besides 

?i> 

E( 1) = 
47T€n r 

02 m 
l2~e12• 

12 

(4.11) 

Also, we consider that E( 1) describes something about the point (1) even if qi 

were not there—assuming that all other charges keep their same positions. We 

say; E{ 1) is the electric field at the point (1). 

The electric field E is a vector, so by Eq. (4.11) we really mean three equations 

—one for each component. Writing out explicitly the jc-component, Eq. (4.11) 

means 

*<*•»’*)= 4fi; +sgT*’ (4’12) 

and similarly for the other components. 

If there are many charges present, the field E at any point (1) is a sum of the 

contributions from each of the other charges. Each term of the sum will look like 

(4.11) or (4.12). Letting q3 be the magnitude of the /th charge, and r1; the dis¬ 

placement from q3 to the point (1), we write 

Which means, of course, 

£(i) = £ 
3 

1 ^ 
471-eo r*} 

eij. (4.13) 

Ex(xu yu Z\) 
_Qj(xi xj)_ /a 

47T€o [(*i ~ *y)2 + (yi - y,)2 + (*i - ^)2J3/2 v } 

and so on. 

Often it is convenient to ignore the fact that charges come in packages like 

electrons and protons, and think of them as being spread out in a continuous smear 

—or in a “distribution,” as it is called. This is O.K. so long as we are not interested 

in what is happening on too small a scale. We describe a charge distribution by 

the “charge density,” p(x, y, z). If the amount of charge in a small volume AV2 

located at the point (2) is Aq2, then p is defined by 

Aq2 = p(2)AF2. (4.15) 

To use Coulomb’s law with such a description, we replace the sums of Eqs. 

(4.13) or (4.14) by integrals over all volumes containing charges. Then we have 

E( 1) = 
1 

47Te0 / p(2)e12rfF2 

all 
spaoe 

12 

Some people prefer to write 

ei2 

(4.16) 

where ri2 is the vector displacement to (1) from (2), as shown in Fig. 4-1. The 

integral for E is then written as 

- JL f P(2>i2dV2 
E(l) 4ire0 J rf2 

all 12 
space 

(4.17) 

When we want to calculate something with these integrals, we usually have to 

write them out in explicit detail. For the x-component of either Eq. (4.16) or 

(4.17), we would have 

E*(xu yi9 zx) l 
all 

spaoe 

_(xi - x2)p(x2i y2, Z2) dx2 dy2 dz2_ 

47r€o[(*l - *2)2 + iyi - ^2)2 + (Zl - *2)2Fa 
(4.18) 

UMXfY^Z,) 

Fig. 4~1. The electric field E at 

point (1), from a charge distribution, is 

obtained from an integral over the 

distribution. Point (1) could also be inside 

the distribution. 
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We are not going to use this formula much. We write it here only to empha¬ 

size the fact that we have completely solved all the electrostatic problems in which 

we know the locations of all of the charges. Given the charges, what are the fields? 

Answer: Do this integral. So there is nothing to the subject; it is just a case of 

doing complicated integrals over three dimensions—strictly a job for a computing 

machine! 
With our integrals we can find the fields produced by a sheet of charge, from 

a line of charge, from a spherical shell of charge, or from any specified distribution. 

It is important to realize, as we go on to draw field lines, to talk about potentials, 

or to calculate divergences, that we already have the answer here. It is merely a 

matter of it being sometimes easier to do an integral by some clever guesswork 

than by actually carrying it out. The guesswork requires learning all kinds of 

strange things. In practice, it might be easier to forget trying to be clever and al¬ 

ways to do the integral directly instead of being so smart. We are, however, going 

to try to be smart about it. We shall go on to discuss some other features of the 

electric field. 

Fig. 4-2. The work done in carrying 
a charge from a to b is the negative of 
the integral of F • df along the path 
taken. 

4-3 Electric potential 

First we take up the idea of electric potential, which is related to the work done 

in carrying a charge from one point to another. There is some distribution of 

charge, which produces an electric field. We ask about how much work it would 

take to carry a small charge from one place to another. The work done against 

the electrical forces in carrying a charge along some path is the negative of the com¬ 

ponent of the electrical force in the direction of the motion, integrated along the 

path. If we carry a charge from point a to point b. 

where F is the electrical force on the charge at each point, and ds is the differential 

vector displacement along the path. (See Fig. 4-2.) 

It is more interesting for our purposes to consider the work that would be 

done in carrying one unit of charge. Then the force on the charge is numerically 

the same as the electric field. Calling the work done against electrical forces in this 

case JF(unit), we write 

^(unit) — —[e-cIs. (4.19) 

Now, in general, what we get with this kind of an integral depends on the path we 

take. But if the integral of (4.19) depended on the path from a to b, we could get 

work out of the field by carrying the charge to b along one path and then back to a 

on the other. We would go to b along the path for which W is smaller and back 

along the other, getting out more work than we put in. 
There is nothing impossible, in principle, about getting energy out of a field. 

We shall, in fact, encounter fields where it is possible. It could be that as you move 

a charge you produce forces on the other part of the “machinery.” If the “ma¬ 

chinery” moved against the force it would lose energy, thereby keeping the total 

energy in the world constant. For electrostatics, however, there is no such “ma¬ 

chinery.” We know what the forces back on the sources of the field are. They are 

the Coulomb forces on the charges responsible for the field. If the other charges 

are fixed in position—as we assume in electrostatics only—these back forces can 

do no work on them. There is no way to get energy from them—provided, of 

course, that the principle of energy conservation works for electrostatic situations. 

We believe that it will work, but let’s just show that it must follow from Coulomb’s 

law of force. 

We consider first what happens in the field due to a single charge q. Lei 

point a be at the distance rx from q, and point b at r2. Now we carry a different 

charge, which we will call the “test” charge, and whose magnitude we choose to 



be one unit, from a to b. Let’s start with the easiest possible path to calculate. We 
carry our test charge first along the arc of a circle, then along a radius, as shown in 
part (a) of Fig. 4-3. Now on that particular path it is child’s play to find the work 
done (otherwise we wouldn’t have picked it). First, there is no work done at all 
on the path from a to a'. The field is radial (from Coulomb’s law), so it is at right 
angles to the direction of motion. Next, on the path from a' to 6, the field is in the 
direction of motion and varies as \/r2. Thus the work done on the test charge 
in carrying it from a to b would be 

-f.E■* - - -ik(k -s)- <4a» 

Now let’s take another easy path. For instance, the one shown in part (b) of 
Fig. 4-3. It goes for awhile along an arc of a circle, then radially for awhile, then 
along an arc again, then radially, and so on. Every time we go along the circular 
parts, we do no work. Every time we go along the radial parts, we must just 
integrate 1/r2. Along the first radial stretch, we integrate from ra to ra>, then 
along the next radial stretch from ra- to ra>>, and so on. The sum of all these in¬ 
tegrals is the same as a single integral directly from ra to rb. We get the same answer 
for this path that we did for the first path we tried. It is clear that we would get 
the same answer for any path which is made up of an arbitrary number of the same 
kinds of pieces. 

What about smooth paths? Would we get the same answer? We discussed 
this point previously in Chapter 13 of Vol. I. Applying the same arguments used 
there, we can conclude that work done in carrying a unit charge from a to b is 
independent of the path. 

))_/%.*. 

I w . 
path 

Fig. 4-3. In carrying a test charge 

from a to b the same work is done along 

either path. 

Since the work done depends only on the endpoints, it can be represented as 
the difference between two numbers. We can see this in the following way. Let’s 
choose a reference point P0 and agree to evaluate our integral by using a path that 
always goes by way of point P0. Let <f>(d) stand for the work done against the field 
in going from P0 to point a, and let be the work done in going from P0 to 
point b (Fig. 4-4). The work in going to Pq from a (on the way to b) is the negative 
of so we have that 

E • ds — <f>(b) — <j>(a). (4.21) 

Since only the difference in the function 4> at two points is ever involved, we 
do not really have to specify the location of P0. Once we have chosen some 
reference point, however, a number <j> is determined for any point in space; 4> is 
then a scalar field. It is a function of x, y, z. We call this scalar function the elec¬ 

trostatic potential at any point. 

Electrostatic potential: 

HP) = E-ds. (4.22) 

For convenience, we will often take the reference point at infinity. Then, 
for a single charge at the origin, the potential <£ is given for any point (x, y, z)— 
using Eq. (4.20): 

H*> y, *) 
q i 

47T€0 r 
(4.23) 

Fig. 4-4. The work done in going 

along any path from a to b is the negative 

of the work from some point Po to a plus 

the work from Po to b. 

The electric field from several charges can be written as the sum of the electric 
field from the first, from the second, from the third, etc. When we integrate the 
sum to find the potential we get a sum of integrals. Each of the integrals is the 
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potential from one of the charges. We conclude that the potential <f> from a lot of 
charges is the sum of the potentials from all the individual charges. There is a 
superposition principle also for potentials. Using the same kind of arguments by 
which we found the electric field from a group of charges and for a distribution of 
charges, we can get the complete formulas for the potential 4> at a point we call (1): 

♦w-ZssS' <4'M) 

<4M> 

Remember that the potential <f> has a physical significance: it is the potential 
energy which a unit charge would have if brought to the specified point in space 
from some reference point. 

4-4 E =-V<f> 

Who cares about </>? Forces on charges are given by E, the electric field. The 
point is that E can be obtained easily from 0—it is as easy, in fact, as taking a 
derivative. Consider two points, one at x and one at (* + dx\ but both at the 
same y and z, and ask how much work is done in carrying a unit charge from one 
point to the other. The path is along the horizontal line from x to x + dx. The 
work done is the difference in the potential at the two points: 

AW = <t>(x + Ax, y, z) - 4>(x, y, z) = ^Ax. 

But the work done against the field for the same path is 

AW = -jEds = —ExAx. 

We see that 

<4M> 

Similarly, Ey ~ —d<f>/dy, Eg — —d<f>/dz, or, summarizing with the notation of 
vector analysis, 

E = -V*. (4.27) 

This equation is the differential form of Eq. (4.22). Any problem with specified 
charges can be solved by computing the potential from (4.24) or (4.25) and using 
(4.27) to get the field. Equation (4.27) also agrees with what we found from vector 
calculus: that for any scalar field <f> 

f V<f> * ds — - *(a). (4.28) 
J a 

According to Eq. (4.25) the scalar potential <f> is given by a three-dimensional 
integral similar to the one we had for E. Is there any advantage to computing <j> 

rather than El Yes. There is only one integral for <f>, while there are three integrals 
for E—because it is a vector. Furthermore, 1/r is usually a little easier to integrate 
than jc/r3. It turns out in many practical cases that it is easier to calculate <f> and 
then take the gradient to find the electric field, than it is to evaluate the three 
integrals for E. It is merely a practical matter. 

There is also a deeper physical significance to the potential <t>. We have shown 
that E of Coulomb’s law is obtained from E = — grad </>, when <f> is given by 
(4.22). But if E is equal to the gradient of a scalar field, then we know from the 
vector calculus that the curl of E must vanish: 
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But that is just our second fundamental equation of electrostatics, Eq. (4.6). We 
have shown that Coulomb’s law gives an E field that staisfies that condition. So 
far, everything is all right. 

We had really proved that V X E was zero before we defined the potential. 
We had shown that the work done around a closed path is zero. That is, that 

^E • ds = 0 

for any path. We saw in Chapter 3 that for any such field V X E must be zero 
everywhere. The electric field in electrostatics is an example of a curl-free field. 

You can practice your vector calculus by proving that V X E is zero in a dif¬ 
ferent way—by computing the components of V X E for the field of a point charge, 
as given by Eq. (4.11). If you get zero, the superposition principle says you would 
get zero for the field of any charge distribution. 

We should point out an important fact. For any radial force the work done is 
independent of the path, and there exists a potential. If you think about it, the 
entire argument we made above to show that the work integral was independent 
of the path depended only on the fact that the force from a single charge was 
radial and spherically symmetric. It did not depend on the fact that the dependence 
on distance was as 1 /r2—there could have been any r dependence. The existence 
of a potential, and the fact that the curl of E is zero, comes really only from the 
symmetry and direction of the electrostatic forces. Because of this, Eq. (4-28)— 
or (4.29)—can contain only part of the laws of electricity. 

4-5 The flux of E 

We will now derive a field equation that depends specifically and directly on 
the fact that the force law is inverse square. That the field varies inversely as the 
square of the distance seems, for some people, to be “only natural,” because “that’s 
the way things spread out.” Take a light source with light streaming out: the 
amount of light that passes through a surface cut out by a cone with its apex at 
the source is the same no matter at what radius the surface is placed. It must be so 
if there is to be conservation of light energy. The amount of light per unit area— 
the intensity—must vary inversely as the area cut by the cone, i.e., inversely as the 
square of the distance from the source. Certainly the electric field should vary 
inversely as the square of the distance for the same reason! But there is no such 
thing as the “same reason” here. Nobody can say that the electric field measures 
the flow of something like light which must be conserved. If we had a “model” 
of the electric field in which the electric field vector represented the direction and 
speed—say the current—of some kind of little “bullets” which were flying out, 
and if our model required that these bullets were conserved, that none could ever 
disappear once it was shot out of a charge, then we might say that we can “see” 
that the inverse square law is necessary. On the other hand, there would necessarily 
be some mathematical way to express this physical idea. If the electric field were 

like conserved bullets going out, then it would vary inversely as the square of the 
distance and we would be able to describe that behavior by an equation—which 
is purely mathematical. Now there is no harm in thinking this way, so long as we 
do not say that the electric field is made out of bullets, but realize that we are 
using a model to help us find the right mathematics. 

Suppose, indeed, that we imagine for a moment that the electric field did 
represent the flow of something that was conserved—everywhere, that is, except 
at charges. (It has to start somewhere!) We imagine that whatever it is flows out 
of a charge into the space around. If E were the vector of such a flow (as h is for 
heat flow), it would have a \/r2 dependence near a point source. Now we wish to 
use this model to find out how to state the inverse square law in a deeper or more 
abstract way, rather than simply saying “inverse square.” (You may wonder 
why we should want to avoid the direct statement of such a simple law, and want 
instead to imply the same thing sneakily in a different way. Patience! It will turn 
out to be useful.) 
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Fig. 4-7. Any volume can be thought 

of as completely made up of infinitesimal 

truncated cones. The flux of B from one 

end of each conical segment is equal and 

opposite to the flux from the other end. 

The total flux from the surface S is 

therefore zero. 

Fig. 4-8. If a charge is inside a 

surface, the flux out is not zero. 

We ask: What is the “flow” of E out of an arbitrary closed surface in the 

neighborhood of a point charge? First let’s take an easy surface—the one shown 

in Fig. 4-5. If the E field is like a flow, the net flow out of this box should be zero. 

That is what we get if by the “flow” from this surface we mean the surface integral 

of the normal component of E—that is, the flux of E. On the radial faces, the nor¬ 

mal component is zero. On the spherical faces, the normal component En is just 

the magnitude of E—minus for the smaller face and plus for the larger face. The 
magnitude of E decreases as 1/r2, but the surface area is proportional to r2, so 

the product is independent of r. The flux of E into face a is just cancelled by the 

flux out of face b. The total flow out of 5 is zero, which is to say that for this 

surface 

f Enda = 0. (4.30) 
Js 

Next we show that the two end surfaces may be tilted with respect to the 

radial line without changing the integral (4.30). Although it is true in general, for 

our purposes it is only necessary to show that this is true when the end surfaces are 

small, so that they subtend a small angle from the source—in fact, an infinitesimal 

angle. In Fig. 4-6 we show a surface S whose “sides” are radial, but whose “ends” 

are tilted. The end surfaces are not small in the figure, but you are to imagine the 

situation for very small end surfaces. Then the field E will be sufficiently uniform 

over the surface that we can use just its value at the center. When we tilt the sur¬ 

face by an angle 8, the area is increased by the factor 1/cos 6. But En, the compo¬ 

nent of E normal to the surface, is decreased by the factor cos 6. The product 

En Aa is unchanged. The flux out of the whole surface S is still zero. 

Now it is easy to see that the flux out of a volume enclosed by any surface S 

must be zero. Any volume can be thought of as made up of pieces, like that in 

Fig. 4-6. The surface will be subdivided completely into pairs of end surfaces, 

and since the fluxes in and out of these end surfaces cancel by pairs, the total flux 

out of the surface will be zero. The idea is illustrated in Fig. 4-7. We have the 
completely general result that the total flux of E out of any surface S in the field 

of a point charge is zero. 
But notice! Our proof works only if the surface S does not surround the charge. 

What would happen if the point charge were inside the surface? We could still 

divide our surface into pairs of areas that are matched by radial lines through the 

charge, as shown in Fig. 4-8. The fluxes through the two surfaces are still equal— 

by the same arguments as before—only now they have the same sign. The flux 

out of a surface that surrounds a charge is not zero. Then what is it? We can find 

out by a little trick. Suppose we “remove” the charge from the “inside” by sur¬ 

rounding the charge by a little surface S' totally inside the original surface 5, as 

shown in Fig. 4-9. Now the volume enclosed between the two surfaces S and S' 

has no charge in it. The total flux out of this volume (including that through S') 

is zero, by the arguments we have given above. The arguments tell us, in fact, that 

the flux into the volume through S' is the same as the flux outward through 5. 
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We can choose any shape we wish for S', so let’s make it a sphere centered on 
the charge, as in Fig. 4-10. Then we can easily calculate the flux through it. If the 

radius of the little sphere is r, the value of E everywhere on its surface is 

_L 
47T€q r2 * 

and is directed always normal to the surface. We find the total flux through S' if 

we multiply this normal component of E by the surface area: 

Flux through the suface S' - j 

60 
(4.31) 

a number independent of the radius of the sphere! We know then that the flux 

outward through S is also q/e0—a value independent of the shape of S so long as 
the charge q is inside. 

We can write our conclusions as follows: 

Fig. 4-9. The flux through S is the 

same as the flux through S'. 

/ 
any surface S 

En da 
0; q outside S 

— ; q inside S 
to 

(4.32) 

Let’s return to our “bullet” analogy and see if it makes sense. Our theorem 

says that the net flow of bullets through a surface is zero if the surface does not 

enclose the gun that shoots the bullets. If the gun is enclosed in a surface, whatever 

size and shape it is, the number of bullets passing through is the same—it is given 

by the rate at which bullets are generated at the gun. It all seems quite reasonable 

for conserved bullets. But does the model tell us anything more than we get 

simply by writing Eq. (4.32)? No one has succeeded in making these “bullets” do 

anything else but produce this one law. After that, they produce nothing but 

errors. That is why today we prefer to represent the electromagnetic field purely 

abstractly. 

4-6 Gauss’ law; the divergence of E 

Our nice result, Eq. (4.32), was proved for a single point charge. Now suppose 

that there are two charges, a charge qx at one point and a charge q2 at another. 

The problem looks more difficult. The electric field whose normal component we 

integrate for the flux is the field due to both charges. That is, if Ex represents the 

electric field that would have been produced by qx alone, and E2 represents the 

electric field produced by q2 alone, the total electric field is E = Ex 4- E2. The 

flux through any closed surface 5 is 

f (Eln + E2n)da = f Eln da + f E2nda. (4.33) 
Js Js Js 

The flux with both charges present is the flux due to a single charge plus the flux 

due to the other charge. If both charges are outside S, the flux through S is zero. 

If qx is inside S but q2 is outside, then the first integral gives qi/€0 and the second 

integral gives zero. If the surface encloses both charges, each will give its contribu¬ 

tion and we have that the flux is (qx -f q2)/eo- The general rule is clearly that the 

total flux out of a closed surface is equal to the total charge inside, divided by e0. 

Our result is an important general law of the electrostatic field, called Gauss’ 

law. 

Gauss' law: / 
any closed 
surface S 

En da 
sum of charges inside 

or 

where 

/ E • n da 

any closed 
surface S 

Qint — Qi’ 
inside S 

(4.34) 

(4.35) 

(4.36) 

Fig. 4-10. The flux through a spheri¬ 

cal surface containing a point charge 

q is q/e0. 
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If we describe the location of charges in terms of a charge density p, we can con¬ 

sider that each infinitesimal volume dV contains a “point” charge p dV, The sum 

over all charges is then the integral 

Qint = I pdV. (4.37) 

volume 
inside S 

From our derivation you see that Gauss’ law follows from the fact that the 

exponent in Coulomb’s law is exactly two. A 1/r3 field, or any l/rn field with 

n 9* 2, would not give Gauss’ law. So Gauss’ law is just an expression, in a dif¬ 

ferent form, of the Coulomb law of forces between two charges. In fact, working 

back from Gauss’ law, you can derive Coulomb’s law. The two are quite equiva¬ 

lent so long as we keep in mind the rule that the forces between charges is radial. 

We would now like to write Gauss’ law in terms of derivatives. To do this, 
we apply Gauss’ law to an infinitesimal cubical surface. We showed in Chapter 3 

that the flux of E out of such a cube is V • E times the volume dV of the cube. The 

charge inside of dV, by the definition of p, is equal to p dV, so Gauss’ law gives 

or 

V • EdV - 
pdV - 5 

«0 

E - 2- (4.38) 

The differential form of Gauss’ law is the first of our fundamental field equations of 

electrostatics, Eq. (4.5). We have now shown that the two equations of electro¬ 

statics, Eqs. (4.5) and (4.6), are equivalent to Coulomb’s law of force. We will 

now consider one example of the use of Gauss’ law. (We will come later to many 

more examples.) 

Fig. 4-11. Using Gauss' law to find 

the field of a uniform sphere of charge. 

4-7 Field of a sphere of charge 

One of the difficult problems we had when we studied the theory of gravita¬ 

tional attractions was to prove that the force produced by a solid sphere of matter 

was the same at the surface of the sphere as it would be if all the matter were 

concentrated at the center. For many years Newton didn’t make public his 

theory of gravitation, because he couldn’t be sure this theorem was true. We 

proved the theorem in Chapter 13 of Vol. I by doing the integral for the 

potential and then finding the gravitational force by using the gradient. Now we 

can prove the theorem in a most simple fashion. Only this time we will prove the 

corresponding theorem for a uniform sphere of electrical charge. (Since the laws 

of electrostatics are the same as those of gravitation, the same proof could be 

done for the gravitational field.) 
We ask: What is the electric field £ at a point P anywhere outside the surface 

of a sphere filled with a uniform distribution of charge? Since there is no “special” 

direction, we can assume that E is everywhere directed away from the center of the 

sphere. We consider an imaginary surface that is spherical and concentric with 

the sphere of charge, and that passes through the point P (Fig. 4-11). For this 

surface, the flux outward is 

J En da = E-4irR2. 

Gauss’ law tells us that this flux is equal to the total charge Q of the sphere (over €0): 

or 

E-4irR2 = 
Co 
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Fig. 4-12. Field lines and equipotential surfaces for a positive point charge. 

which is the same formula we would have for a point charge Q. We have proved 

Newton’s problem more easily than by doing the integral. It is, of course, a false 

kind of easiness—it has taken you some time to be able to understand Gauss’ law, 

so you may think that no time has really been saved. But after you have used the 

theorem more and more, it begins to pay. It is a question of efficiency. 

4-8 Field lines; equipotential surfaces 

We would like now to give a geometrical description of the electrostatic field. 

The two laws of electrostatics, one that the flux is proportional to the charge inside 

and the other that the electric field is the gradient of a potential, can also be repre¬ 

sented geometrically. We illustrate this with two examples. 
First, we take the field of a point charge. We draw lines in the direction of the 

field—lines which are always tangent to the field, as in Fig. 4-12. These are called 

field lines. The lines show everywhere the direction of the electric vector. But we 

also wish to represent the magnitude of the vector. We can make the rule that the 

strength of the electric field will be represented by the “density” of the lines. By 

the density of the lines we mean the number of lines per unit area through a sur¬ 

face perpendicular to the lines. With these two rules we can have a picture of the 

electric field. For a point charge, the density of the lines must decrease as 1/r2. 

But the area of a spherical surface perpendicular to the lines at any radius r increases 

as r2, so if we always keep the same number of lines for all distances from the 

charge, the density will remain in proportion to the magnitude of the field. We can 

guarantee that there are the same number of lines at every distance if we insist 

that the lines be continuous—that once a line is started from the charge, it never 

stops. In terms of the field lines, Gauss’ law says that lines should start only at 

plus charges and stop at minus charges. The number which leave a charge q must 

be equal to q/eQ. 
Now, we can find a similar geometrical picture for the potential 4>. The easiest 

way to represent the potential is to draw surfaces on which 4> is a constant. We call 

them equipotential surfaces—surfaces of equal potential. Now what is the geometri- 

4-11 



A Note about Units 

Quantity Unit 

newton 
coulomb 
meter 

p ~ Q/l? 
l/«o ~ FI?/Q2 
E~ F/Q 
4>~ W/Q 
E ~ <j>/L 
1/eo - ELVQ 

joule 
coulomb/meter 3 
newton- meter 2/ coulomb 2 
newton/coulomb 
joule/coulomb = volt 
volt/meter 
volt-meter/coulomb 

cal relationship of the equipotential surfaces to the field lines? The electric field is 

the gradient of the potential. The gradient is in the direction of the most rapid 

change of the potential, and is therefore perpendicular to an equipotential surface. 

If E were not perpendicular to the surface, it would have a component in the 

surface. The potential would be changing in the surface, but then it wouldn’t be 

an equipotential. The equipotential surfaces must then be everywhere at right 

angles to the electric field lines. 

For a point charge all by itself, the equipotential surfaces are spheres centered 

at the charge. We have shown in Fig. 4-12 the intersection of these spheres with a 

plane through the charge. 

As a second example, we consider the field near two equal charges, a positive 

one and a negative one. To get the field is easy. The field is the superposition of 

the fields from each of the two charges. So, we can take two pictures like Fig. 4-12 

and superimpose them—impossible! Then we would have field lines crossing each 

other, and that’s not possible, because E can’t have two directions at the same point. 

The disadvantage of the field-line picture is now evident. By geometrical argu¬ 

ments it is impossible to analyze in a very simple way where the new lines go. 

From the two independent pictures, we can’t get the combined picture. The 

principle of superposition, a simple and deep principle about electric fields, does 

not have, in the field-line picture, an easy representation. 

The field-line picture has its uses, however, so we might still like to draw the 

picture for a pair of equal (and opposite) charges. If we calculate the fields from 

Eq. (4.13) and the potentials from (4.23), we can draw the field lines and equi- 

potentials. Figure 4-13 shows the result. But we first had to solve the problem 

mathematically! 
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5 

Application, of Gauss9 Law 

5-1 Electrostatics is Gauss’ law plus ... 

There are two laws of electrostatics: that the flux of the electric field from a 

volume is proportional to the charge inside—Gauss’ law, and that the circulation 
of the electric field is zero—E is a gradient. From these two laws, all the predictions 

of electrostatics follow. But to say these things mathematically is one thing; to 

use them easily, and with a certain amount of ingenuity, is another. In this chapter 

we will work through a number of calculations which can be made with Gauss’ law 

directly. We will prove theorems and describe some effects, particularly in con¬ 

ductors, that can be understood very easily from Gauss’ law. Gauss’ law by itself 

cannot give the solution of any problem because the other law must be obeyed too. 

So when we use Gauss’ law for the solution of particular problems, we will have to 

add something to it. We will have to presuppose, for instance, some idea of how 

the field looks—based, for example, on arguments of symmetry. Or we may have 

to introduce specifically the idea that the field is the gradient of a potential. 

5-2 Equilibrium in an electrostatic field 

Consider first the following question: When can a point charge be in stable 

mechanical equilibrium in the electric field of other charges? As an example, 

imagine three negative charges at the corners of an equilateral triangle in a hori¬ 

zontal plane. Would a positive charge placed at the center of the triangle remain 

there? (It will be simpler if we ignore gravity for the moment, although including 

it would not change the results.) The force on the positive charge is zero, but 

is the equilibrium stable? Would the charge return to the equilibrium position if 

displaced slightly? The answer is no. 

There are no points *of stable equilibrium in any electrostatic field—except 

right on top of another charge. Using Gauss’ law, it is easy to see why. First, for a 

charge to be in equilibrium at any particular point P0, the field must be zero. 
Second, if the equilibrium is to be a stable one, we require that if we move the 

charge away from P0 in any direction, there should be a restoring force directed 

opposite to the displacement. The electric field at all nearby points must be 

pointing inward—toward the point P0. But that is in violation of Gauss* law if 

there is no charge at P 0, as we can easily see. 

Consider a tiny imaginary surface that encloses P0, as in Fig. 5-1. If the 

electric field everywhere in the vicinity is pointed toward P0, the surface integral 

of the normal component is certainly not zero. For the case shown in the figure, 

the flux through the surface must be a negative number. But Gauss’ law says that 

the flux of electric field through any surface is proportional to the total charge 

inside. If there is no charge at P0, the field we have imagined violates Gauss’ law. 
It is impossible to balance a positive charge in empty space—at a point where 

there is not some negative charge. A positive charge can be in equilibrium if it is 

in the middle of a distributed negative charge. Of course, the negative charge 

distribution would have to be held in place by other than electrical forces! 

Our result has been obtained for a point charge. Does the same conclusion 

hold for a complicated arrangement of charges held together in fixed relative 
positions—with rods, for example? We consider the question for two equal 

charges fixed on a rod. Is it possible that this combination can be in equilibrium 

in some electrostatic field? The answer is again no. The total force on the rod 

cannot be restoring for displacements in every direction. 

5-1 Electrostatics is Gauss’ law 

plus... 

5-2 Equilibrium in an electrostatic 

field 

5-3 Equilibrium with conductors 

5-4 Stability of atoms 

5-5 The field of a line charge 

5-6 A sheet of charge; two sheets 

5-7 A sphere of charge; a spherical 

shell 

5-8 Is the field of a point charge 
exactly 1/r2? 

5-9 The fields of a conductor 

5-10 The field in a cavity of a 

conductor 

* p ^ 
' *0# * . 
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Fig. 5-1. If Po were a position of 

stable equilibrium for a positive charge, 

the electric field everywhere in the 

neighborhood would point toward Pq. 
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Call F the total force on the rod in any position—F is then a vector field. 

Following the argument used above, we conclude that at a position of stable equi¬ 

librium, the divergence of F must be a negative number. But the total force on the 

rod is the first charge times the field at its position, plus the second charge times 
the field at its position: 

F = q\Ei + q2E2■ (5.1) 

The divergence of F is given by 

V * F = qi (V • E1) + q2 (V • E2). 

If each of the two charges q1 and q2 is in free space, both V • Ex and V • E2 are 

zero, and V • F is zero—not negative, as would be required for equilibrium. You 

can see that an extension of the argument shows that no rigid combination of any 

number of charges can have a position of stable equilibrium in an electrostatic 

field in free space. 

Fig. 5-2. A charge can be in equili 

brium if there are mechanical constraints 

Now we have not shown that equilibrium is forbidden if there are pivots or 

other mechanical constraints. As an example, consider a hollow tube in which a 

charge can move back and forth freely, but not sideways. Now it is very easy to 

devise an electric field that points inward at both ends of the tube if it is allowed 

that the field may point laterally outward near the center of the tube. We simply 

place positive charges at each end of the tube, as in Fig. 5-2. There can now be an 

equilibrium point even though the divergence of E is zero. The charge, of course, 

would not be in stable equilibrium for sideways motion were it not for “non¬ 

electrical” forces from the tube walls. 

Hollow 
Tube 

5-3 Equilibrium with conductors 

There is no stable spot in the field of a system of fixed charges. What about 

a system of charged conductors? Can a system of charged conductors produce a 

field that will have a stable equilibrium point for a point charge? (We mean at a 

point other than on a conductor, of course.) You know that conductors have the 

property that charges can move freely around in them. Perhaps when the point 

charge is displaced slightly, the other charges on the conductors will move in a way 

that will give a restoring force to the point charge? The answer is still no—al¬ 

though the proof we have just given doesn’t show it. The proof for this case is 

more difficult, and we will only indicate how it goes. 

First, we note that when charges redistribute themselves on the conductors, 

they can only do so if their motion decreases their total potential energy. (Some 

energy is lost to heat as they move in the conductor.) Now we have already shown 

that if the charges producing a field are stationary, there is, near any zero point PQ 

in the field, some direction for which moving a point charge away from P0 will 

decrease the energy of the system (since the force is away from P0). Any readjust¬ 

ment of the charges on the conductors can only lower the potential energy still 

more, so (by the principle of virtual work) their motion will only increase the force 

in that particular direction away from P0i and not reverse it. 

Our conclusions do not mean that it is not possible to balance a charge by 

electrical forces. It is possible if one is willing to control the locations or the sizes 

of the supporting charges with suitable devices. You know that a rod standing on 

its point in a gravitational field is unstable, but this does not prove that it cannot 

be balanced on the end of a finger. Similarly, a charge can be held in one spot by 

electric fields if they are variable. But not with a passive—that is, a static—system. 
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5-4 Stability of atoms 

If charges cannot be held stably in position, it is surely not proper to imagine 

matter to be made up of static point charges (electrons and protons) governed only 

by the laws of electrostatics. Such a static configuration is impossible; it would 

collapse! 

It was once suggested that the positive charge of an atom could be distributed 

uniformly in a sphere, and the negative charges, the electrons, could be at rest 

inside the positive charge, as shown in Fig. 5-3. This was the first atomic model, 

proposed by Thompson. But Rutherford concluded from the experiment of Geiger 

and Marsden that the positive charges were very much concentrated, in what he 

called the nucleus. Thompson’s static model had to be abandoned. Rutherford 

and Bohr then suggested that the equilibrium might be dynamic, with the electrons 

revolving in orbits, as shown in Fig. 5-4. The electrons would be kept from falling 

in toward the nucleus by their orbital motion. We already know at least one 
difficulty with this picture. With such motion, the electrons would be accelerating 

(because of the circular motion) and would, therefore, be radiating energy. They 

would lose the kinetic energy required to stay in orbit, and would spiral in toward 

the nucleus. Again unstable! 

The stability of the atoms is now explained in terms of quantum mechanics. 

The electrostatic forces pull the electron as close to the nucleus as possible, but the 

electron is compelled to stay spread out in space over a distance given by the 

uncertainty principle. If it were confined in too small a space, it would have a 

great uncertainty in momentum. But that means that it would have a high ex¬ 

pected energy—which it would use to escape from the electrical attraction. The 

net result is an electrical equilibrium not too different from the idea of Thompson 
—only it is the negative charge that is spread out (because the mass of the electron 

is so much smaller than the mass of the proton). 

5-5 The field of a line charge 

Gauss’ law can be used to solve a number of electrostatic field problems in¬ 

volving a special symmetry—usually spherical, cylindrical, or planar symmetry. 

In the remainder of this chapter we will apply Gauss’ law to a few such problems. 

The ease with which these problems can be solved may give the misleading impres¬ 

sion that the method is very powerful, and that one should be able to go on to 

many other problems. It is unfortunately not so. One soon exhausts the list of 

problems that can be solved easily with Gauss’ law. In later chapters we will 

develop more powerful methods for investigating electrostatic fields. 
As our first example, we consider a system with cylindrical symmetry. Suppose 

that we have a very long, uniformly charged rod. By this we mean that electric 

charges are distributed uniformly along an indefinitely long straight line, with the 

charge X per unit length. We wish to know the electric field. The problem can, of 

course, be solved by integrating the contribution to the field from every part of 

the line. We are going to do it without integrating, by using Gauss’ law and some 

guesswork. First, we surmise that the electric field will be directed radially outward 

from the line. Any axial component from charges on one side would be accom¬ 

panied by an equal axial component from charges on the other side. The result 

could only be a radial field. It also seems reasonable that the field should have the 
same magnitude at all points equidistant from the line. This is obvious. (It may 

not be easy to prove, but it is true if space is symmetric—as we believe it is.) 

We can use Gauss’ law in the following way. We consider an imaginary 

surface in the shape of a cylinder coaxial with the line, as shown in Fig. 5-5. 

According to Gauss’ law, the total flux of E from this surface is equal to the charge 

inside divided by e0. Since the field is assumed to be normal to the surface, the 

normal component is the magnitude of the field. Let’s call it E. Also, let the radius 

of the cylinder be r, and its length be taken as one unit, for convenience. The flux 

through the cylindrical surface is equal to E times the area of the surface, which is 

2irr. The flux through the two end faces is zero because the electric field is tan- 

CHARCE 

Fig. 5-5. A cylindrical gaussian sur¬ 

face coaxial with a line charge. 
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Fig. 5-6. The elecfric field near a 

uniformly charged sheet can be found by 

applying Gauss’ law to an imaginary box. 

la) 

(b) 

(c) 

Fig. 5-7. The field between two 

charged sheets is a/eo- 

gential to them. The total charge inside our surface is just X, because the length of 

the line inside is one unit. Gauss’ law then gives 

E • 2rr ~ X/Co* 

E = 
X 

2?r e0r 
(5.2) 

The electric field of a line charge depends inversely on the first power of the 

distance from the line. 

5-6 A sheet of charge; two sheets 

As another example, we will calculate the field from a uniform plane sheet of 

charge. Suppose that the sheet is infinite in extent and that the charge per unit 

area is o\ We are going to take another guess. Considerations of symmetry lead 

us to believe that the field direction is everywhere normal to the plane, and if we 

have no field from any other charges in the world, the fields must be the same (in 
magnitude) on each side. This time we choose for our Gaussian surface a rec¬ 

tangular box that cuts through the sheet, as shown in Fig. 5-6. The two faces 

parallel to the sheet will have equal areas, say A. The field is normal to these two 

faces, and parallel to the other four. The total flux is E times the area of the first 
face, plus E times the area of the opposite face—with no contribution from the 

other four faces. The total charge enclosed in the box is a A. Equating the flux to 

the charge inside, we have 

EA + EA = 

from which 

<tA 

€0 

E = 
2«< 

(5.3) 

a simple but important result. 

You may remember that the same result was obtained in an earlier chapter 

by an integration over the entire surface. Gauss’ law gives us the answer, in this 

instance, much more quickly (although it is not as generally applicable as the 

earlier method). 
We emphasize that this result applies only to the field due to the charges on 

the sheet. If there are other charges in the neighborhood, the total field near the 
sheet would be the sum of (5.3) and the field of the other charges. Gauss’ law 

would then tell us only that 

Si + *2-f. (5-4) 
€o 

where Et and E2 are the fields directed outward on each side of the sheet. 

The problem of two parallel sheets with equal and opposite charge densities, 

+0- and —a, is equally simple if we assume again that the outside world is quite 

symmetric. Either by superposing two solutions for a single sheet or by construct¬ 

ing a gaussian box that includes both sheets, it is easily seen that the field is zero 

outside of the two sheets (Fig. 5-7a). By considering a box that includes only one 
surface or the other, as in (b) or (c) of the figure, it can be seen that the field 

between the sheets must be twice what it is for a single sheet. The result is 

E (between the sheets) = <7/e0, (5.5) 

£ (outside) = 0. (5.6) 

5-7 A sphere of charge; a spherical shell 

We have already (in Chapter 4) used Gauss’ law to find the field outside a 

uniformly charged spherical region. The same method can also give us the field 

at points inside the sphere. For example, the computation can be used to obtain 

a good approximation to the field inside an atomic nucleus. In spite of the fact 

that the protons in a nucleus repel each other, they are, because of the strong nu¬ 

clear forces, spread nearly uniformly throughout the body of the nucleus. 
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Suppose that we have a sphere of radius R filled uniformly with charge. Let 
p be the charge per unit volume. Again using arguments of symmetry, we assume 

the field to be radial and equal in magnitude at all points at the same distance 

from the center. To find the field at the distance r from the center, we take a 

spherical gaussian surface of radius r (r < R), as shown in Fig. 5-8. The flux out 
of this surface is 

4trr2E. 

The charge inside our gaussian surface is the volume inside times p, or 

%mr2p. 

Using Gauss’ law, it follows that the magnitude of the field is given by 

e = jt0 (r<R> (5-7> 

You can see that this formula gives the proper result for r — R. The electric field 

is proportional to the radius and is directed radially outward. 

The arguments we have just given for a uniformly charged sphere can be 

applied also to a thin spherical shell of charge. Assuming that the field is every¬ 

where radial and is spherically symmetric, one gets immediately from Gauss’ 

law that the field outside the shell is like that of a point charge, while the field 

everywhere inside the shell is zero. (A gaussian surface inside the shell will con¬ 
tain no charge.) 

5-8 Is the field of a point charge exactly 1/r2? 

If we look in a little more detail at how the field inside the shell gets to be zero, 

we can see more clearly why it is that Gauss’ law is true only because the coulomb 

force depends exactly on the square of the distance. Consider any point P inside 

a uniform spherical shell of charge. Imagine a small cone whose apex is at P and 

which extends to the surface of the sphere, where it cuts out a small surface area 

Aa1} as in Fig. 5-9. An exactly symmetric cone diverging from the opposite side 

of P would cut out the surface area Aa2. If the distances from P to these two ele¬ 

ments of area are rx and r2, the areas are in the ratio 

Aa2 _ r\ 
Aax ~ r\ ‘ 

(You can show this by geometry for any point P inside the sphere.) 
If the surface of the sphere is uniformly charged, the charge Aq on each of the 

elements of area is proportional to the area, so 

Aq2 _ Aa2 
Aqx Aax 

Coulomb’s law then says that the magnitudes of the fields produced at P by these 

two surface elements are in the ratio 

El — ^2//,2 _ i 

Ei qi/rf 

The fields cancel exactly. Since all parts of the surface can be paired off in the same 

way, the total field at P is zero. But you can see that it would not be so if the 

exponent of r in Coulomb’s law were not exactly two. 

The validity of Gauss’ law depends upon the inverse square law of Coulomb. 

If the force law were not exactly the inverse square, it would not be true that the 

field inside a uniformly charged sphere would be exactly zero. For instance, if the 

force varied more rapidly, like, say, the inverse cube of r, that portion of the sur¬ 

face which is nearer to an interior point would produce a field which is larger than 

that which is farther away, resulting in a radial inward field for a positive surface 
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Fig. 5-8. Gauss' law can be used to 

find the field inside a uniformly charged 

sphere. 

Fig. 5-9. The field is zero at any 

point P inside a spherical shell of charge. 



Fig. 5-10. The electric field is zero 

inside a closed conducting shell. 

I 

charge. These conclusions suggest an elegant way of finding out whether the in¬ 

verse square law is precisely correct. We need only determine whether or not the 

field inside of a uniformly charged spherical shell is precisely zero. 

It is lucky that such a method exists. It is usually difficult to measure a physical 

quantity to high precision—a one percent result may not be too difficult, but how 

would one go about measuring, say, Coulomb’s law to an accuracy of one part in 

a billion? It is almost certainly not possible with the best available techniques to 

measure the force between two charged objects with such an accuracy. But by 

determining only that the electric fields inside a charged sphere are smaller than 

some value we can make a highly accurate measurement of the correctness of 

Gauss’ law, and hence of the inverse square dependence of Coulomb’s law. What 

one does, in effect, is compare the force law to an ideal inverse square. Such com¬ 

parisons of things that are equal, or nearly so, are usually the bases of the most 

precise physical measurements. 

How shall we observe the field inside a charged sphere? One way is to try 

to charge an object by touching it to the inside of a spherical conductor. You 

know that if we touch a small metal ball to a charged object and then touch it to 

an electrometer the meter will become charged and the pointer will move from 

zero (Fig. 5-10a). The ball picks up charge because there are electric fields outside 

the charged sphere that cause charges to run onto (or off) the little ball. If you do 

the same experiment by touching the little ball to the inside of the charged sphere, 
you find that no charge is carried to the electrometer. With such an experiment 

you can easily show that the field inside is, at most, a few percent of the field out¬ 

side, and that Gauss’ law is at least approximately correct. 

It appears that Benjamin Franklin was the first to notice that the field inside a 

conducting shell is zero. The result seemed strange to him. When he reported his 

observation to Priestley, the latter suggested that it might be connected with an 

inverse square law, since it was known that a spherical shell of matter produced 

no gravitational field inside. But Coulomb didn’t measure the inverse square 

dependence until 18 years later, and Gauss’ law came even later still. 

Gauss’ law has been checked carefully by putting an electrometer inside a 

large sphere and observing whether any deflections occur when the sphere is 

charged to a high voltage. A null result is always obtained. Knowing the geometry 

of the apparatus and the sensitivity of the meter, it is possible to compute the 

minimum field that would be observed. From this number it is possible to place an 

upper limit on the deviation of the exponent from two. If we write that the elec¬ 

trostatic force depends on r~2+e, we can place an upper bound on €. By this method 

Maxwell determined that e was less than 1/10,000. The experiment was repeated 

and improved upon in 1936 by Plimpton and Laughton. They found that Coulomb’s 

exponent differs from two by less than one part in a billion. 

Now that brings up an interesting question: How accurate do we know this 

Coulomb law to be in various circumstances? The experiments we just described 
measure the dependence of the field on distance for distances of some tens of 

centimeters. But what about the distances inside an atom—in the hydrogen 

atom, for instance, where we believe the electron is attracted to the nucleus by 

the same inverse square law? It is true that quantum mechanics must be used for 

the mechanical part of the behavior of the electron, but the force is the usual 

electrostatic one. In the formulation of the problem, the potential energy of an 

electron must be known as a function of distance from the nucleus, and Coulomb’s 
law gives a potential which varies inversely with the first power of the distance. 

How accurately is the exponent known for such small distances? As a result of 

very careful measurements in 1947 by Lamb and Retherford on the relative 

positions of the energy levels of hydrogen, we know that the exponent is correct 

again to one part in a billion on the atomic scale—that is, at distances of the order 

of one angstrom (10-8 centimeter). 

The accuracy of the Lamb-Retherford measurement was possible again 

because of a physical “accident.” Two of the states of a hydrogen atom are 

expected to have almost indentical energies only if the potential varies exactly as 

1 /r. A measurement was made of the very slight difference in energies by finding 

5-6 



the frequency cu of the photons that are emitted or absorbed in the transition from 
one state to the other, using for the energy difference AE = hco. Computations 

showed that AE would have been noticeably different from what was observed if 

the exponent in the force law 1/r2 differed from 2 by as much as one part in a billion. 

Is the same exponent correct at still shorter distances? From measurements in 

nuclear physics it is found that there are electrostatic forces at typical nuclear 

distances—at about 10~13 centimeter—and that they still vary approximately as 

the inverse square. We shall look at some of the evidence in a later chapter. 

Coulomb’s law is, we know, still valid, at least to some extent, at distances of the 
order of 10“13 centimeter. 

How about 10~14 centimeter? This range can be investigated by bombarding 

protons with very energetic electrons and observing how they are scattered. Re¬ 

sults to date seem to indicate that the law fails at these distances. The electrical 

force seems to be about 10 times too weak at distances less than 10“14 centimeter. 

Now there are two possible explanations. One is that the Coulomb law does not 

work at such small distances; the other is that our objects, the electrons and 

protons, are not point charges. Perhaps either the electron or proton, or both, is 

some kind of a smear. Most physicists prefer to think that the charge of the proton 

is smeared. We know that protons interact strongly with mesons. This implies 

that a proton will, from time to time, exist as a neutron with a tt"1" meson around 

it. Such a configuration would act—on the average—like a little sphere of positive 

charge. We know that the field from a sphere of charge does not vary as 1/r2 all 

the way into the center. It is quite likely that the proton charge is smeared, but 

the theory of pions is still quite incomplete, so it may also be that Coulomb’s law 

fails at very small distances. The question is still open. 

One more point: The inverse square law is valid at distances like one meter 

and also at 10“lom; but is the coefficient l/47re0 the same? The answer is yes; 

at least to an accuracy of 15 parts in a million. 

We go back now to an important matter that we slighted when we spoke of 

the experimental verification of Gauss’ law. You may have wondered how the 

experiment of Maxwell or of Plimpton and Laughton could give such an accuracy 

unless the spherical conductor they used was a perfect sphere. An accuracy of 

one part in a billion is really something to achieve, and you might well ask whether 

they could make a sphere which was that precise. There are certain to be slight 

irregularities in any real sphere and if there are irregularities, will they not produce 

fields inside? We wish to show now that it is not necessary to have a perfect sphere. 

It is possible, in fact, to show that there is no field inside a closed conducting shell 

of any shape. In other words, the experiments depended on 1/r2, but had nothing 

to do with the surface being a sphere (except that with a sphere it is easier to cal¬ 

culate what the fields would be if Coulomb had been wrong), so we take up that 

subject now. To show this, it is necessary to know some of the properties of 

electrical conductors. 

5-9 The fields of a conductor 

An electrical conductor is a solid that contains many “free” electrons. The 

electrons can move around freely in the material, but cannot leave the surface. 

In a metal there are so many free electrons that any electric field will set large 

numbers of them into motion. Either the current of electrons so set up must be 

continually kept moving by external sources of energy, or the motion of the 

electrons will cease as they discharge the sources producing the initial field. In 

“electrostatic” situations, we do not consider continuous sources of current (they 

will be considered later when we study magnetostatics), so the electrons move only 

until they have arranged themselves to produce zero electric field everywhere 

inside the conductor. (This usually happens in a small fraction of a second.) If 

there were any field left, this field would urge still more electrons to move; the 

only electrostatic solution is that the field is everywhere zero inside. 

Now consider the interior of a charged conducting object. (By “interior” we 

mean in the metal itself.) Since the metal is a conductor, the interior field must 

5-7 



Fig. 5-11. The electric field just out¬ 

side the surface of a conductor is pro- 

portional to the local surface density of 

charge. 

Fig. 5-12. What is the field in an 

empty cavity of a conductor, for any 

shape? 

be zero, and so the gradient of the potential 0 is zero. That means that does not 

vary from point to point. Every conductor is an equipotential region, and its 

surface is an equipotential surface. Since in a conducting material the electric 

field is everywhere zero, the divergence of E is zero, and by Gauss’ law the charge 

density in the interior of the conductor must be zero. 

If there can be no charges in a conductor, how can it ever be charged? What 

do we mean when we say a conductor is “charged”? Where are the charges? 

The answer is that they reside at the surface of the conductor, where there are 

strong forces to keep them from leaving—they are not completely “free.” When 
we study solid-state physics, we shall find that the excess charge of any conductor 

is on the average within one or two atomic layers of the surface. For our present 

purposes, it is accurate enough to say that if any charge is put on, or in, a conductor 

it all accumulates on the surface; there is no charge in the interior of a conductor. 

We note also that the electric field just outside the surface of a conductor must 

be normal to the surface. There can be no tangential component. If there were a 

tangential component, the electrons would move along the surface; there are no 

forces preventing that. Saying it another way: we know that the electric field lines 

must always go at right angles to an equipotential surface. 

We can also, using Gauss’ law, relate the field strength just outside a conductor 

to the local density of the charge at the surface. For a gaussian surface, we take a 
small cylindrical box half inside and half outside the surface, like the one shown 

in Fig. 5-11. There is a contribution to the total flux of E only from the side of the 

box outside the conductor. The field just outside the surface of a conductor is then 

Outside a conductor: 

£=f> (5.8) 
Co 

where o* is the local surface charge density. 

Why does a sheet of charge on a conductor produce a different field than just 

a sheet of charge? In other words, why is (5.8) twice as large as (5.3)? The reason, 

of course, is that we have not said for the conductor that there are no “other” 

charges around. There must, in fact, be some to make E — 0 in the conductor. 

The charges in the immediate neighborhood of appoint P on the surface do, in fact, 

give a field £iocai = ciocai/2eo both inside and outside the surface. But all the 

rest of the charges on the conductor “conspire” to produce an additional field at 
the point P equal in magnitude to Eioeai. The total field inside goes to zero and 
the field outside to 2F]ocai = a/e0. 

5-10 The field in a cavity of a conductor 

We return now to the problem of the hollow container—a conductor with a 

cavity. There is no field in the metal, but what about in the cavity ? We shall show 

that if the cavity is empty then there are no fields in it, no matter what the shape of 

the conductor or the cavity—say for the one in Fig. 5-12. Consider a gaussian 

surface, like S in Fig. 5-12, that encloses the cavity but stays everywhere in the 

conducting material. Everywhere on S the field is zero, so there is no flux through 

S and the total charge inside S is zero. For a spherical shell, one could then argue 

from symmetry that there could be no charge inside. But, in general, we can only 

say that there are equal amounts of positive and negative charge on the inner 

surface of the conductor. There could be a positive surface charge on one part 

and a negative one somewhere else, as indicated in Fig. 5-12. Such a thing cannot 
be ruled out by Gauss’ law. 

What really happens, of course, is that any equal and opposite charges on 

the inner surface would slide around to meet each other, cancelling out completely. 

We can show that they must cancel completely by using the law that the circulation 
of E is always zero (electrostatics). Suppose there were charges on some parts of 

the inner surface. We know that there would have to be an equal number of op¬ 

posite charges somewhere else. Now any lines of E would have to start on the 
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positive charges and end on the negative charges (since we are considering only the 

case that there are no free charges in the cavity). Now imagine a loop r that crosses 

the cavity along a line of force from some positive charge to some negative charge, 
and returns to its starting point via the conductor (as in Fig, 5-12). The integral 

along such a line of force from the positive to the negative charges would not be 

zero. The integral through the metal is zero, since E — 0. So we would have 

jE-ds* 0??? 

But the line integral of E around any closed loop in an electrostatic field is always 

zero. So there can be no fields inside the empty cavity, nor any charges on the 
inside surface. 

You should notice carefully one important qualification we have made. 

We have always said “inside an empty” cavity. If some charges are placed at some 

fixed locations in the cavity—as on an insulator or on a small conductor insulated 

from the main one—then there can be fields in the cavity. But then that is not an 

“empty” cavity. 

We have shown that if a cavity is completely enclosed by a conductor, no 

static distribution of charges outside can ever produce any fields inside. This 

explains the principle of “shielding” electrical equipment by placing it in a metal 

can. The san^^guments can be used to show that no static distribution of charges 

inside a closea conductor can produce any fields outside. Shielding works both 

ways! In electrostatics—but not in varying fields—the fields on the two sides of a 

closed conducting shell are completely independent. 

Now you see why it was possible to check Coulomb’s law to such a great 

precision. The shape of the hollow shell used doesn’t matter. It doesn’t need to 

be spherical; it could be square! If Gauss’ law is exact, the field inside is always 

zero. Now you also understand why it is safe to sit inside the high-voltage terminal 

of a million-volt van de Graaff generator, without worrying about getting a 

shock—because of Gauss’ law. 
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6 

The Electric Field in Various Circumstances 

6-1 Equations of the electrostatic potential 

This chapter will describe the behavior of the electric field in a number of 

different circumstances. It will provide some experience with the way the electric 

field behaves, and will describe some of the mathematical methods which are 

used to find this field. 

We begin by pointing out that the whole mathematical problem is the solution 

of two equations, the Maxwell equations for electrostatics: 

V • is = — > (6.1) 
^0 

v x E = 0. (6.2) 

In fact, the two can be combined into a single equation. From the second equation, 

we know at once that we can describe the field as the gradient of a scalar (see 

Section 3-7): 
E = - V0. (6.3) 

We may, if we wish, completely describe any particular electric field in terms 

of its potential <f>. We obtain the differential equation that <f> must obey by sub¬ 

stituting Eq. (6.3) into (6.1), to get 

V • V<$> = - ~ • (6.4) 
eo 

The divergence of the gradient of <j> is the same as V2 operating on <j>: 

*2</> , a20 , a2* v V0-V0-^ + ^ + -^, 

so we write Eq. (6.4) as 
V2<j> = L. 

Co 

(6.5) 

(6.6) 

The operator V2 is called the Laplacian, and Eq (6 6) is called the Poisson equa¬ 

tion. The entire subject of electrostatics, from a mathematical point of view, is 
merely a study of the solutions of the single equation (6.6). Once </> is obtained by 

solving Eq. (6.6) we can find E immediately from Eq. (6.3). 

We take up first the special class of problems in which p is given as a function 

of x, y, z. In that case the problem is almost trivial, for we already know the 

solution of Eq. (6.6) for the general case. We have shown that if p is known at 

every point, the potential at point (1) is 

m = 
f P(2) dV2 

J 47T€0/*i2 ’ 
(6.7) 

where p(2) is the charge density, dV2 is the volume element at point (2), and rX2 
is the distance between points (1) and (2). The solution of the differential equation 

(6.6) is reduced to an integration over space. The solution (6.7) should be especially 

noted, because there are many situations in physics that lead to equations like 

V2 (something) = (something else), 
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and Eq. (6.7) is a prototype of the solution for any of these problems. 

The solution of electrostatic field problems is thus completely straightforward 

when the positions of all the charges are known. Let’s see how it works in a few 

examples. 

Equations of the electrostatic 

potential 

The electric dipole 

Remarks on vector equations 

The dipole potential as a 
gradient 

The dipole approximation for 

an arbitrary distribution 

The fields of charged 

conductors 

The method of images 

A point charge near a 

conducting plane 

A point charge near a 

conducting sphere 

Condensers; parallel plates 

High-voltage breakdown 

The field emission microscope 

Chapter 23, Vol. I, Resonance 
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z 

X 

Fig. 6-1. A dipole: two charges 

and —q the distance d apart. 

Fig. 6-2. The water molecule H20. 

The hydrogen atoms have slightly less 

rhan their share of the electron cloud; the 

oxygen, slightly more. 

6-2 The electric dipole 

First, take two point charges, +q and —q, separated by the distance d. Let 

the z-axis go through the charges, and pick the origin halfway between, as shown 

in Fig. 6-1. Then, using (4.24), the potential from the two charges is given by 

${x, y, z) 

= TOTo [vtz - (d/2)]2 + X* + y2 + V[z + (d/2W + *2 + J' (6'8) 

We are not going to write out the formula for the electric field, but we can always 

calculate it once we have the potential. So we have solved the problem of two 

charges. 

There is an important special case in which the two charges are very close 

together—which is to say that we are interested in the fields only at distances from 

the charges large in comparison with their separation. We call such a close pair 

of charges a dipole. Dipoles are very common. 

A “dipole” antenna can often be approximated by two charges separated by a 

small distance—if we don’t ask about the field too close to the antenna. (We are 

usually interested in antennas with moving charges; then the equations of statics 

do not really apply, but for some purposes they are an adequate approximation.) 

More important perhaps, are atomic dipoles. If there is an electric field in 

any material, the electrons and protons feel opposite forces and are displaced 

relative to each other. In a conductor, you remember, some of the electrons 

move to the surfaces, so that the field inside becomes zero. In an insulator the 

electrons cannot move very far; they are pulled back by the attraction of the nu¬ 

cleus. They do, however, shift a little bit. So although an atom, or molecule, 

remains neutral in an external electric field, there is a very tiny separation of its 

positive and negative charges and it becomes a microscopic dipole. If we are 

interested in the fields of these atomic dipoles in the neighborhood of ordinary- 

sized objects, we are normally dealing with distances large compared with the 

separations of the pairs of charges. 

In some molecules the charges are somewhat separated even in the absence 

of external fields, because of the form of the molecule. In a water molecule, for 

example, there is a net negative charge on the oxygen atom and a net positive 

charge on each of the two hydrogen atoms, which are not placed symmetrically 

but as in Fig. 6-2. Although the charge of the whole molecule is zero, there is a 

charge distribution with a little more negative charge on one side and a little 

more positive charge on the other. This arrangement is certainly not as simple 

as two point charges, but when seen from far away the system acts like a dipole. 

As we shall see a little later, the field at large distances is not sensitive to the 

fine details. 

Let’s look, then, at the field of two opposite charges with a small separation 

d. If d becomes zero, the two charges are on top of each other, the two potentials 

cancel, and there is no field. But if they are not exactly on top of each other, we 

can get a good approximation to the potential by expanding the terms of (6.8) in 

a power series in the small quantity d (using the binomial expansion). Keeping 

terms only to first order in d, we can write 

It is convenient to write 

— z2 — zd. 

x2 + y2 + z2 = r2. 

Then 

(2 - 2) + *2 + y2 » r2 - zd = r2 (l - . 

and 

-1-„-1- 
V[z - (d/2)]2 + x2 + y2 Vr2[ 1 - (zrf/r2)] r \ r2/ 
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Using the binomial expansion again for [1 — (zd/r2)] 1/2—and throwing away 

terms with higher powers than the square of d—we get 

Similarly, 

V[Z + M/2)]2 + *2 + yS 

The difference of these two terms gives for the potential 

<t>(x, y, z) 
1 

47T60 
(6.9) 

The potential, and hence the field, which is its derivative, is proportional to qd, 

the product of the charge and the separation. This product is defined as the 

dipole moment of the two charges, for which we will use the symbol p (do not 

confuse with momentum!): 

p = qd. (6.10) 

Equation (6.9) can also be written as 

4>(x, y>z) 
1 p cos 9 

47re0 r2 
(6.11) 

since z/r = cos $, where 6 is the angle between the axis of the dipole and the 

radius vector to the point (x, y, z)—see Fig. 6-1. The potential of a dipole decreases 

as 1/r2 for a given direction from the axis (whereas for a point charge it goes as 

1 /r). The electric field E of the dipole will then decrease as l//*3. 

We can put our formula into a vector form if we define p as a vector whose 

magnitude is p and whose direction is along the axis of the dipole, pointing from 

q_ toward q+. Then 

cos 6 = p ■ er> (6.12) 

where er is the unit radial vector (Fig. 6-3). We can also represent the point 

(x, y, z) by r. Then 

Dipole potential: \ p er _ 1 pr 

^^ 47T60 r2 47re0 /*3 
(6.13) 

Fig. 6-3. Vector notation for a 

dipole. 

This formula is valid for a dipole with any orientation and position if r represents 

the vector from the dipole to the point of interest. 

If we want the electric field of the dipole we can get it by taking the gradient 

of 0. For example, the z-component of the field is — 64>/dz. For a dipole oriented 

along the z-axis we can use (6.9): 

_ d<f> _ _ p d/z\__ p / 1 _ 3z2\ 

dz 47re0 dz y*3/ 47re0 y*3 r5 / ’ 
or 0 

Ez = jP- 3^0S-f ~ 1 • (6.14) 
47T€o r3 

The x- and ^-components are 

_ 3zx _ jp_ 3zy 

x 47re0 ^*5 * v 47re0 a*5 

These two can be combined to give one component directed perpendicular to the 

z-axis, which we will call the transverse component E±: 

or 

E± = E2 + £2 = 
x y 

_ P 3 z 

47T€0 r5 
Vx2 + y2 

Ex 
p 3 cos 0 sin B 

4tt€0 r3 
(6.15) 
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The transverse component Ex is in the x-y plane and points directly away from 

the axis of the dipole. The total field, of course, is 

E = VE2 + £2 . 
2 ± 

The dipole field varies inversely as the cube of the distance from the dipole. 

On the axis, at Q = 0, it is twice as strong as at 6 = 90°. At both of these special 

angles the electric field has only a z-component, but of opposite sign at the two 

places (Fig. 6-4). 

Fig. 6-4. 

dipole. 

The electric field of a 

6-3 Remarks on vector equations 

This is a good place to make a general remark about vector analysis. The 

fundamental proofs can be expressed by elegant equations in a general form, but 

in making various calculations and analyses it is always a good idea to choose 

the axes m some convenient way. Notice that when we were finding the potential 

of a dipole we chose the z-axis along the direction of the dipole, rather than at some 

arbitrary angle. This made the work much easier. But then we wrote the equations 

in vector form so that they would no longer depend on any particular coordinate 

system. After that, we are allowed to choose any coordinate system we wish, 

knowing that the relation is, in general, true. It clearly doesn’t make any sense to 

bother with an arbitrary coordinate system at some complicated angle when you 

can choose a neat system for the particular problem—provided that the result can 

finally be expressed as a vector equation. So by all means take advantage of the 

fact that vector equations are independent of any coordinate system. 

On the other hand, if you are trying to calculate the divergence of a vector, 

instead of just looking at V ■ E and wondering what it is, don’t forget that it can 

always be spread out as 

dEx dEy dEz 

dx “h dy dz * 

If you can then work out the x-, y-, and z-components of the electric field and 

differentiate them, you will have the divergence. There often seems to be a feeling 

that there is something inelegant—some kind of defeat involved—in writing out 

the components; that somehow there ought always to be a way to do everything 

with the vector operators. There is often no advantage to it. The first time we 

encounter a particular kind of problem, it usually helps to write out the components 

to be sure we understand what is going on. There is nothing inelegant about put¬ 

ting numbers into equations, and nothing inelegant about substituting the deriva¬ 

tives for the fancy symbols. In fact, there is often a certain cleverness in doing 

just that. Of course when you publish a paper in a professional journal it will look 

better—and be more easily understood—if you can write everything in vector form. 

Besides, it saves print. 

6-4 The dipole potential as a gradient 

We would like to point out a rather amusing thing about the dipole formula, 

Eq. (6.13). The potential can also be written as 

If you calculate the gradient of 1 /r, you get 

r(T) = -L = _fr, 
\rj r3 r2 

and Eq. (6.16) is the same as Eq. (6.13). 

How did we think of that? We just remembered that eT/r2 appeared in the 

formula for the field of a point charge, and that the field was the gradient of a 

potential which has a 1 /r dependence. 
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There is a physical reason for being able to write the dipole potential in the 

form of Eq. (6.16), Suppose we have a point charge q at the origin. The potential 

at the point P at (x, y, z) is 

(Let’s leave off the \/4tt€§ while we make these arguments; we can stick it in at 

the end.) Now if we move the charge -\-q up a distance Az, the potential at P will 

change a little, by, say, A0+. How much is A<£+? Well, it is just the amount that 

the potential would change if we were to leave the charge at the origin and move 

P downward by the same distance Az (Fig. 6-5). That is. 

A<f>+ = - 
o 

dz 
Az, 

where by Az we mean the same as d/2. So, using <f> = q/r, we have that the po¬ 

tential from the positive charge is 

(6.17) 

Applying the same reasoning for the potential from the negative charge, 

we can write 

4>- = 
zl + ± (zl) l 
r ^ dz \ r ) 2 

(6.18) 

The total potential is the sum of (6.17) and (6.18): 

<f> — 0_|_ + <f>— — (6.19) 

Fig. 6-5. The potential at P from a 

point charge at Az above the origin is the 

same as the potential at P'(Az below P) 
from the same charge at the origin. 

For other orientation of the dipole, we could represent the displacement of 

the positive charge by the vector Ar+. We should then write Eq. (6.17) as 

A<£+ = —V<f> 0 • Ar+ , 

where Ar is then to be replaced by d/2. Completing the derivation as before, 

Eq. (6.19) would then become 

This is the same as Eq. (6.16), if we replace qd = p, and put back the 1/47r€0. 

Looking at it another way, we see that the dipole potential, Eq. (6.13), can be 

interpreted as 

* = ~P * (6.20) 

where <t>0 = l/47re0r is the potential of a unit point charge. 

Although we can always find the potential of a known charge distribution by 

an integration, it is sometimes possible to save time by getting the answer with a 

clever trick. For example, one can often make use of the superposition principle. 

If we are given a charge distribution that can be made up of the sum of two dis¬ 

tributions for which the potentials are already known, it is easy to find the de¬ 

sired potential by just adding the two known ones. One example of this is our 

derivation of (6.20), another is the following. 

Suppose we have a spherical surface with a distribution of surface charge 

that varies as the cosine of the polar angle. The integration for this distribution is 

fairly messy. But, surprisingly, such a distribution can be analyzed by super¬ 

position. For imagine a sphere with a uniform volume density of positive charge, 

and another sphere with an equal uniform volume density of negative charge, 
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Fig. 6-6. Two uniformly charged 

spheres, superposed with a slight displace¬ 

ment, are equivalent to a nonuniform 

distribution of surface charge. 

originally superposed to make a neutral—that is, uncharged—sphere. If the 

positive sphere is then displaced slightly with respect to the negative sphere, the 

body of the uncharged sphere would remain neutral, but a little positive charge will 

appear on one side, and some negative charge will appear on the opposite side, 

as illustrated in Fig. 6-6. If the relative displacement of the two spheres is small, 

the net charge is equivalent to a surface charge (on a spherical surface), and the 

surface charge density will be proportional to the cosine of the polar angle. 

Now if we want the potential from this distribution, we do not need to do an 

integral. We know that the potential from each of the spheres of charge is—for 

points outside the sphere—the same as from a point charge. The two displaced 

spheres are like two point charges; the potential is just that of a dipole. 

In this way you can show that a charge distribution on a sphere of radius a 

with a surface charge density 

a = <r0 cos 9 

produces a field outside the sphere which is just that of a dipole whose moment is 

47ra0a3 
P = —— ■ 

It can also be shown that inside the sphere the field is constant, with the value 

E Vo 

3e0 

If 9 is the angle from the positive z-axis, the electric field inside the sphere is in the 

negative z-direction. The example we have just considered is not as artificial as 

it may appear; we will encounter it again in the theory of dielectrics. 

6-5 The dipole approximation for an arbitrary distribution 

The dipole field appears in another circumstance both interesting and im¬ 

portant. Suppose that we have an object that has a complicated distribution of 

charge—like the water molecule (Fig. 6-2)—and we are interested only in the 

fields far away. We will show thar it is possible to find a relatively simple expression 

for the fields which is appropriate for distances large compared with the size of 

the object. 

We can think of our object as an assembly of point charges qt in a certain limited 

region, as shown in Fig. 6-7. (We can, later, replace qt by p dV if we wish.) Let 

each charge qt be located at the displacement d% from an origin chosen somewhere 

Fig. 6-7. Computation of the po¬ 

tential at a point P at a large distance 

from a set of charges. 
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in the middle of the group of charges. What is the potential at the point P, located 

at R, where R is much larger than the maximum dtl The potential from the 

whole collection is given by 

0 = 
1 y' <h s 

4t€q ^ rt 9 
(6.21) 

where r% is the distance from P to the charge qx (the length of the vector R — dt). 

Now if the distance from the charges to P, the point of observation, is enormous, 

each of the rx s can be approximated by R. Each term becomes q%/R, and we 

can take l/R out as a factor in front of the summation. This gives us the simple 

result 

0 = 
1 1 

4tt€o R 
E «. Q 

Aire$R 9 
(6.22) 

where Q is just the total charge of the whole object. Thus we find that for points 

far enough from any lump of charge, the lump looks like a point charge. The 

result is not too surprising. 

But what if there are equal numbers of positive and negative charges? Then 

the total charge Q of the object is zero. This is not an unusual case; in fact, as we 

know, objects are usually neutral. The water molecule is neutral, but the charges 

are not all at one point, so if we are close enough we should be able to see some 

effects of the separate charges. We need a better approximation than (6.22) for 

the potential from an arbitrary distribution of charge in a neutral object. Equation 

(6.21) is still precise, but we can no longer just set rt — R. We need a more accu¬ 

rate expression for r%. If the point P is at a large distance, r% will differ from R to 

an excellent approximation by the projection of d on Ry as can be seen from 

Fig. 6-7. (You should imagine that P is really farther away than is shown in the 

figure.) In other words, if er is the unit vector in the direction of /?, then our next 

approximation to r% is 

r% « R — dx • er. (6.23) 

What we really want is \/rt, which, since dt <K R, can be written to our approxima¬ 

tion as 
dr 

(6.24) 

Substituting this in (6.21), we get that the potential is 

1 

47T€0 

d% ' 6r 

Ql 
(6.25) 

The three dots indicate the terms of higher order in d/R that we have neglected. 

These, as well as the ones we have already obtained, are successive terms in a Taylor 

expansion of I/r% about \/R in powers of dt/R. 

The first term in (6.25) is what we got before; it drops out if the object is 

neutral. The second term depends on \/R2, just as for a dipole. In fact, if we define 

P = E 0* 4 (6-26) 

as a property of the charge distribution, the second term of the potential (6.25) is 

1 p • er 

47re0 R2 
(6.27) 

precisely a dipole potential. The quantity p is called the dipole moment of the 

distribution. It is a generalization of our earlier definition, and reduces to it for 

the special case of two point charges. 

Our result is that, far enough away from any mess of charges that is as a 

whole neutral, the potential is a dipole potential. It decreases as \/R2 and varies 

as cos 6—and its strength depends on the dipole moment of the distribution of 

charge. It is for these reasons that dipole fields are important, since the simple 

case of a pair of point charges is quite rare. 
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Fig. 6-8. The field lines and equipo- 
tentials for two point charges. 

Fig. 6-9. The field outside a con¬ 
ductor shaped like the equipotential A 
of Fig. 6-8. 

The water molecule, for example, has a rather strong dipole moment. The 
electric fields that result from this moment are responsible for some of the im¬ 
portant properties of water. For many molecules, for example C02, the dipole 
moment vanishes because of the symmetry of the molecule. For them we should 
expand still more accurately, obtaining another term in the potential which de¬ 
creases as 1 /i?3, and which is called a quadrupole potential. We will discuss such 
cases later. 

6-6 The fields of charged conductors 

We have now finished with the examples we wish to cover of situations in 
which the charge distributions is known from the start. It has been a problem 
without serious complications, involving at most some integrations. We turn 
now to an entirely new kind of problem, the determination of the fields near 
charged conductors. 

Suppose that we have a situation in which a total charge Q is placed on an 
arbitrary conductor. Now we will not be able to say exactly where the charges 
are. They will spread out in some way on the surface. How can we know how 
the charges have distributed themselves on the surface? They must distribute 
themselves so that the potential of the surface is constant. If the surface were not 
an equipotential, there would be an electric field inside the conductor, and the 
charges would keep moving until it became zero. The general problem of this 
kind can be solved in the following way. We guess at a distribution of charge and 
calculate the potential. If the potential turns out to be constant everywhere on 
the surface, the problem is finished. If the surface is not an equipotential, we 
have guessed the wrong distribution of charges, and should guess again—hopefully 
with an improved guess! This can go on forever, unless we are judicious about 
the successive guesses. 

The question of how to guess at the distribution is mathematically difficult. 
Nature, of course, has time to do it; the charges push and pull until they all balance 
themselves. When we try to solve the problem, however, it takes us so long to 
make each trial that that method is very tedious With an arbitrary group of 
conductors and charges the problem can be very complicated, and in general it 
cannot be solved without rather elaborate numerical methods. Such numerical 
computations, these days, are set up on a computing machine that will do the 
work for us, once we have told it how to proceed. 

On the other hand, there are a lot of little practical cases where it would 
be nice to be able to find the answer by some more direct method—without having 
to write a program for a computer. Fortunately, there are a number of cases where 
the answer can be obtained by squeezing it out of Nature by some trick or other. 
The first trick we will describe involves making use of solutions we have already 
obtained for situations in which charges have specified locations. 

6-7 The method of images 

We have solved, for example, the field of two point charges. Figure 6-8 
shows some of the field lines and equipotential surfaces we obtained by the com¬ 
putations in Chapter 5. Now consider the equipotential surface marked A. Sup¬ 
pose we were to shape a thin sheet of metal so that it just fits this surface. If we 
place it right at the surface and adjust its potential to the proper value, no one 
would ever know it was there, because nothing would be changed. 

But notice! We have really solved a new problem. We have a situation in 
which the surface of a curved conductor with a given potential is placed near a 
point charge. If the metal sheet we placed at the equipotential surface eventually 
closes on itself (or, in practice, if it goes far enough) we have the kind of situation 
considered in Section 5-10, in which our space is divided into two regions, one 
inside and one outside a closed conducting shell. We found there that the fields in 
the two regions are quite independent of each other. So we would have the same 
fields outside our curved conductor no matter what is inside. We can even fill up 
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the whole inside with conducting material. We have found, therefore, the fields 

for the arrangement of Fig. 6-9. In the space outside the conductor the field is 

just like that of two point charges, as in Fig. 6-8. Inside the conductor, it is zero 

Also—as it must be—the electric field just outside the conductor is normal to 

the surface. 

Thus we can compute the fields m Fig. 6-9 by computing the field due to q 

and to an imaginary point charge — q at a suitable point. The point charge we 

“imagine” existing behind the conducting surface is called an image charge. 

In books you can find long lists of solutions for hyperbolic-shaped conductors 

and other complicated looking things, and you wonder how anyone ever solved 

these terrible shapes. They were solved backwards! Someone solved a simple 

problem with given charges. He then saw that some equipotential surface showed 

up in a new shape, and he wrote a paper in which he pointed out that the field 

outside that particular shape can be described in a certain way. 

6-8 A point charge near a conducting plane 

As the simplest application of the use of this method, let's make use of the 

plane equipotential surface B of Fig. 6-8. With it, we can solve the problem of a 

charge in front of a conducting sheet. We just cross out the left-hand half of the 

picture. The field lines for our solution are shown in Fig. 6-10. Notice that the 

plane, since it was halfway between the two charges, has zero potential. We have 

solved the problem of a positive charge next to a grounded conducting sheet. 

We have now solved for the total field, but what about the real charges that 

are responsible for it? There are, in addition to our positive point charge, some 

induced negative charges on the conducting sheet that have been attracted by the 

positive charge (from large distances away). Now suppose that for some technical 

reason—or out of curiosity—you would like to know how the negative charges 

are distributed on the surface. You can find the surface charge density by using 

the result we worked out in Section 5-6 with Gauss’ theorem. The normal com- 

Fig. 6-10. The field of a charge near a plane conducting surface, found by the 

method of images. 
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ponent of the electric field just outside a conductor is equal to the density of surface 

charge a divided by cft. We can obtain the density of charge at any point on the 

surface by working backwards from the normal component of the electric field at 

the surface. We know that, because we know the field everywhere. 

Consider a point on the surface at the distance p from the point directly be¬ 

neath the positive charge (Fig. 6-10). The electric field at this point is normal to 

the surface and is directed into it. The component normal to the surface of the 

field from the positive point charge is 

1 aq 

47T€0 (a2 + p2>j/2 
(6.28) 

To this we must add the electric field produced by the negative image charge. That 

just doubles the normal component (and cancels all others), so the charge density 

a at any point on the surface is 

«7(p) = e,E(p) = - • • r (6 29) 

An interesting check on our work is to integrate <r over the whole surface. We 

find that the total induced charge is —q, as it should be. 

One further question: Is there a force on the point charge } Yes, because there 

is an attraction from the induced negative surface charge on the plate. Now that 

we know what the surface charges are (from Eq. (6.29)), we could compute the 

force on our positive point charge by an integral. But we also know that the force 

acting on the positive charge is exactly the same as it would be with the negative 

image charge instead of the plate, because the fields in the neighborhood are the 

same in both cases. The point charge feels a force toward the plate whose magni¬ 

tude is 

F 
1 <? 

2 

4x€„ (2a) 
(6 30) 

We have found the force much more easily than by integrating over all the nega¬ 

tive charges. 

6-9 A point charge near a conducting sphere 

Fig. 6-11. The point charge q in¬ 

duces charges on a grounded conducting 

sphere whose fields are those of an 

image charge q/ placed at the point 

shown. 

What other surfaces besides a plane have a simple solution9 The next most 

simple shape is a sphere. Let’s find the fields around a metal sphere which has a 

point charge q near it, as shown in Fig. 6-11. Now we must look for a simple 

physical situation which gives a sphere for an equipotential surface. If we look 

around at problems people have already solved, we find that someone has noticed 

that the field of two unequal point charges has an equipotential that is a sphere 

Aha’ If we choose the location of an image charge—and pick the right amount 

of charge—maybe we can make the equipotential surface fit our sphere. Indeed, 

it can be done with the following prescription. 

Assume that you want the equipotential surface to be a sphere of radius a 

with its center at the distance b from the charge q. Put an image charge of strength 

q' —q(ajfj) on the line from the charge to the center of the sphere, and at a 

distance a2/b from the center. The sphere will be at zero potential. 

The mathematical reason stems from the fact that a sphere is the locus of all 

points for which the distances from two points are in a constant ratio Referring 

to Fig. 6-11, the potential at P from q and q' is proportional to 

q + q 
r2 

The potential will thus be zero at all points for which 

q[ 
ro q 
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If we place q' at the distance a2/b from the center, the ratio r2/r i has the constant 

value a/b. Then if 
g' a 

q~ ~V 
(6.31) 

the sphere is an equipotential. Its potential is, in fact, zero. 

What happens if we are interested in a sphere that is not at zero potential? 

That would be so only if its total charge happens accidentally to be qf Of course if it 

is grounded, the charges induced on it would have to be just that. But what if it 

is insulated, and we have put no charge on it9 Or if we know that the total charge 

Q has been put on it? Or just that it has a given potential not equal to zero? All 

these questions are easily answered. We can always add a point charge g" at the 

center of the sphere The sphere still remains an equipotential by superposition; 

only the magnitude of the potential will be changed. 

If we have, for example, a conducting sphere which is initially uncharged 

and insulated from everything else, and we bring near to it the positive point 

charge g, the total charge of the sphere will remain zero. The solution is found 

by using an image charge qf as before, but, in addition, adding a charge q" at the 

center of ihe sphere, choosing 

<T = -<?' = l </■ (6.32) 

The fields everywhere outside the sphere are given by the superposition of the 

fields of g, g\ and g". The problem is solved. 

We can see now that there will be a force of attraction between the sphere 

and the point charge q. It is not zero even though there is no charge on the neutral 

sphere. Where does the attraction come from? When you bring a positive charge 

up to a conducting sphere, the positive charge attracts negative charges to the 

side closer to itself and leaves positive charges on the surface of the far side. The 

attraction by the negative charges exceeds the repulsion from the positive charges, 

there is a net attraction. We can find out how large the attraction is by computing 

the force on q in the field produced by q' and q". The total force is the sum of the 

attractive force between q and a charge q' = ~(a/b)q, at the distance b (a2/h), 
and the repulsive force between q and a charge q,f = -\~(a/b)q at the distance b. 

Those who were entertained in childhood by the baking powder box which 

has on its label a picture of a baking powder box which has on its label a picture 

of a baking powder box which has . may be interested in the following problem. 

Two equal spheres, one with a total charge of + Q and the other with a total charge 

of — Q, are placed at some distance from each other. What is the force between 

them? The problem can be solved with an infinite number of images. One first 

approximates each sphere by a charge at its center. These charges will have image 

charges in the other sphere. The image charges will have images, etc , etc , etc 

The solution is like the picture on the box of baking powder—and it converges 

pretty fast. 

6-10 Condensers; parallel plates 

We take up now another kind of a problem involving conductors. Consider 

two large metal plates which are parallel to each other and separated by a distance 

small compared with their width. Let's suppose that equal and opposite charges 

have been put on the plates. The charges on each plate will be attracted by the 

charges on the other plate, and the charges will spread out uniformly on the inner 

surfaces of the plates. The plates will have surface charge densities +C and —c, 

respectively, as in Fig. 6-12. From Chapter 5 we know that the field between the 

plates is cr/e0, and that the field outside the plates is zero. The plates will have 

different potentials <j>i and tf>2- For convenience we will call the difference V\ it 

is often called the ‘Voltage"; 

<t>\ — 4>2 ~ F. 

Area = A 

7//7//Yy/ / ///./ // /7 /~~7~A 
-t- 

* E LL Tfy 
. / Z. / ZS / / / \ 

I 
Fig. 6-12 A parallel-plate con¬ 

denser. 

(You will find that sometimes people use V for the potential, but we have chosen 

to use 0.) 
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The potential difference V is the work per unit charge required to carry a 

small charge from one plate to the other, so that 

v = Ed = f ci = -- Q, (6.33) 
Co €()A 

where =±= 0 1S the total charge on each plate, A is the area of the plates, and d is 

the separation. 

We find that the voltage is proportional to the charge. Such a proportionality 

between V and Q is found for any two conductors in space if there is a plus charge 

on one and an equal minus charge on the other. The potential difference between 

them—that is, the voltage—will be proportional to the charge. (We are assuming 

that there are no other charges around.) 

Why this proportionality? Just the superposition principle. Suppose we 

know the solution for one set of charges, and then we superimpose two such 

solutions. The charges are doubled, the fields are doubled, and the work done in 

carrying a unit charge from one point to the other is also doubled. Therefore the 

potential difference between any two points is proportional to the charges. In 

particular, the potential difference between the two conductors is proportional 

to the charges on them. Someone originally wrote the equation of proportionality 

the other way. That is, they wrote 

Q = CV, 

where C is a constant This coefficient of proportionality is called the capacity, 

and such a system of two conductors is called a condenser* For our parallel-plate 

condenser 

C = (parallel plates). (6.34) 

Fig. 6-13. The electric field near the 

edge of two parallel plates. 

This formula is not exact, because the field is not really uniform everywhere 

between the plates, as we assumed. The field does not just suddenly quit at the 

edges, but really is more as shown in Fig 6-13 The total charge is not a A, as we 

have assumed—there is a little correction for the effects at the edges. To find out 

what the correction is, we will have to calculate the field rhore exactly and find 

out just what does happen at the edges. That is a complicated mathematical 

problem which can, however, be solved by techniques which we will not describe 

now. The result of such calculations is that the charge density rises somewhat 

near the edges of the plates This means that the capacity of the plates is a little 

higher than we computed. [A very good approximation for the capacity is ob¬ 

tained if we use Eq. (6.34) but take for A the area one would get if the plates were 

extended artificially by a distance 3/8 of the separation between the plates.] 

We have talked about the capacity for two conductors only. Sometimes 

people talk about the capacity of a single object. They say, for instance, that the 

capacity of a sphere of radius a is 4ire0a. What they imagine is that the other 

terminal is another sphere of infinite radius—that when there is a charge + Q on 

the sphere, the opposite charge, — Q, is on an infinite sphere. One can also speak 

of capacities when there are three or more conductors, a discussion we shall, 

however, defer. 

Suppose that we wish to have a condenser with a very large capacity We 

could get a large capacity by taking a very big area and a very small separation 

We could put waxed paper between sheets of aluminum foil and roll it up. (If 

we seal it in plastic, we have a typical radio-type condenser.) What good is it9 

It is good for storing charge. If we try to store charge on a ball, for example, its 

potential rises rapidly as we charge it up. It may even get so high that the charge 

begins to escape into the air by way of sparks But if we put the same charge on a 

condenser whose capacity is very large, the voltage developed across the con¬ 

denser will be small. 

* Some people think the words “capacitance” and “capacitor” should be used, instead 
of “capacity” and “condensor ” We have decided to use the older terminology, because 
it is still more commonly heard in the physics laboratory—even if not in textbooks! 
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In many applications in electronic circuits, it is useful to have something 

which can absorb or deliver large quantities of charge without changing its po¬ 

tential much. A condenser (or “capacitor”) does just that. There are also many 

applications in electronic instruments and in computers where a condenser is 

used to get a specified change in voltage in response to a particular change in 

charge. We have seen a similar application in Chapter 23, Vol. I, where we de¬ 

scribed the properties of resonant circuits. 

From the definition of C, we see that its unit is one coul/volt. This unit is 

also called a farad. Looking at Eq. (6.34), we see that one can express the units 

of e0 as farad/meter, which is the unit most commonly used. Typical sizes of 

condensers run from one micro-microfarad (= 1 picofarad) to millifarads. Small 

condensers of a few picofarads are used in high-frequency tuned circuits, and 

capacities up to hundreds or thousands of microfarads are found in power-supply 

filters. A pair of plates one square centimeter m area with a one millimeter separa¬ 

tion have a capacity of roughly one micro-microfarad. 

6-11 High-voltage breakdown 

We would like now to discuss qualitatively some of the characteristics of the 

fields around conductors. If we charge a conductor that is not a sphere, but one 

that has on it a point or a very sharp end, as, for example, the object sketched 

in Fig. 6-14, the field around the point is much higher than the field in the other 

regions. The reason is, qualitatively, that charges try to spread out as much as 

possible on the surface of a conductor, and the tip of a sharp point is as far away 

as it is possible to be from most of the surface. Some of the charges on the plate 

get pushed all the way to the tip. A relatively small amount of charge on the tip 

can still provide a large surface density; a high charge density means a high field 

just outside. 

One way to see that the field is highest at those places on a conductor where 

the radius of curvature is smallest is to consider the combination of a big sphere 

and a little sphere connected by a wire, as shown in Fig. 6-15. It is a somewhat 

idealized version of the conductor of Fig. 6-14. The wire will have little influence 

on the fields outside; it is there to keep the spheres at the same potential. Now, 

which ball has the biggest field at its surface? If the ball on the left has the radius 

a and carries a charge Q, its potential is about 

= 1 Q 
47re0 a 

(Of course the presence of one ball changes the charge distribution on the other, 

so that the charges are not really spherically symmetric on either. But if we are 

interested only in an estimate of the fields, we can use the potential of a spherical 

charge.) If the smaller ball, whose radius is b, carries the charge q, its potential 

is about 

4ir€0 b 
But 4>i = <f>2, so 

Q = g. 
a b 

On the other hand, the field at the surface (see Eq. 5.8) is 

surface charge density, which is like the total charge over 

We get that _ 
Eg ^ Q/a2 ^ b 

Eb q/b2 a 

proportional to the 

the radius squared. 

(6.35) 

Therefore the field is higher at the surface of the small sphere. The fields are in the 

inverse proportion of the radii. 

This result is technically very important, because air will break down if the 

electric field is too great. What happens is that a loose charge (electron, or ion) 

somewhere in the air is accelerated by the field, and if the field is very great, the 

charge can pick up enough speed before it hits another atom to be able to knock an 
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Fig. 6-14. The electric field near a 

sharp point on a conductor is very high. 

Fig. 6-15. The field of a pointed 

object can be approximated by that of 

two spheres at the same potential. 



a:HIGH VOLTAGE 

Fig, 6-16. Field-emission microscope. 

Fig. 6-17. Image produced by a 

field-emission microscope. [Courtesy of 

Erwin W. Mueller, Research Prof, of 

Physics, Pennsylvania State University.] 

electron off that atom. As a result, more and more ions are produced. Their 

motion constitutes a discharge, or spark. If you want to charge an object to a 

high potential and not have it discharge itself by sparks in the air, you must be 

sure that the surface is smooth, so that there is no place where the field is ab¬ 

normally large. 

6-12 The field-emission microscope 

There is an interesting application of the extremely high electric field which 

surrounds any sharp protuberance on a charged conductor. The field-emission 

microscope depends for its operation on the high fields produced at a sharp metal 

point.* It is built in the following way. A very fine needle, with a tip whose diameter 

is about 1000 angstroms, is placed at the center of an evacuated glass sphere (Fig. 

6-16.) The inner surface of the sphere is coated with a thin conducting layer of 

fluorescent material, and a very high potential difference is applied between the 

fluorescent coating and the needle. 

Let’s first consider what happens when the needle is negative with respect to 

the fluorescent coating. The field lines are highly concentrated at the sharp point. 

The electric field can be as high as 40 million volts per centimeter. In such 

intense fields, electrons are pulled out of the surface of the needle and accelerated 

across the potential difference between the needle and the fluorescent layer. When 

they arrive there they cause light to be emitted, just as in a television picture tube. 

The electrons which arrive at a given point on the fluorescent surface are, to 

an excellent approximation, those which leave the other end of the radial field line, 

because the electrons will travel along the field line passing from the point to the 

surface. Thus we see on the surface some kind of an image of the tip of the needle. 

More precisely, we see a picture of the emissivity of the surface of the needle—that 

is the ease with which electrons can leave the surface of the metal tip. If the resolu¬ 

tion were high enough, one could hope to resolve the positions of the individual 

atoms on the tip of the needle. With electrons, this resolution is not possible for 

the following reasons. First, there is quantum-mechanical diffraction of the 

electron waves which blurs the image. Second, due to the internal motions of the 

electrons in the metal they have a small sideways initial velocity when they leave 

the needle, and this random transverse component of the velocity causes some 

smearing of the image. The combination of these two effects limits the resolution 

to 25 A or so. 

If, however, we reverse the polarity and introduce a small amount of helium 

gas into the bulb, much higher resolutions are possible. When a helium atom col¬ 

lides with the tip of the needle, the intense field there strips an electron off the 

helium atom, leaving it positively charged. The helium ion is then accelerated 

outward along a field line to the fluorescent screen. Since the helium ion is so much 

heavier than an electron, the quantum-mechanical wavelengths are much smaller. 

If the temperature is not too high, the effect of the thermal velocities is also smaller 

than in the electron case. With less smearing of the image a much sharper picture 

of the point is obtained. It has been possible to obtain magnifications up to 

2,000,000 times with the positive ion field-emission microscope—a magnification 

ten times better than is obtained with the best electron microscope. 

Figure 6-17 is an example of the results which were obtained with a field- 

ion microscope, using a tungsten needle. The center of a tungsten atom ionizes 

a helium atom at a slightly different rate than the spaces between the tungsten 

atoms. The pattern of spots on the fluorescent screen shows the arrangement of 

the individual atoms on the tungsten tip. The reason the spots appear in rings can 

be understood by visualizing a large box of balls packed in a rectangular array, 

representing the atoms in the metal. If you cut an approximately spherical section 

out of this box, you will see the ring pattern characteristic of the atomic structure. 

The field-ion microscope provided human beings with the means of seeing atoms 

for the first time. This is a remarkable achievement, considering the simplicity of 

the instrument. 

* See E. W. Mueller: “The field-ion microscope,” Advances in Electronics and Electron 
Physics, 13, 83-179 (1960). Academic Press, New York 
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7 

The Electric Field in Various Circumstances 

(Continued) 

7-1 Methods for finding the electrostatic field 

This chapter is a continuation of our consideration of the characteristics of 

electric fields in various particular situations. We shall first describe some of the 

more elaborate methods for solving problems with conductors. It is not expected 

that these more advanced methods can be mastered at this time. Yet it may be of 

interest to have some idea about the kinds of problems that can be solved, using 

techniques that may be learned in more advanced courses. Then we take up two 

examples in which the charge distribution is neither fixed nor is carried by a con¬ 

ductor, but instead is determined by some other law of physics. 

As we found in Chapter 6, the problem of the electrostatic field is fundamen¬ 

tally simple when the distribution of charges is specified; it requires only the evalua¬ 

tion of an integral. When there are conductors present, however, complications 

arise because the charge distribution on the conductors is not initially known; 

the charge must distribute itself on the surface of the conductor in such a way that 

the conductor is an equipotential. The solution of such problems is neither direct 

nor simple. 

We have looked at an indirect method of solving such problems, in which we 

find the equipotentials for some specified charge distribution and replace one of 

them by a conducting surface. In this way we can build up a catalog of special 

solutions for conductors in the shapes of spheres, planes, etc. The use of images, 

described in Chapter 6, is an example of an indirect method. We shall describe 

another in this chapter. 

If the problem to be solved does not belong to the class of problems for which 

we can construct solutions by the indirect method, we are forced to solve the prob¬ 

lem by a more direct method. The mathematical problem of the direct method is 

the solution of Laplace’s equation, 

7-1 Methods for finding the 

electrostatic field 

7-2 Two-dimensional fields; 

functions of the complex 

variable 

7-3 Plasma oscillations 

7-4 Colloidal particles in an 

electrolyte 

7-5 The electrostatic field of a grid 

V2* = 0, (7.1) 

subject to the condition that is a suitable constant on certain boundaries—the 

surfaces of the conductors. Problems which involve the solution of a differential 

field equation subject to certain boundary conditions are called boundary-value 

problems. They have been the object of considerable mathematical study. In 

the case of conductors having complicated shapes, there are no general analytical 

methods. Even such a simple problem as that of a charged cylindrical metal can 

closed at both ends—a beer can—presents formidable mathematical difficulties. 

It can be solved only approximately, using numerical methods. The only general 

methods of solution are numerical. 

There are a few problems for which Eq. (7.1) can be solved directly. For 

example, the problem of a charged conductor having the shape of an ellipsoid of 

revolution can be solved exactly in terms of known special functions. The solution 

for a thin disc can be obtained by letting the ellipsoid become infinitely oblate. 

In a similar manner, the solution for a needle can be obtained by letting the ellipsoid 

become infinitely prolate. However, it must be stressed that the only direct methods 

of general applicability are the numerical techniques. 

Boundary-value problems can also be solved by measurements of a physical 

analog. Laplace’s equation arises in many different physical situations: in steady- 

state heat flow, in irrotational fluid flow, in current flow in an extended medium, 
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and in the deflection of an elastic membrane. It is frequently possible to set up a 
physical model which is analogous to an electrical problem which we wish to solve. 
By the measurement of a suitable analogous quantity on the model, the solution 
to the problem of interest can be determined. An example of the analog technique 
is the use of the electrolytic tank for the solution of two-dimensional problems in 
electrostatics. This works because the differential equation for the potential in a 
uniform conducting medium is the same as it is for a vacuum. 

There are many physical situations in which the variations of the physical 
fields in one direction are zero, or can be neglected in comparison with the varia¬ 
tions in the other two directions. Such problems are called two-dimensional; the 
field depends on two coordinates only. For example, if we place a long charged 
wire along the z-axis, then for points not too far from the wire the electric field 
depends on x and y, but not on z; the problem is two-dimensional. Since in a two- 
dimensional problem d/dz = 0, the equation for <f> in free space is 

d2<t> d2<f> 

dx2 + dy2 
(7.2) 

Because the two-dimensional equation is comparatively simple, there is a wide 
range of conditions under which it can be solved analytically. There is, in fact, 
a very powerful indirect mathematical technique which depends on a theorem 
from the mathematics of functions of a complex variable, and which we will now 
describe. 

7-2 Two-dimensional fields; functions of the complex variable 

The complex variable b is defined as 

b = x + iy. 

(Do not confuse b with the z-coordinate, which we ignore in the following dis¬ 
cussion because we assume there is no z-dependence of the fields.) Every point in 
x and y then corresponds to a complex number b. We can use b as a single 
(complex) variable, and with it write the usual kinds of mathematical functions 
F(b). For example, 

m = a2, 
or 

m = l/&3> 
or 

F(b) = b log h 
and so forth. 

Given any particular F{b) we can substitute b = x + iy, and we have a 
function of x and y—with real and imaginary parts. For example, 

b2 - (x + iy)2 = *2 - y2 + 2ixy. (7.3) 

Any function F(b) can be written as a sum of a pure real part and a pure 
imaginary part, each part a function of x and y: 

F(b) = U(x, y) + iV(x,y), (7.4) 

where t/(x, y) and V(x, y) are real functions. Thus from any complex function 
F(b) two new functions U(x, y) and V(x,y) can be derived. For example, F{b) = b2 
gives us the two functions 

U(x,y) = x2 - y2, (7.5) 
and 

V(x,y) = 2xy. (7.6) 

Now we come to a miraculous mathematical theorem which is so delightful 
that we shall leave a proof of it for one of your courses in mathematics. (We 
should not reveal all the mysteries of mathematics, or that subject matter would 
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become too dull.) It is this. For any “ordinary function” (mathematicians will 

define it better) the functions U and V automatically satisfy the relations 

dU 

dx 

dV 

dx 

dV 

dy 

dU 

■ 

(77) 

(7.8) 

It follows immediately that each of the functions U and V satisfy Laplace’s equation: 

d2U d^U 

dx2 + dy* U’ 

dlK , i2I = n 
dx2 ^ dy2 

(7.9) 

(7.10) 

These equations are clearly true for the functions of (7.5) and (7.6). 

Thus, starting with any ordinary function, we can arrive at two functions 

U(x, y) and V(x, y), which are both solutions of Laplace’s equation in two dimen¬ 

sions. Each function represents a possible electrostatic potential. We can pick any 

function F(b) and it should represent some electric field problem—in fact, two 

problems, because U and V each represent solutions. We can write down as many 

solutions as we wish—by just making up functions—then we just have to find the 

problem that goes with each solution. It may sound backwards, but it’s a possible 

approach. 

Fig. 7-1. Two sets of orthogonal curves which can represent 

equipotentials in a two-dimensional electrostatic field. 

As an example, let’s see what physics the function F(b) — d2 gives us. From 

it we get the two potential functions of (7.5) and (7.6). To see what problem the 

function U belongs to, we solve for the equipotential surfaces by setting U = A, 

a constant: 

x2 — y2 = A. 

This is the equation of a rectangular hyperbola. For various values of A, we get 

the hyperbolas shown in Fig. 7-1. When A — 0, we get the special case of diagonal 

straight lines through the origin. 

Such a set of equipotentials corresponds to several possible physical situations. 

First, it represents the fine details of the field near the point halfway between two 
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equal point charges. Second, it represents the field at an inside right-angle corner 
of a conductor. If we have two electrodes shaped like those in Fig. 7-2, which are 
held at different potentials, the field near the corner marked C will look just like 
the field above the origin in Fig. 7-1. The solid lines are the equipotentials, and 
the broken lines at right angles correspond to lines of E, Whereas at points or 
protuberances the electric field tends to be high, it tends to be low in dents or 
hollows. 

The solution we have found also corresponds to that for a hyperbola-shaped 
electrode near a right-angle corner, or for two hyperbolas at suitable potentials. 
You will notice that the field of Fig. 7-1 has an interesting property. The x-com- 
ponent of the electric field, £x, is given by 

F - -d<l> - -2x 

Ex~ dx~ 2X' 

Fig. 7-3. The field in a quadrupole 

lens. 

The electric field is proportional to the distance from the axis. This fact is used to 
make devices (called quadrupole lenses) that are useful for focusing particle beams 
(see Section 29-9). The desired field is usually obtained by using four hyperbola¬ 
shaped electrodes, as shown in Fig. 7-3. For the electric field lines in Fig. 7-3, 
we have simply copied from Fig. 7-1 the set of broken-line curves that represent 
V = constant. We have a bonus! The curves for V — constant are orthogonal 
to the ones for U — constant because of the equations (7.7) and (7.8). Whenever 
we choose a function F(b), we get from U and V both the equipotentials and field 
lines. And you will remember that we have solved either of two problems, depend¬ 
ing on which set of curves we call the equipotentials. 

As a second example, consider the function 

If we write 

where 

and 

then 

m = vi. 
i = x + iy = pe'\ 

p = Vx2 + y2 

tan d = y/x, 

FO) = pl'V/a 

1/2 I 8 .. 8 
~ p ' (cos 2 -F / sin ^ 

from which 

F(S) 

:)■ 

-[ 
(x2 + y2)112 + X 'i/2 r 

J +4 (X2 + - 

2 

(7.11) 
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A*4 

Fig. 7-4. Curves of constant U(x#y) 

and V(x, y) from Eq. (7.12). 

The curves for U(x, y) = A and V(x, j>) — using C/ and V from Eq. (7.12), 
are plotted in Fig. 7-4. Again, there are many possible situations that could be 
described by these fields. One of the most interesting is the field near the edge of a 
thin plate. If the line B = 0—to the right of the y-axis—represents a thin charged 
plate, the field lines near it are given by the curves for various values of A. The 
physical situation is shown in Fig. 7-5. 

Further examples are 

F(J) = z3/2,[ (7.13) 

which yields the field outside a rectangular corner 

F(d) = log 3, (7.14) 

which yields the field for a line charge, and 

m = l/», (7.15) 

which gives the field for the two-dimensional analog of an electric dipole, i.e., 
two parallel line charges with opposite polarities, very close together. 

We will not pursue this subject further in this course, but should emphasize 
that although the complex variable technique is often powerful, it is limited to 
two-dimensional problems; and also, it is an indirect method. 

7-3 Plasma oscillations Fig. 7-5. The electric field near the 

We consider now some physical situations in which the field is determined ec*fle a thin 9rounde<* plafe* 
neither by fixed charges nor by charges on conducting surfaces, but by a com¬ 
bination of two physical phenomena. In other words, the field will be governed 
simultaneously by two sets of equations: (1) the equations from electrostatics 
relating electric fields to charge distribution, and (2) an equation from another 
part of physics that determines the positions or motions of the charges in the 
presence of the field. 

The first example that we will discuss is a dynamic one in which the motion 
of the charges is governed by Newton's laws. A simple example of such a situation 
occurs in a plasma, which is an ionized gas consisting of ions and free electrons 
distributed over a region in space. The ionosphere—an upper layer of the atmos¬ 
phere—is an example of such a plasma. The ultraviolet rays from the sun knock 
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-- X —*4*- AX 

Fig. 7-6. Motion in a plasma wave. 

The electrons at the plane a move to a1, 
and those at b move to b1. 

electrons off the molecules of the air, creating free electrons and ions. In such a 

plasma the positive ions are very much heavier than the electrons, so we may 

neglect the ionic motion, in comparison to that of the electrons. 

Let n0 be the density of electrons in the undisturbed, equilibrium state. 

This must also be the density of positive ions, since the plasma is electrically 

neutral (when undisturbed). Now we suppose that the electrons are somehow 

moved from equilibrium and ask what happens. If the density of the electrons in 

one region is increased, they will repel each other and tend to return to their 

equilibrium positions. As the electrons move toward their original positions they 

pick up kinetic energy, and instead of coming to rest in their equilibrium configura¬ 

tion, they overshoot the mark. They will oscillate back and forth. The situation 

is similar to what occurs in sound waves, in which the restoring force is the gas 

pressure. In a plasma, the restoring force is the electrical force on the electrons. 

To simplify the discussion, we will worry only about a situation in which the 

motions are all in one dimension, say x. Let us suppose that the electrons origi¬ 

nally at * are, at the instant /, displaced from their equilibrium positions by a small 

amount s(x, t). Since the electrons have been displaced, their density will, in general, 

be changed. The change in density is easily calculated. Referring to Fig. 7-6. 

the electrons initially contained between the two planes a and b have moved and 

are now contained between the planes a' and bf. The number of electrons that 

were between a and b is proportional to nQAx; the same number are now contained 

in the space whose width is Ax -f As. The density has changed to 

n0Ax = n0 

Ax As 1 + (A.y/Ax) 
(7.16) 

If the change in density is small, we can write [using the binomial expansion for 

(I + e)“]] 

<7',7> 

We assume that the positive ions do not move appreciably (because of the much 

larger inertia), so their density remains n0. Each electron carries the charge — qe, 

so the average charge density at any point is given by 

or 
P = - (« “ n0)qei 

P = n0qe g (7.18) 

(where we have written the differential form for As/Ax). 

The charge density is related to the electric field by Maxwell’s equations, in 

particular, 

V ■£=-£-• (7.19) 
*0 

If the problem is indeed one-dimensional (and if there are no other fields but the 

one due to the displacements of the electrons), the electric field E has a single 

component Ex. Equation (7.19), together with (7.18), gives 

Integrating Eq. (7.20) gives 

dEj _ n0qe ds 

dx Cq dx 

Ex = Ml ,v + K. 

£o 

Since Ex = 0 when s — 0, the integration constant K is zero. 

The force on an electron in the displaced position is 

Fx 
ngqj 

*o 
S, 

(7.20) 

(7.21) 

(7.22) 
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a restoring force proportional to the displacement s of the electron. This leads to 
a harmonic oscillation of the electrons. The equation of motion of a displaced 
electron is 

me 
d2s 
dt2 «0 

(7.23) 

We find that s will vary harmonically. Its time variation will be as cos cot, or— 
using the exponential notation of Vol. I—as 

e*V. (7.24) 

The frequency of oscillation cop is determined from (7.23): 

«« = 
nQgt 
e0me 

(7.25) 

and is called the plasma frequency. It is a characteristic number of the plasma. 
When dealing with electron charges many people prefer to express their an¬ 

swers in terms of a quantity e2 defined by 

2 

e2 — = 2.3068 X 10-28 newtommeter2. (7.26) 
47re0 

Using this convention, Eq. (7.25) becomes 

2 _ 4tre2rt0 
«3>--- (7.27) 

which is the form you will find in most books. 
Thus we have found that a disturbance of a plasma will set up free oscillations 

of the electrons about their equilibrium positions at the natural frequency o>p, 
which is proportional to the square root of the density of the electrons. The plasma 
electrons behave like a resonant system, such as those we described in Chapter 
23 of Vol. I. 

This natural resonance of a plasma has some interesting effects. For example, 
if one tries to propagate a radiowave through the ionosphere, one finds that it 
can penetrate only if its frequency is higher than the plasma frequency. Otherwise 
the signal is reflected back. We must use high frequencies if we wish to communi¬ 
cate with a satellite in space. On the other hand, if we wish to communicate with 
a radio station beyond the horizon, we must use frequencies lower than the plasma 
frequency, so that the signal will be reflected back to the earth. 

Another interesting example of plasma oscillations occurs in metals. In a 
metal we have a contained plasma of positive ions, and free electrons. The density 
n0 is very high, so is also. But it should still be possible to observe the electron 
oscillations. Now, according to quantum mechanics, a harmonic oscillator with 
a natural frequency cop has energy levels which are separated by the the energy 
increment hcop. If, then, one shoots electrons through, say, an aluminum foil, and 
makes very careful measurements of the electron energies on the other side, one 
might expect to find that the electrons sometimes lose the energy bcop to the plasma 
oscillations. This does indeed happen. It was first observed experimentally in 
1936 that electrons with energies of a few hundred to a few thousand electron volts 
lost energy in jumps when scattering from or going through a thin metal foil. The 
effect was not understood until 1953 when Bohm and Pines* showed that the 
observations could be explained in terms of quantum excitations of the plasma 
oscillations in the metal. 

* For some recent work and a bibliography see C. J. Powell and J. B. Swann, Phys, 
Rev. 115, 869 (1959). 
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7-4 Colloidal particles in an electrolyte 

We turn to another phenomenon in which the locations of charges is governed 

by a potential that arises in part from the same charges. The resulting effects 

influence in an important way the behavior of colloids. A colloid consists of a 

suspension in water of small charged particles which, though microscopic, from 

an atomic point of view are still very large. If the colloidal particles were not 

charged, they would tend to coagulate into large lumps; but because of their 

charge, they repel each other and remain in suspension. 

Now if there is also some salt dissolved in the water, it will be dissociated into 

positive and negative ions. (Such a solution of ions is called an electrolyte.) The 

negative ions are attracted to the colloid particles (assuming their charge is positive) 

and the positive ions are repelled. We will determine how the ions which surround 

such a colloidal particle are distributed in space. 

To keep the ideas simple, we will again solve only a one-dimensional case. 

If we think of a colloidal particle as a sphere having a very large radius—on an 

atomic scale!—we can then treat a small part of its surface as a plane. (Whenever 

one is trying to understand a new phenomenon it is a good idea to take a somewhat 

oversimplified model; then, having understood the problem with that model, one 

is better able to proceed to tackle the more exact calculation.) 

We suppose that the distribution of ions generates a charge density p(x)y and 

an electrical potential <f>, related by the electrostatic law V2<f> = —p/€0 or, for 

fields that vary in only one dimension, by 

S--£- <™> 

Now supposing there were such a potential <l>(x), how would the ions dis¬ 

tribute themselves in it? This we can determine by the principles of statistical 

mechanics. Our problem then is to determine <f> so that the resulting charge density 

from statistical mechanics also satisfies (7.28). 

According to statistical mechanics (see Chapter 40, Vol. I), particles in thermal 

equilibrium in a force field are distributed in such a way that the density n of 

particles at the position x is given by 

«(*) = nae-UWIKT, (7.29) 

where U(x) is the potential energy, k is Boltzmann’s constant, and T is the absolute 

temperature. 

We assume that the ions carry one electronic charge, positive or negative. 

At the distance x from the surface of a colloidal particle, a positive ion will have 

potential energy qe4>(x), so that 

U(x) = qe<t>(x). 

The density of positive ions, n+, is then 

*+(*) = n0e-q^x,lkr. 

Similarly, the density of negative ions is 

n_(x) = 

The total charge density is 

P = “ qr«-, 

or 

p = qen0(e 
—qc<t>ikT_qe<f>lkT 

)• 

Combining this with Eq. (7.28), we find that the potential $ must satisfy 

/2_ 

dx* ~ '«0 Ke e h 

(7.30) 

(7.31) 

7-8 



This equation is readily solved in general [multiply both sides by 2(d<f>/dx), and 
integrate with respect to jc], but to keep the problem as simple as possible, we will 
consider here only the limiting case in which the potentials are small or the tem¬ 
perature T is high. The case where $ is small corresponds to a dilute solution. For 
these cases the exponent is small, and we can approximate 

e±,.MT = i ± M. (7,32) 

Equation (7.31) then gives 

Notice that this time the sign on the right is positive. The solutions for (f> are not 
oscillatory, but exponential. 

The general solution of Eq. (7.33) is 

with 
<t> = Ae~x,D + Be+xlD, (7.34) 

n2 *pkT 
2n0q* 

(7.35) 

The constants A and B must be determined from the conditions of the problem. 
In our case, B must be zero; otherwise the potential would go to infinity for large 
x. So we have that 

4> = Ae~xlD, (7.36) 

in which A is the potential at x = 0, the surface of the colloidal particle. 

The potential decreases by a factor 1 /e each time the distance increases by D, 
as shown in the graph of Fig. 7-7. The number D is called the Debye length, and 
is a measure of the thickness of the ion sheath that surrounds a large charged 
particle in an electrolyte. Equation (7.36) says that the sheath gets thinner with 
increasing concentration of the ions (n0) or with decreasing temperature. 

The constant A in Eq. (7.36) is easily obtained if we know the surface charge a 
on the colloid particle. We know that 

En = £,(0) = f 
€0 

But E is also the gradient of <f>: 

from which we get 

m°) = - g = +d 
o + D 

A — — 
” co 

(7.37) 

(7.38) 

(7.39) 
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0) that the potential of the 

(7.40) 

You will notice that this potential is the same as the potential difference across a 
condenser with a plate spacing D and a surface charge density <r. 

We have said that the colloidal particles are kept apart by their electrical 
repulsion. But now we see that the field a little way from the surface of a particle 
is reduced by the ion sheath that collects around it. If the sheaths get thin enough, 
the particles have a good chance of knocking against each other. They will then 
stick, and the colloid will coagulate and precipitate out of the liquid. From our 
analysis, we understand why adding enough salt to a colloid should cause it to 
precipitate out. The process is called “salting out a colloid.” 

Another interesting example is the effect that a salt solution has on protein 
molecules. A protein molecule is a long, complicated, and flexible chain of amino 
acids. The molecule has various charges on it, and it sometimes happens that 
there is a net charge, say negative, which is distributed along the chain. Because 
of mutual repulsion of the negative charges, the protein chain is kept stretched out. 
Also, if there are other similar chain molecules present in the solution, they will 
be kept apart by the same repulsive effects. We can, therefore, have a suspension 
of chain molecules in a liquid. But if we add salt to the liquid we change the proper¬ 
ties of the suspension. As salt is added to the solution, decreasing the Debye 
distance, the chain molecules can approach one another, and can also coil up. 
If enough salt is added to the solution, the chain molecules will precipitate out of 
the solution. There are many chemical effects of this kind that can be understood 
in terms of electrical forces. 

Using this result in (7.36), we find (by taking a; = 

colloidal particle is 

-HO) = ^ • 

7-5 The electrostatic field of a grid 

As our last example, we would like to describe another interesting property 
of electric fields. It is one which is made use of in the design of electrical instru¬ 
ments, in the construction of vacuum tubes, and for other purposes. This is the 
character of the electric field near a grid of charged wires. To make the problem 
as simple as possible, let us consider an array of parallel wires lying in a plane, 
the wires being infinitely long and with a uniform spacing between them. 

If we look at the field a large distance above the plane of the wires, we see a 
constant electric field, just as though the charge were uniformly spread over a 
plane. As we approach the grid of wires, the field begins to deviate from the 
uniform field we found at large distances from the grid. We would like to estimate 
how close to the grid we have to be in order to see appreciable variations in the 
potential. Figure 7-8 shows a rough sketch of the equipotentials at various 
distances from the grid. The closer we get to the grid, the larger the variations. 
As we travel parallel to the grid, we observe that the field fluctuates in a periodic 
manner. 

t z 

f \ 
•) 
+ 

Fig. 7-8. EquipotentiaI surfaces 

above a uniform grid of charged wires. 
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Now we have seen (Chapter 50, VoL I) that any periodic quantity can be 
expressed as a sum of sine waves (Fourier’s theorem). Let’s see if we can find a 
suitable harmonic function that satisfies our field equations. 

If the wires lie in the xy-plane and run parallel to the j>-axis, then we might 
try terms like 

<t>(x, z) = Fn(z)cos~^, (7.41) 

where a is the spacing of the wires and n is the harmonic number. (We have as¬ 
sumed long wires, so there should be no variation with y.) A complete solution 
would be made up of a sum of such terms for n — 1, 2, 3,.... 

If this is to be a valid potential, it must satisfy Laplace’s equation in the 
region above the wires (where there are no charges). That is, 

dV 
dX* ■*“ dZ* 

Trying this equation on the <f> in (7.41) i, we nna mat 

47r2n .2„2 

Fn(z) cos 
2irnx + ^c0S2l^ = C 

dz2 a 
(7.42) 

or that Fn(z) must satisfy 

So we must have 

where 

d2Fn _ 4ir2n2 p 

dz2 a2 n 

Fn —2/«0 

a 
Z° 2irn 

(7.43) 

(7.44) 

(7.45) 

We have found that if there is a Fourier component of the field of harmonic «, 
that component will decrease exponentially with a characteristic distance z0 = 
a/2irn. For the first harmonic (n = 1), the amplitude falls by the factor e~2ir 
(a large decrease) each time we increase z by one grid spacing a. The other har¬ 
monics fall off even more rapidly as we move away from the grid. We see that if 
we are only a few times the distance a away from the grid, the field is very nearly 
uniform, i.e., the oscillating terms are small. There would, of course, always 
remain the “zero harmonic” field 

<t> o ~ —E0z 

to give the uniform field at large z. For a complete solution, we would combine 
this term with a sum of terms like (7.41) with Fn from (7.44). The coefficients An 
would be adjusted so that the total sum would, when differentiated, give an electric 
field that would fit the charge density X of the grid wires. 

The method we have just developed can be used to explain why electrostatic 
shielding by means of a screen is often just as good as with a solid metal sheet. 
Except within a distance from the screen a few times the spacing of the screen 
wires, the fields inside a closed screen are zero. We see why copper screen— 
lighter and cheaper than copper sheet—is often used to shield sensitive electrical 
equipment from external disturbing fields. 
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Electrostatic Energy 

8-1 The electrostatic energy of charges. A uniform sphere 

In the study of mechanics, one of the most interesting and useful discoveries 
was the law of the conservation of energy. The expressions for the kinetic and 
potential energies of a mechanical system helped us to discover connections between 
the states of a system at two different times without having to look into the details 
of what was occurring in between. We wish now to consider the energy of electro¬ 
static systems. In electricity also the principle of the conservation of energy will 
be useful for discovering a number of interesting things. 

The law of the energy of interaction in electrostatics is very simple; we have, 
in fact, already discussed it. Suppose we have two charges qi and q2 separated by 
the distance ri2. There is some energy in the system, because a certain amount of 
work was required to bring the charges together. We have already calculated the 
work done in bringing two charges together from a large distance. It is 

.glg2 • (8.1) 
4?T€o/*12 

We also know, from the principle of superposition, that if we have many charges 
present, the total force on any charge is the sum of the forces from the others. It 
follows, therefore, that the total energy of a system of a number of charges is the 
sum of terms due to the mutual interaction of each pair of charges. If q% and qj 
are any two of the charges and rtj is the distance between them (Fig. 8-1), the 
energy of that particular pair is 

4tre0rij 
(8.2) 

The total electrostatic energy U is the sum of the energies of all possible pairs of 
charges: 

u= £ 
all pairs 

mj 
47re0 rij 

(8.3) 

If we have a distribution of charge specified by a charge density p, the sum of Eq. 
(8.3) is, of course, to be replaced by an integral. 

We shall concern ourselves with two aspects of this energy. One is the applica¬ 
tion of the concept of energy to electrostatic problems; the other is the evaluation 
of the energy in different ways. Sometimes it is easier to compute the work done 
for some special case than to evaluate the sum in Eq. (8.3), or the corresponding 
integral. As an example, let us calculate the energy required to assemble a sphere 
of charge with a uniform charge density. The energy is just the work done in 
gathering the charges together from infinity. 

Imagine that we assemble the sphere by building up a succession of thin 
spherical layers of infinitesimal thickness. At each stage of the process, we gather 
a small amount of charge and put it in a thin layer from r to r + dr, We continue 
the process until we arrive at the final radius a (Fig. 8-2). If Qr is the charge of the 
sphere when it has been built up to the radius r, the work done in bringing a charge 
dQ to it is 

dU * 
QrdQ 

4t«o/* 
(8.4) 
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Fig. 8-1. The electrostatic energy of 
a system of particles is the sum of the 
electrostatic energy of each pair. 



If the density of charge in the sphere is p, the charge Qr is 

Fig. 8-2. The energy of a uniform 
sphere of charge can be computed by 
imagining that it is assembled from 

successive spherical shells. 

and the charge dQ is 

Equation (8.4) becomes 

Qr = p-j irr3, 

dQ = p * 47rr2 dr, 

du=^Jr 
3e0 

(8.5) 

The total energy required to assemble the sphere is the integral of dU from r = 
0 to r — a, or 

47rp2a5 

15€q 
(8.6) 

Or if we wish to express the result in terms of the total charge Q of the sphere, 

U = 
3 es 

5 47T€o^ 
(8,7) 

The energy is proportional to the square of the total charge and inversely pro¬ 
portional to the radius. We can also interpret Eq. (8.7) as saying that the average 
of (1 /rl3) for all pairs of points in the sphere is 3/5a. 

8-2 The energy of a condenser. Forces on charged conductors 

We consider now the energy required to charge a condenser. If the charge Q 
has been taken from one of the conductors of a condenser and placed on the other, 
the potential difference between them is 

V = Q 
c’ 

(8.8) 

where C is the capacity of the condenser. How much work is done in charging 
the condenser? Proceeding as for the sphere, we imagine that the condenser has 
been charged by transferring charge from one plate to the other in small increments 
dQ, The work required to transfer the charge dQ is 

dU = VdQ, 

Taking V from Eq. (8.8), we write 

dU = 
QdQ 

c 

Or integrating from zero charge to the final charge Q, we have 

2 C 
(8.9) 

This energy can also be written as 

U = iCV2. (8.10) 

Recalling that the capacity of a conducting sphere (relative to infinity) is 

^sphere ~ 47T€ofl, 

we can immediately get from Eq. (8.9) the energy of a charged sphere, 

u = l 
2 47T€oa 

(8.11) 
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This, of course, is also the energy of a thin spherical shell of total charge Q and is 
just 5/6 of the energy of a uniformly charged sphere, Eq. (8.7). 

We now consider applications of the idea of electrostatic energy. Consider 
the following questions: What is the force between the plates of a condenser? Or 
what is the torque about some axis of a charged conductor in the presence of an¬ 
other with opposite charge? Such questions are easily answered by using our 
result Eq. (8.9) for electrostatic energy of a condenser, together with the principle 
of virtual work (Chapters 4, 13, and 14 of Vol. I). 

Let’s use this method for determining the force between the plates of a 
parallel-plate condenser. If we imagine that the spacing of the plates is increased 
by the small amount Az, then the mechanical work done from the outside in 
moving the plates would be 

AW = FAz, (8.12) 

where F is the force between the plates. This work must be equal to the change 
in the electrostatic energy of the condenser. 

By Eq. (8.9), the energy of the condenser was originally 

The change in energy (if we do not let the charge change) is 

Equating (8.12) and (8.13), we have 

This can also be written as 

(8.13) 

(8.14) 

(8.15) 

The force, of course, results from the attraction of the charges on the plates, but 
we see that we do not have to worry in detail about how they are distributed; 
everything we need is taken care of in the capacity C. 

It is easy to see how the idea is extended to conductors of any shape, and for 
other components of the force. In Eq. (8.14), we replace F by the component we 
are looking for, and we replace Az by a small displacement in the corresponding 
direction. Or if we have an electrode with a pivot and we want to know the torque 
t, we write the virtual work as 

AW = rAB, 

where Ad is a small angular displacement. Of course, A(l/C) must be the change in 
1 /C which corresponds to AS. We could, in this way, find the torque on the mov¬ 
able plates in a variable condenser of the type shown in Fig. 8-3. 

Returning to the special case of a parallel-plate condenser, we can use the 
formula we derived in Chapter 6 for the capacity: 

1 d 
C t0A9 

(8.16) 

where A is the area of each plate. If we increase the separation by Az, 

From Eq. (8.14) we get that the force between the plates is 

Fig. 8-3. What is the torque on a 
variable capacitor? 

(8.17) 
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Let’s look at Eq. (8.17) a little more closely and see if we can tell how the force 
arises. If for the charge on one plate we write 

Eq. (8.17) can be rewritten as 

Q = 

f = \qt L €o 

Or, since the electric field between the plates is 

£o = f’ 

F « iQE0. 
then 

(8.18) 

One would immediately guess that the force acting on one plate is. the charge 
Q on the plate times the field acting on the charge. But we have a surprising factor 
of one-half. The reason is that E0 is not the field at the charges. If we imagine that 
the charge at the surface of the plate occupies a thin layer, as indicated in Fig. 8-4, 
the field will vary from zero at the inner boundary of the layer to E0 in the space 
outside of the plate. The average field acting on the surface charges is E0/2. That 
is why the factor one-half is in Eq. (8.18). 

You should notice that in computing the virtual work we have assumed that 
the charge on the condenser was constant—that it was not electrically connected 
to other objects, and so the total charge could not change. 

Suppose we had imagined that the condenser was held at a constant potential 
difference as we made the virtual displacement. Then we should have taken 

u = %cv2 

and in place of Eq. (8.15) we would have had 

FAz = bV2 AC, 

Fig. 8-4. The field at the surface of 
a conductor varies from zero to E0 — 

v/to# as one passes through the layer of 

surface charge. 

which gives a force equal in magnitude to the one in Eq. (8.15) (because V — Q/C), 
but with the opposite sign! Surely the force between the condenser plates doesn’t 
reverse in sign as we disconnect it from its charging source. Also, we know that 
two plates with opposite electrical charges must attract. The principle of virtual 
work has been incorrectly applied in the second case—we have not taken into 
account the virtual work done on the charging source. That is, to keep the po¬ 
tential constant at V as the capacity changes, a charge V AC must be supplied by 
a source of charge. But this charge is supplied at a potential V, so the work done 
by the electrical system which keeps the potential constant is V2 AC. The mechan¬ 
ical work F Az plus this electrical work V2 AC together make up the change in the 
total energy \V2 AC of the condenser. Therefore F Az is — £F2 AC, as before. 

8-3 The electrostatic energy of an ionic crystal 

We now consider an application of the concept of electrostatic energy in atomic 
physics. We cannot easily measure the forces between atoms, but we are often 
interested in the energy differences between one atomic arrangement and another, 
as, for example, the energy of a chemical change. Since atomic forces are basically 
electrical, chemical energies are in large part just electrostatic energies. 

Let’s consider, for example, the electrostatic energy of an ionic lattice. An 
ionic crystal like NaCl consists of positive and negative ions which can be thought 
of as rigid spheres. They attract electrically until they begin to touch; then there is 
a repulsive force which goes up very rapidly if we try to push them closer together. 

For our first approximation, therefore, we imagine a set of rigid spheres 
that represent the atoms in a salt crystal. The structure of the lattice has been 
determined by x-ray diffraction. It is a cubic lattice—like a three-dimensional 
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checkerboard. Figure 8-5 shows a cross-sectional view. The spacing of the ions is 
2.81 A (-2.81 X 10“8 cm). 

If our picture of this system is correct, we should be able to check it by asking 
the following question: How much energy will it take to pull all these ions apart— 
that is, to separate the crystal completely into ions? This energy should be equal 
to the heat of vaporization of NaCl plus the energy required to dissociate the 
molecules into ions. This total energy to separate NaCl to ions is determined experi¬ 
mentally to be 7.92 electron volts per molecule. Using the conversion 

1 ev = 1.602 X 10~19 joule, 

and Avogadro’s number for the number of molecules in a mole, 

N0 = 6.02 X 1023, 

the energy of vaporization can also be given as 

W = 7.64 X 10s joules/mole. 

Physical chemists prefer for an energy unit the kilocalorie, which is 4190 joules; 
so that 1 ev per molecule is 23 kilocalories per mole. A chemist would then say 
that the dissociation energy of NaCl is 

W - 183 kcal/mole. 

Can we obtain this chemical energy theoretically by computing how much 
work it would take to pull apart the crystal? According to our theory, this work is 
the sum of the potential energies of all the pairs of ions. The easiest way to figure 
out this sum is to pick out a particular ion and compute its potential energy with 
each of the other ions. That will give us twice the energy per ion, because the energy 
belongs to the pairs of charges. If we want the energy to be associated with one 
particular ion, we should take half the sum. But we really want the energy per 
molecule, which contains two ions, so that the sum we compute will give directly 
the energy per molecule. 

The energy of an ion with one of its nearest neighbors is e2/a, where e2 = 
q2/47T€0 and a is the center-to-center spacing between ions. (We are considering 
monovalent ions.) This energy is 5.12 ev, which we already see is going to give us 
a result of the correct order of magnitude. But it is still a long way from the infinite 
sum of terms we need. 

Let’s begin by summing all the terms from the ions along a straight line. 
Considering that the ion marked Na in Fig. 8-5 is our special ion, we shall consider 
first those ions on a horizontal line with it. There are two nearest Cl ions with 
negative charges, each at the distance a. Then there are two positive ions at the 
distance 2a, etc. Calling the energy of this sum Uu we write 

Z.B\l 

Fig. 8-5. Cross section of a salt 
crystal on an atomic scale. The checker¬ 
board arrangement of Na and Cl ions is 
the same in the two cross sections per¬ 
pendicular to the one shown. (See Vol. I, 
Fig. 1-7.) 

2 2 2 2 
1^2 3^4^ 

2 ' 3 4 ^ 

•) 

(8.19) 

The series converges slowly, so it is difficult to evaluate numerically, but it is known 
to be equal to In 2. So 

j 2 2 

Ut = ln2 = -1.386 - 
a a 

(8.20) 

Now consider the next adjacent line of ions above. The nearest is negative 
and at the distance a. Then there are two positives at the distance y/2 a. The next 
pair are at the distance y/5 a, the next at \/l0 a, and so on. So for the whole line 
we get the series 

1V2 V5 vio j 
(8.21) 
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There are four such lines: above, below, in front, and in back. Then there are the 
four lines which are the nearest lines on diagonals, and on and on. 

If you work patiently through for all the lines, and then take the sum, you 
find that the grand total is 

e2 
U = 1.747 — » 

a 

which is just somewhat more than what we obtained in (8.20) for the first line. 
Using e2ja = 5.12 ev, we get 

U = 8.94 ev. 

Our answer is about 10% above the experimentally observed energy. It shows that 
our idea that the whole lattice is held together by electrical Coulomb forces is 
fundamentally correct. This is the first time that we have obtained a specific 
property of a macroscopic substance from a knowledge of atomic physics. We 
will do much more later. The subject that tries to understand the behavior of 
bulk matter in terms of the laws of atomic behavior is called solid-state physics. 

Now what about the error in our calculation? Why is it not exactly right? 
It is because of the repulsion between the ions at close distances. They are not 
perfectly rigid spheres, so when they are close together they are partly squashed. 
They are not very soft, so they squash only a little bit. Some energy, however, is 
used in deforming them, and when the ions are pulled apart this energy is released. 
The actual energy needed to pull the ions apart is a little less than the energy that 
we calculated; the repulsion helps in overcoming the electrostatic attraction. 

Is there any way we can make an allowance for this contribution? We could 
if we knew the law of the repulsive force. We are not ready to analyze the details 
of this repulsive mechanism, but we can get some idea of its characteristics from 
some large-scale measurements. From a measurement of the compressibility of 
the whole crystal, it is possible to obtain a quantitative idea of the law of repulsion 
between the ions and therefore of its contribution to the energy. In this Way it 
has been found that this contribution must be 1/9.4 of the contribution from the 
electrostatic attraction and, of course, of opposite sign. If we subtract this contribu¬ 
tion from the pure electrostatic energy, we obtain 7.99 ev for the dissociation energy 
per molecule. It is much closer to the observed result of 7.92 ev, but still not in 
perfect agreement. There is one more thing we haven’t taken into account: we 
have made no allowance for the kinetic energy of the crystal vibrations. If a cor¬ 
rection is made for this effect, very good agreement with the experimental number 
is obtained. The ideas are then correct; the major contribution to the energy of a 
crystal like NaCl is electrostatic. 

8-4 Electrostatic energy in nuclei 

We will now take up another example of electrostatic energy in atomic 
physics, the electrical energy of atomic nuclei. Before we do this we will have to 
discuss some .properties of the main forces (called nuclear forces) that hold the 
protons and neutrons together in a nucleus. In the early days of the discovery of 
nuclei—and of the neutrons and protons that make them up—it was hoped that 
the law of the strong, nonelectrical part of the force between, say, a proton and 
another proton would have some simple law, like the inverse square law of elec¬ 
tricity. For once one had determined this law of force, and the corresponding ones 
between a proton and a neutron, and a neutron and a neutron, it would be possible 
to describe theoretically the complete behavior of these particles in nuclei. There¬ 
fore a big program was started for the study of the scattering of protons, in the 
hope of finding the law of force between them; but after thirty years of effort, 
nothing simple has emerged. A considerable knowledge of the force between proton 
and proton has been accumulated, but we find that the force is as complicated as 
it can possibly be. 

What we mean by “as complicated as it can be” is that the force depends on 
as many things as it possibly can. 
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First, the force is not a simple function of the distance between the two protons. 
At large distances there is an attraction, but at closer distances there is a repulsion. 
The distance dependence is a complicated function, still imperfectly known. 

Second, the force depends on the orientation of the protons’ spin. The protons 
have a spin, and any two interacting protons may be spinning with their angular 
momenta in the same direction or in opposite directions. And the force is different 
when the spins are parallel from what it is when they are antiparallel, as in (a) 
and (b) of Fig. 8-6. The difference is quite large; it is not a small effect. 

Third, the force is considerably different when the separation of the two 
protons is in the direction parallel to their spins, as in (c) and (d) of Fig. 8-6, than 
it is when the separation is in a direction perpendicular to the spins, as in (a) and (b). 

Fourth, the force depends, as it does in magnetism, on the velocity of the 
protons, only much more strongly than in magnetism. And this velocity-dependent 
force is not a relativistic effect; it is strong even at speeds much less than the speed 
of light. Furthermore, this part of the force depends on other things besides the 
magnitude of the velocity. For instance, when a proton is moving near another 
proton, the force is different when the orbital motion has the same direction of 
rotation as the spin, as in (e) of Fig. 8-6, than when it has the opposite direction 
of rotation, as in (0- This is called the “spin orbit” part of the force. 

The force between a proton and a neutron and between a neutron and a 
neutron are also equally complicated. To this day we do not know the machinery 
behind these forces—that is to say, any simple way of understanding them. 

There is, however, one important way in which the nucleon forces are simpler 
than they could be. That is that the nuclear force between two neutrons is the same 
as the force between a proton and a neutron, which is the same as the force between 
two protons! If, in any nuclear situation, we replace a proton by a neutron (or vice 
versa),- the nuclear interactions are not changed. The “fundamental reason” for 
this equality is not known, but it is an example of an important principle that can 
be extended also to the interaction laws of other strongly interacting particles— 
such as the 7r-mesons and the “strange” particles. 

This fact is nicely illustrated by the locations of the energy levels in similar 
nuclei. Consider a nucleus like B11 (boron-eleven), which is composed of five 
protons and six neutrons. In the nucleus the eleven particles interact with one 
another in a most complicated dance. Now, there is one configuration of all the 
possible interactions which has the lowest possible energy; this is the normal state 
of the nucleus, and is called the ground state. If the nucleus is disturbed (for exam¬ 
ple, by being struck by a high-energy proton or other particle) it can be put into 
any number of other configurations, called excited states, each of which will have 
a characteristic energy that is higher than that of the ground state. In nuclear 
physics research, such as is carried on with Van de Graaff generator (for example, 
in Caltech’s Kellogg and Sloan Laboratories), the energies and other properties 
of these excited states are determined by experiment. The energies of the fifteen 
lowest known excited states of B11 are shown in a one-dimensional graph on the 
left half of Fig. 8-7. The lowest horizontal line represents the ground state. 
The first excited state has an energy 2.14 Mev higher than the ground state, 
the next an energy 4.46 Mev higher than the ground state, and so on. The study 
of nuclear physics attempts to find an explanation for this rather complicated 
pattern of energies; there is as yet, however, no complete general theory of 
such nuclear energy levels. 

If we replace one of the neutrons in B11 with a proton, we have the nucleus 
of an isotope of carbon, C11. The energies of the lowest sixteen excited states of 
C11 have also been measured; they are shown in the right half of Fig. 8-7. 
(The broken lines indicate levels for which the experimental information is 
questionable.) 

Looking at Fig. 8-7, we see a striking similarity between the pattern of the 
energy levels in the two nuclei. The first excited states are about 2 Mev above the 
ground states. There is a large gap of about 2.3 Mev to the second excited state, 
then a small jump of only 0.5 Mev to the third level. Again, between the fourth 
and fifth levels, a big jump; but between the fifth and sixth a tiny separation of the 

b 

• <> a <> 
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C£> Cl> 
Fig. 8-6. The force between two 

protons depends on every possible 

parameter. 

Fig. 8-7. The energy levels of B11 
and C11 (energies in Mev). The ground 
state of C11 is 1.982 Mev higher than 
that of B11. 
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order of 0.1 Mev. And so on. After about the tenth level, the correspondence 
seems to become lost, but can still be seen if the levels are labeled with their other 
defining characteristics—for instance, their angular momentum and what they do 
to lose their extra energy. 

The striking similarity of the pattern of the energy levels of B11 and C11 is 
surely not just a coincidence. It must reveal some physical law. It shows, in fact, 
that even in the complicated situation in a nucleus, replacing a neutron by a proton 
makes very little change. This can mean only that the neutron-neutron and proton- 
proton forces must be nearly identical. Only then would we expect the nuclear 
configurations with five protons and six neutrons to be the same as with six protons 
and five neutrons. 

Notice that the properties of these two nuclei tell us nothing about the neutron- 
proton force; there are the same number of neutron-proton combinations in both 
nuclei. But if we compare two other nuclei, such as C14, which has six protons and 
eight neutrons, with N14, which has seven of each, we find a similar correspondence 
of energy levels. So we can conclude that the p-p, n-n, and p-n forces are identical 
in all their complexities. There is an unexpected principle in the laws of nuclear 
forces. Even though the force between each pair of nuclear particles is very compli¬ 
cated, the force between the three possible different pairs is the same. 

But there are some small differences. The levels do not correspond exactly; 
also, the ground state of C11 has an absolute energy (its mass) which is higher than 
the ground state of B11 by 1.982 Mev. All the other levels are also higher in 
absolute energy by this same amount. So the forces are not exactly equal. But 
we know very well that the complete forces are not exactly equal; there is an elec¬ 
trical force between two protons because each has a positive charge, while between 
two neutrons there is no such electrical force. Can we perhaps explain the differ¬ 
ences between B11 and C11 by the fact that the electrical interaction of the protons 
is different in the two cases? Perhaps even the remaining minor differences in the 
levels are caused by electrical effects? Since the nuclear forces are so much stronger 
than the electrical force, electrical effects would have only a small perturbing effect 
on the energies of the levels. 

In order to check this idea, or rather to find out what the consequences of this 
idea are, we first consider the difference in the ground-state energies of the two 
nuclei. To take a very simple model, we suppose that the nuclei are spheres of 
radius r (to be determined), containing Z protons. If we consider that a nucleus 
is like a sphere with uniform charge density, we would expect the electrostatic 
energy (from Eq. 8.7) to be 

TT   3 (2^f«) /O 
U-5W* 0’ 

where qe is the elementary charge of the proton. Since Z is five for B11 and six for 
C11, their electrostatic energies would be different. 

With such a small number of protons, however, Eq. (8.22) is not quite correct. 
If we compute the electrical energy between all pairs of protons, considered as points 
which we assume to be nearly uniformly distributed throughout the sphere, we 
find that in Eq. (8.22) the quantity Z2 should be replaced by Z(Z — 1), so the 
energy is 

= 3 Z(Z - 1 )g2 = 3 Z(Z - l)e2 
5 47reor 5 r 

If we knew the nuclear radius /*, we could use (8.23) to find the electrostatic energy 
difference between B11 and C11. But let’s do the opposite; let's instead use the 
observed energy difference to compute the radius, assuming that the energy differ¬ 
ence is all electrostatic in origin. 

That is, however, not quite right. The energy difference of 1.982 Mev between 
the ground states of B11 and C11 includes the rest energies—that is, the energy 
me2—of all the particles. In going from B11 to C11, we replace a neutron by a 
proton, which has less mass. So part of the energy difference is the difference in 
the rest energies of a neutron and a proton, which is 0.784 Mev. The difference, 
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to be accounted for by electrostatic energy, is thus more than 1.982 Mev; it is 

1.982 + 0.784 = 2.786 Mev. 

Using this energy in Eq. (8.23), for the radius of either B11 or C11 we find 

r = 3.12 X 10'13 cm. (8.24) 

Does this number have any meaning? To see whether it does, we should 
compare it with some other determination of the radius of these nuclei. For 
example, we can make another measurement of the radius of a nucleus by seeing 
how it scatters fast particles. From such measurements it has been found, in fact, 
that the density of matter in all nuclei is nearly the same, i.e., their volumes are 
proportional to the number of particles they contain. If we let A be the number of 
protons and neutrons in a nucleus (a number very nearly proportional to its mass), 
it is found that its radius is given by 

r = AV*r0i (8.25) 
where 

r0 = 1.2 X 10'13 cm. (8.26) 

From these measurements we find that the radius of a B11 (or a C1 x) nucleus 
is expected to be 

r = (1.2 X 10'13)(11)1/3 = 2.7 X 10'13cm. 

Comparing this result with (8.24), we see that our assumptions that the 
energy difference between B11 and C11 is electrostatic is fairly good; the dis¬ 
crepancy is only about 15% (not bad for our first nuclear computation!). 

The reason for the discrepancy is probably the following. According to the 
current understanding of nuclei, an even number of nuclear particles—in the case 
of B11, five neutrons together with five protons—makes a kind of core; when one 
more particle is added to this core, it revolves around on the outside to make a new 
spherical nucleus, rather than being absorbed. If this is so, we should have taken 
a different electrostatic energy for the additional proton. We should have taken 
the excess energy of C11 over B11 to be just 

Znql 

4ir€oa ’ 

which is the energy needed to add one more proton to the outside of the core. 
This number is just 5/6 of what Eq. (8.23) predicts, so the new prediction for the 
radius is 5/6 of (8.24), which is in much closer agreement with what is directly 

measured. 
We can draw two conclusions from this agreement. One is that the electrical 

laws appear to be working at dimensions as small as 10'13 cm. The other is that 
we have verified the remarkable coincidence that the nonelectrical part of the forces 
between proton and proton, neutron and neutron, and proton and neutron are 
all equal. 

8-5 Energy in the electrostatic field 

We now consider other methods of calculating electrostatic energy. They can 
all be derived from the basic relation Eq. (8.3), the sum, over all pairs of charges, 
of the mutual energies of each charge-pair. First we wish to write an expression 
for the energy of a charge distribution. As usual, we consider that each volume 
element dV contains the element of charge p dV. Then Eq. (8.3) should be written 

v-l2fl^;dr'dy» (8-27) 
all 

space 
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Notice the factor which is introduced because in the double integral over dV\ 
and dV2 we have counted all pairs of charge elements twice. (There is no convenient 
way of writing an integral that keeps track of the pairs so that each pair is counted 
only once.) Next we notice that the integral over dV2 in (8.27) is just the potential 
at (1). That is, 

/ 4^ 
so that (8.27) can be written as 

U=jfp( WDdVi- 

Or, since the point (2) no longer appears, we can simply write 

U = p<t> dV. (8.28) 

This equation can be interpreted as follows. The potential energy of the charge 
p dV is the product of this charge and the potential at the same point. The total 
energy is therefore the integral over <pp dV. But there is again the factor It is 
still required because we are counting energies twice. The mutual energies of two 
charges is the charge of one times the potential at it due to the other. Or, it can be 
taken as the second charge times the potential at it from the first. Thus for two 
point charges we would write 

u = q.m = «i 4^ 

or 

Notice that we could also write 

U = *fei*(l) + ffatf?)]. (8.29) 

The integral in (8.28) corresponds to the sum of both terms in the brackets of 
(8.29). That is why we need the factor 

An interesting question is: Where is the electrostatic energy located? One 
might also ask: Who cares? What is the meaning of such a question? If there is 
a pair of interacting charges, the combination has a certain energy. Do we need 
to say that the energy is located at one of the charges or the other, or at both, or in 
between? These questions may not make sense because we really know only that 
the total energy is conserved. The idea that the energy is located somewhere is 
not necessary. 

Yet suppose that it did make sense to say, in general, that energy is located 
at a certain place, as it does for heat energy. We might then extend our principle 
of the conservation of energy with the idea that if the energy in a given volume 
changes, we should be able to account for the change by the flow of energy into 
or out of that volume. You realize that our early statement of the principle of the 
conservation of energy is still perfectly all right if some energy disappears at one 
place and appears somewhere else far away without anything passing (that is, with¬ 
out any special phenomena occurring) in the space between. We are, therefore, 
now discussing an extension of the idea of the conservation of energy. We might 
call it a principle of the local conservation of energy. Such a principle would say 
that the energy in any given volume changes only by the amount that flows into or 
out of the volume. It is indeed possible that energy is conserved locally in such a 
way. If it is, we would have a much more detailed law than the simple statement 
of the conservation of total energy. It does turn out that in nature energy is 
conserved locally. We can find formulas for where the energy is located and how it 
travels from place to place. 

There is also a physical reason why it is imperative that we be able to say 
where energy is located. According to the theory of gravitation, all mass is a source 
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of gravitational attraction. We also know, by E ~ me2, that mass and energy are 
equivalent. All energy is, therefore, a source of gravitational force. If we could not 
locate the energy, we could not locate all the mass. We would not be able to say 
where the sources of the gravitational field are located. The theory of gravitation 
would be incomplete. 

If we restrict ourselves to electrostatics there is really no way to tell where the 
energy is located. The complete Maxwell equations of electrodynamics give us 
much more information (although even then the answer is, strictly speaking, not 
unique.) We will therefore discuss this question in detail again in a later chapter. 
We will give you now only the result for the particular case of electrostatics. 
The energy is located in space, where the electric field is. This seems reasonable 
because we know that when charges are accelerated they radiate electric fields. 
We would like to say that when light or radiowaves travel from one point to another, 
they carry their energy with them. But there are no charges in the waves. So we 
would like to locate the energy where the electromagnetic field is and not at the 
charges from which it came. We thus describe the energy, not in terms of the 
charges, but in terms of the fields they produce. We can, in fact, show that Eq. 
(8.28) is numerically equal to 

U=^Je-EcIV. (8.30) 

We can then interpret this formula as saying that when an electric field is present, 
there is located in space an energy whose density (energy per unit volume) is 

u = ^E-E (8.31) 

This idea is illustrated in Fig. 8-8. 
To show that Eq. (8.30) is consistent with our laws of electrostatics, we begin 

by introducing into Eq. (8.28) the relation between p and $ that we obtained in 
Chapter 6: 

P = — e0 V2<t>. 
We get 

V = J<l>V2^dV. (8.32) 

Writing out the components of the integrand, we see that 

6^6 - 6 ft2* + ?+ + ?+) 
“ <t>\bY+bp+b^) 

a (, &<t\ /W\2 , a / a*\ _ (d<t>Y _a /, V) _ /a*V 
dx Y dx) \dx/ by V by) \dy) bz \ bz) \dz/ 

= V • V<t>) - • (V0). (8.33) 

0ur energy integral is then 

u = jf (V*) • (V0) dV - J fv ■ (0 v<t>) dv. 

We can use Gauss’ theorem to change the second integral into a surface integral: 

j V (4> v<t>) dv = J (4> V<j>) • n da. (8.34) 

vol. surface 

We evaluate the surface integral in the case that the surface goes to infinity 
(so the volume integrals become integrals over all space), supposing that all the 
charges are located within some finite distance. The simple way to proceed is to 
take a spherical surface of enormous radius R whose center is at the origin of 
coordinates. We know that when we are very far away from all charges, <f> varies 
as \/R and V4> as l/R2. (Both will decrease even faster with R if there the net 

8-11 

Fig. 8-8. Each volume element dV = 
dx dy dz in an electric field contains the 
energy (e0/2)E2 dV. 



charge in the distribution is zero.) Since the surface area of the large sphere in¬ 
creases as R2, we see that the surface integral falls off as (l/R)(\/R2)R2 = (1 /R) 
as the radius of the sphere increases. So if we include all space in our integration 
(R —► oo), the surface integral goes to zero and we have that 

f/=y / / E-Edr. (8.35) 
all all 

space space 

We see that it is possible for us to represent the energy of any charge distribution 
as being the integral over an energy density located in the field. 

8-6 The energy of a point charge 

Our new relation, Eq. (8.35), says that even a single point charge q will have 
some electrostatic energy. In this case, the electric field is given by 

F = q 
47re0r2 

So the energy density at the distance r from the charge is 

6o E2 = q2 
2 327r2e0r4 

We can take for an element of volume a spherical shell of thickness dr and area 
4trr2. The total energy is 

*-/ 87re0r2 
dr = 

87T6o r r=0 
r=0 

(8.36) 

Now the limit at r = oo gives no difficulty. But for a point charge we are 
supposed to integrate down to r = 0, which gives an infinite integral. Equation 
(8.35) says that there is an infinite amount of energy in the field of a point charge, 
although we began with the idea that there was energy only between point charges. 
In our original energy formula for a collection of point charges (Eq. 8.3), we did 
not include any interaction energy of a charge with itself. What has happened is 
that when we went over to a continuous distribution of charge in Eq. (8.27), we 
counted the energy of interaction of every infinitesimal charge with all other 
infinitesimal charges. The same account is included in Eq. (8.35), so when we 
apply it to a finite point charge, we are including the energy it would take to 
assemble that charge from infinitesimal parts. You will notice, in fact, that we 
would also get the result in Eq. (8.36) if we used our expression (8.11) for the energy 
of a charged sphere and let the radius tend toward zero. 

We must conclude that the idea of locating the energy in the field is incon¬ 
sistent with the assumption of the existence of point charges. One way out of the 
difficulty would be to say that elementary charges, such as an electron, are not 
points but are really small distributions of charge. Alternatively, we could say 
that there is something wrong in our theory of electricity at very small distances, 
or with the idea of the local conservation of energy. There are difficulties with 
either point of view. These difficulties have never been overcome; they exist to this 
day. Sometime later, when we have discussed some additional ideas, such as the 
momentum in an electromagnetic field, we will give a more complete account of 
these fundamental difficulties in our understanding of nature. 
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9 

Electricity in the A tmoaphere 

9-1 The electric potential gradient of the amosphere 

On an ordinary day over flat desert country, or over the sea, as one goes up¬ 
ward from the surface of the ground the electric potential increases by about 100 
volts per meter. Thus there is a vertical electric field E of 100 volts/m in the air. The 
sign of the field corresponds to a negative charge on the earth’s surface. This 
means that outdoors the potential at the height of your nose is 200 volts higher 
than the potential at your feet! You might ask: “Why don’t we just stick a pair of 
electrodes out in the air one meter apart and use the 100 volts to power our electric 
lights?” Or you might wonder: “If there is really a potential difference of 200 
volts between my nose and my feet, why is it I don’t get a shock when I go out into 
the street?” 

We will answer the second question first. Your body is a relatively good 
conductor. If you are in contact with the ground, you and the ground will tend to 
make one equipotential surface. Ordinarily, the equipotentials are parallel to the 
surface, as shown in Fig. 9-1 (a), but when you are there, the equipotentials are 
distorted, and the field looks somewhat as shown in Fig. 9-1 (b). So you still have 
very nearly zero potential difference between your head and your feet. There are 
charges that come from the earth to your head, changing the field. Some of them 
may be discharged by ions collected from the air, but the current of these is very 
small because air is a poor conductor. 

9-1 The electric potential gradient 
of the atmosphere 

9-2 Electric currents in the 
atmosphere 

9-3 Origin of the atmospheric 
currents 

9-4 Thunderstorms 

9-5 The mechanism of charge 
separation 

9-6 Lightning 

Reference: Chalmers, J. Alan, Atmos¬ 
pheric Electricity, Pergamon 
Press, London (1957), 
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Fig. 9-1. (a) The potential distribution above the earth, (b) The potential 
distribution near a ffian~ih~aiTopen flat place. 

How can we measure such a field if the field is changed by putting something 
there? There are several ways. One way is to place an insulated conductor at some 
distance above the ground and leave it there until it is at the same potential as the 
air. If we leave it long enough, the very small conductivity in the air will let the 
charges leak off (or onto) the conductor until it comes to the potential at its level. 
Then we can bring it back to the ground, and measure the shift of its potential as 
we do so. A faster way is to let the conductor be a bucket of water with a small 
leak. As the water drops out, it carries away any excess charges and the bucket 
will approach the same potential as the air. (The charges, as you know, reside on 
the surface, and as the drops come off “pieces of surface” break off.) We can meas¬ 
ure the potential of the bucket with an electrometer. 

9-1 



E 

CONNECTION 
TO GROUND 

7 / v 7 —7-7- 

GROUND 

METAL PLATE 

'///?//V 
(o) 

.COVER PLATE B 

There is another way to directly measure the potential gradient. Since there 
is an electric field, there is a surface charge on the earth (tr = €0£). If we place 
a flat metal plate at the earth’s surface and ground it, negative charges appear on 
it (Fig. 9-2a). If this plate is now covered by another grounded conducting cover 2?, 
the charges will appear on the cover, and there will be no charges on the original 
plate A. If we measure the charge that flows from plate A to the ground (by, say, 
a galvanometer in the grounding wire) as we cover it, we can find the surface 
charge density that was there, and therefore also find the electric field. 

Having suggested how we can measure the electric field in the atmosphere, 
we now continue our description of it. Measurements show, first of all, that the 
field continues to exist, but gets weaker, as one goes up to high altitudes. By about 
50 kilometers, the field is very small, so most of the potential change (the integral 
of E) is at lower altitudes. The total potential difference from the surface of the 
earth to the top of the atmosphere is about 400,000 volts. 

9-2 Electric currents in the atmosphere 

Fig. 9-2. (a) A grounded metal plate 
will have the same surface charge as the 
earth, (b) If the plate is covered with a 
grounded conductor it will have no 

surface charge. 

Fig. 9-3. Measuring the conductivity 
of air due to the motion of ions. 

Another thing that can be measured, in addition to the potential gradient, is 
the current in the atmosphere. The current density is small—about 10 micromicro¬ 
amperes crosses each square meter parallel to the earth. The air is evidently not a 
perfect insulator, and because of this conductivity, a small current—caused by the 
electric field we have just been describing—passes from the sky down to the earth. 

Why does the atmosphere have conductivity? Here and there among the air 
molecules there is an ion—a molecule of oxygen, say, which has acquired an 
extra electron, or perhaps lost one. These ions do not stay as single molecules; 
because of their electric field they usually accumulate a few other molecules around 
them. Each ion then becomes a little lump which, along with other lumps, drifts 
in the field—moving slowly upward or downward—making the observed current. 
Where do the ions come from? It was first guessed that the ions were produced by 
the radioactivity of the earth. (It was known that the radiation from radioactive 
materials would make air conducting by ionizing the air molecules.) Particles 
like £-rays coming out of the atomic nuclei are moving so fast that they tear elec¬ 
trons from the atoms, leaving ions behind. This would imply, of course, that if 
we were to go to higher altitudes, we should find less ionization, because the radio¬ 
activity is all in the dirt on the ground—in the traces of radium, uranium, po¬ 
tassium, etc. 

To test this theory, some physicists carried an experiment up in balloons to 
measure the ionization of the air (Hess, in 1912) and discovered that the opposite 
was true—the ionization per unit volume increased with altitude! (The apparatus 
was like that of Fig. 9-3. The two plates were charged periodically to the potential 
V. Due to the conductivity of the air, the plates slowly discharged; the rate of 
discharge was measured with the electrometer.) This was a most mysterious 
result—the most dramatic finding in the entire history of atmospheric electricity. 
It was so dramatic, in fact, that it required a branching off of an entirely new 
subject—cosmic rays. Atmospheric electricity itself remained less dramatic. 
Ionization was evidently being produced by something from outside the earth; 
the investigation of this source led to the discovery of the cosmic rays. We will 
not discuss the subject of cosmic rays now, except to say that they maintain the 
supply of ions. Although the ions are being swept away all the time, new ones are 
being created by the cosmic-ray particles coming from the outside. 

To be precise, we must say that besides the ions made of molecules, there are 
also other kinds of ions. Tiny pieces of dirt, like extremely fine bits of dust, float 
in the air and become charged. They are sometimes called ‘‘nuclei.” For example, 
when a wave breaks in the sea, little bits of spray are thrown into the air. When 
one of these drops evaporates, it leaves an infinitesimal crystal of NaCl floating in 
the air. These tiny crystals can then pick up charges and become ions; they 
are called “large ions.” 

The small ions—those formed by cosmic rays—are the most mobile. Because 
they are so small, they move rapidly through the air—with a speed of about 1 
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cm/sec in a field of 100 volts/meter, or 1 volt/cm. The much bigger and heavier 
ions move much more slowly. It turns out that if there are many “nuclei,” they will 
pick up the charges from the small ions. Then, since the “large ions” move so 
slowly in a field, the total conductivity is reduced. The conductivity of air, there¬ 
fore, is quite variable, since it is very sensitive to the amount of “dirt” there is in it. 
There is much more of such dirt over land—where the winds can blow up dust 
or where man throws all kinds of pollution into the air—than there is over water. 
It is not surprising that from day to day, from moment to moment, from place 
to place, the conductivity near the earth’s surface varies enormously. The voltage 
gradient observed at any particular place on the earth’s surface also varies greatly 
because roughly the same current flows down from high altitudes in different places, 
and the varying conductivity near the earth results in a varying voltage gradient. 

The conductivity of the air due to the drifting of ions also increases rapidly 
with altitude—for two reasons. First of all, the ionization from cosmic rays in¬ 
creases with altitude. Secondly, as the density of air goes down, the mean free path 
of the ions increases, so that they can travel farther in the electric field before they 
have a collision—resulting in a rapid increase of conductivity as one goes up. 

Although the electric current-density in the air is only a few micromicro¬ 
amperes per square meter, there are very many square meters on the earth’s surface. 
The total electric current reaching the earth’s surface at any time is very nearly 
constant at 1800 amperes. This current, of course, is “positive”—it carries plus 
charges to the earth. So we have a voltage supply of 400,000 volts with a current 
of 1800 amperes—a power of 700 megawatts! 

With such a large current coming down, the negative charge on the earth 
should soon be discharged. In fact, it should take only about half an hour to dis¬ 
charge the entire earth. But the atmospheric electric field has already lasted more 
than a half-hour since its discovery. How is it maintained? What maintains the 
voltage? And between what and the earth? There are many questions. 

The earth is negative, and the potential in the air is positive. If you go high 
enough, the conductivity is so great that horizontally there is no more chance for 
voltage variations. The air, for the scale of times that we are talking about, be¬ 
comes effectively a conductor. This occurs at a height in the neighborhood of 50 
kilometers. This is not as high as what is called the “ionosphere,” in which there 
are very large numbers of ions produced by photoelectricity from the sun. Never¬ 
theless, for our discussions of atmospheric electricity, the air becomes sufficiently 
conductive at about 50 kilometers that we can imagine that there is practically a 
perfect conducting surface at this height, from which the currents come down. 
Our picture of the situation is shown in Fig. 9-4. The problem is: How is the 
positive charge maintained there? How is it pumped back? Because if it comes 
down to the earth, it has to be pumped back somehow. That was one of the 
greatest puzzles of atmospheric electricity for quite a while. 

Each piece of information we can get should give a clue or, at least, tell you 
something about it. Here is an interesting phenomenon: If we measure the current 
(which is more stable than the potential gradient) over the sea, for instance, or in 
careful conditions, and average very carefully so that we get rid of the irregularities, 
we discover that there is still a daily variation. The average of many measurements 
over the oceans has a variation with time roughly as shown in Fig. 9-5. The 
current varies by about ±15 percent, and it is largest at 7:00 p.m. in London. The 
strange part of the thing is that no matter where you measure the current—in the 
Atlantic Ocean, the Pacific Ocean, or the Arctic Ocean—it is at its peak value 
when the clocks in London say 7:00 p.m.! All over the world the current is at its 
maximum at 7:00 p.m. London time and it is at a minimum at 4:00 a.m. London 
time. In other words, it depends upon the absolute time on the earth, not upon 
the local time at the place of observation. In one respect this is not mysterious; 
it checks with our idea that there is a very high conductivity laterally at the top, 
because that makes it impossible for the voltage difference from the ground to 
the top to vary locally. Any potential variations should be worldwide, as indeed 
they are. What we now know, therefore, is that the voltage at the “top” surface 
is dropping and rising by 15 percent with the absolute time on the earth. 
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Fig. 9-4, Typical electrical 
tions in a clear atmosphere. 
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Fig. 9-5. The average daily varia¬ 
tion of the atmospheric potential gradient 
on a clear day over the oceans; referred 
to Greenwich time. 
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9-3 Origin of the atmospheric currents 

We must next talk about the source of the large negative currents which 
must be flowing from the “top” to the surface of the earth to keep charging it up 
negatively. Where are the batteries that do this? The “battery” is shown in Fig. 
9-6. It is the thunderstorm and its lightning. It turns out that the bolts of lightning 
do not “discharge” the potential we have been talking about (as you might at 
first guess). Lightning storms carry negative charges to the earth. When a lightning 
bolt strikes, ten-to-one it brings down negative charges to the earth in large amounts. 
It is the thunderstorms throughout the world that are charging the earth with an 
average of 1800 amperes, which is then being discharged through regions of 

fair weather. 
There are about 300 thunderstorms per day all over the earth, and we can 

think of them as batteries pumping the electricity to the upper layer and maintain¬ 
ing the voltage difference. Then take into account the geography of the earth 
there are thunderstorms in the afternoon in Brazil, tropical thunderstorms in 
Africa, and so forth. People have made estimates of how much lightning is striking 
world-wide at any time, and perhaps needless to say, their estimates more or less 
agree with the voltage difference measurements: the total amount of thunderstorm 
activity is highest on the whole earth at about 7:00 p.m. in London. However, 
the thunderstorm estimates are very difficult to make and were made only after 
it was known that the variation should have occurred. These things are very 
difficult because we don’t have enough observations on the seas and over all parts 
of the world to know the number of thunderstorms accurately. But those people 
who think they “do it right” obtain the result that there is a peak in the activity 

at 7:00 p.m. Greenwich Mean Time. 

Fig. 9—6. The mechanism that generates the atmospheric electric field. [Photo by William L. Widmayer.] 
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In order to understand how these batteries work, we will look at a thunder¬ 
storm in detail. What is going on inside a thunderstorm? We will describe this 
insofar as it is known. As we get into this marvelous phenomenon of real nature— 
instead of the idealized spheres of perfect conductors inside of other spheres that 
we can solve so neatly—we discover that we don’t know very much. Yet it is really 
quite exciting. Anyone who has been in a thunderstorm has enjoyed it, or has been 
frightened, or at least has had some emotion. And in those places in nature where 
we get an emotion, we find that there is generally a corresponding complexity and 
mystery about it. It is not going to be possible to describe exactly how a thunder¬ 
storm works, because we do not yet know very much. But we will try to describe 
a little bit about what happens. 

9-4 Thunderstorms 

In the first place, an ordinary thunderstorm is made up of a number of “cells” 
fairly close together, but almost independent of each other. So it is best to analyze 
one cell at a time. By a “cell” we mean a region with a limit area in the horizontal 
direction in which all of the basic processes occur. Usually there are several cells 
side by side, and in each one about the same thing is happening, although perhaps 
with a different timing. Figure 9-7 indicates in an idealized fashion what such a 
cell looks like in the early stage of the thunderstorm. It turns out that in a certain 
place in the air, under certain conditions which we shall describe, there is a general 
rising of the air, with higher and higher velocities near the top. As the warm, 
moist air at the bottom rises, it cools and condenses. In the figure the little crosses 
indicate snow and the dots indicate rain, but because the updraft currents are great 
enough and the drops are small enough, the snow and rain do not come down at 
this stage. This is the beginning stage, and not the real thunderstorm yet—in the 
sense that we don't have anything happening at the ground. At the same time that 
the warm air rises, there is an entrainment of air from the sides—an important 
point which was neglected for many years. Thus it is not just the air from below 
which is rising, but also a certain amount of other air from the sides. 

Why does the air rise like this? As you know, when you go up in altitude the 
air is colder. The ground is heated by the sun, and the re-radiation of heat to the 
sky comes from water vapor high in the atmosphere; so at high altitudes the air 
is cold—very cold—whereas lower down it is warm. You may say, “Then it’s 
very simple. Warm air is lighter than cold; therefore the combination is mechan¬ 
ically unstable and the warm air rises.” Of course, if the temperature is different 
at different heights, the air is unstable thermodynamically. Left to itself infinitely 
long, the air would all come to the same temperature. But it is not left to itself; 
the sun is always shining (during the day). So the problem is indeed not one of 
thermodynamic equilibrium, but of mechanical equilibrium. Suppose we plot—as 
in Fig. 9-8—the temperature of the air against height above the ground. In 
ordinary circumstances we would get a decrease along a curve like the one labeled 
(a); as the height goes up, the temperature goes down. How can the atmosphere 
be stable? Why doesn’t the hot air below simply rise up into the cold air? The 
answer is this: if the air were to go up, its pressure would go down, and if we 
consider a particular parcel of air going up, it would be expanding adiabatically. 
(There would be no heat coming in or out because in the large dimensions con¬ 
sidered here, there isn’t time for much heat flow.) Thus the parcel of air would 
cool as it rises. Such an adiabatic process would give a temperature-height relation¬ 
ship like curve (b) in Fig. 9-8. Any air which rose from below would be colder 
than the environment it goes into. Thus there is no reason for the hot air below 
to rise; if it were to rise, it would cool to a lower temperature than the air already 
there, would be heavier than the air there, and would just want to come down again. 
On a good, bright day with very little humidity there is a certain rate at which the 
temperature in the atmosphere falls, and this rate is, in general, lower than the 
“maximum stable gradient,” which is represented by curve (b). The air is in 
stable mechanical equilibrium. 

Fig. 9-7. A thunderstorm cell in the 
early stages of development. [From U.S. 
Department of Commerce Weather Bureau 

Report, June 1949.] 

Fig. 9-8. Atmospheric temperature, 

(a) Static atmosphere; (b) adiabatic 
cooling of dry air; (c) adiabatic cooling 
of wet air; (d) wet air with some mixing 
of ambient air. 
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Fig. 9-9. A mature thunderstorm ceil. 
[From U.S. Department of Commerce 
Weather Bureau Report, June 1949.] 

On the other hand, if we think of a parcel of air that contains a lot of water 
vapor being carried up into the air, its adiabatic cooling curve will be different. As 
it expands and cools, the water vapor in it will condense, and the condensing water 
will liberate heat. Moist air, therefore, does not cool nearly as much as dry air 
does. So if air that is wetter than the average starts to rise, its temperature will 
follow a curve like (c) in Fig. 9-8. It will cool off somewhat, but will still be warmer 
than the surrounding air at the same level. If we have a region of warm moist 
air and something starts it rising, it will always find itself lighter and warmer than 
the air around it and will continue to rise until it gets to enormous heights. This 
is the machinery that makes the air in the thunderstorm cell rise. 

For many years the thunderstorm cell was explained simply in this manner. 
But then measurements showed that the temperature of the cloud at different 
heights was not nearly as high as indicated by curve (c). The reason is that as the 
moist air “bubble” goes up, it entrains air from the environment and is cooled 
off by it. The temperature-versus-height curve looks more like curve (d), which 
is much closer to the original curve (a) than to curve (c). 

After the convection just described gets under way, the cross section of a 
thunderstorm cell looks like Fig. 9-9. We have what is called a “mature” thunder¬ 
storm. There is a very rapid updraft which, in this stage, goes up to about 10,000 
to 15,000 meters—sometimes even much higher. The thunderheads, with their 
condensation, climb way up out of the general cloud bank, carried by an updraft 
that is usually about 60 miles an hour. As the water vapor is carried up and 
condenses, it forms tiny drops which are rapidly cooled to temperatures below 
zero degrees. They should freeze, but do not freeze immediately—they are “super¬ 
cooled.” Water and other liquids will usually cool well below their freezing points 
before crystallizing if there are no “nuclei” present to start the crystallization 
process. Only if there is some small piece of material present, like a tiny crystal of 
NaCl, will the water drop freeze into a little piece of ice. Then the equilibrium is 
such that the water drops evaporate and the ice crystals grow. Thus at a certain 
point there is a rapid disappearance of the water and a rapid buildup of ice. Also, 
there may be direct collisions between the water drops and the ice—collisions in 
which the supercooled water becomes attached to the ice crystals, which causes it 
to suddenly crystallize. So at a certain point in the cloud expansion there is a rapid 
accumulation of large ice particles. 

When the ice particles are heavy enough, they begin to fall through the rising 
air—they get too heavy to be supported any longer in the updraft. As they come 
down, they draw a little air with them and start a downdraft. And surprisingly 
enough, it is easy to see that once the downdraft is started, it will maintain itself. 
The air now drives itself down! 

Notice that the curve (d) in Fig. 9-8 for the actual distribution of temperature 
in the cloud is not as steep as curve (c), which applies to wet air. So if we have wet 
air falling, its temperature will drop with the slope of curve (c) and will go below 
the temperature of the environment if it gets down far enough, as indicated by 
curve (e) in the figure. The moment it does that, it is denser than the environment 
and continues to fall rapidly. You say, “That is perpetual motion. First, you argue 
that the air should rise, and when you have it up there, you argue equally well that 
the air should fall.” But it isn’t perpetual motion. When the situation is unstable 
and the warm air should rise, then clearly something has to replace the warm air. 
It is equally true that cold air coming down would energetically replace the warm 
air, but you realize that what is coming down is not the original air. The early 
arguments, that had a particular cloud without entrainment going up and then 
coming down, had some kind of a puzzle. They needed the rain to maintain the 
downdraft—an argument which is hard to believe. As soon as you realize that there 
is a lot of original air mixed in with the rising air, the thermodynamic argument 
shows that there can be a descent of the cold air which was originally at some great 
height. This explains the picture of the active thunderstorm sketched in Fig. 9-9. 

As the air comes down, rain begins to come out of the bottom of the thunder¬ 
storm. In addition, the relatively cold air spreads out when it arrives at the earth’s 
surface. So just before the rain comes there is a certain little cold wind that gives 
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us a forewarning of the coming storm. In the storm itself there are rapid and ir¬ 
regular gusts of air, there is an enormous turbulence in the cloud, and so on. But 
basically we have an updraft, then a downdraft—in general, a very complicated 
process. 

The moment at which precipitation starts is the same moment that the large 
downdraft begins and is the same moment, in fact, when the electrical phenomena 
arise. Before we describe lightning, however, we can finish the story by looking 
at what happens to the thunderstorm cell after about one-half an hour to an hour. 
The cell looks as shown in Fig. 9-10. The updraft stops because there is no longer 
enough warm air to maintain it. The downward precipitation continues for a while, 
the last little bits of water come out, and things get quieter and quieter—although 
there are small ice crystals left way up in the air. Because the winds at very great 
altitude are in different directions, the top of the cloud usually spreads into an 
anvil shape. The cell comes to the end of its life. 

Fig. 9-10. The late phase of a thunderstorm 
cell. [From U.S. Department of Commerce Weather 
Bureau Report, June 1949J 

Fig. 9-11. The distribution of electrical charges in a 
mature thunderstorm cell. [From U.S. Department of Com¬ 
merce Weather Bureau Report, June 1949.] 

9-5 The mechanism of charge separation 

We want now to discuss the most important aspect for our purposes—the 
development of the electrical charges. Experiments of various kinds—including 
flying airplanes through thunderstorms (the pilots who do this are brave men!)— 
tell us that the charge distribution in a thunderstorm cell is something like that 
shown in Fig. 9-11. The top of the thunderstorm has a positive charge, and the 
bottom a negative one—except for a small local region of positive charge in the 
bottom of the cloud, which has caused everybody a lot of worry. No one seems to 
know why it is there, how important it is—whether it is a secondary effect of the 
positive rain coming down, or whether it is an essential part of the machinery. 
Things would be much simpler if it weren’t there. Anyway, the predominantly 
negative charge at the bottom and the positive charge at the top have the correct 
sign for the battery needed to drive the earth negative. The positive charges are 
6 or 7 kilometers up in the air, where the temperature is about — 20°C, whereas 
the negative charges are 3 or 4 kilometers high, where the temperature is between 
zero and — 10°C. 

The charge at the bottom of the cloud is large enough to produce potential 
differences of 20, or 30, or even 100 million volts between the cloud and the earth— 
much bigger than the 0.4 million volts from the “sky” to the ground in a clear 
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Fig. 9-12. A jet of water 

electric field near the nozzle. 

atmosphere. These large voltages break down the air and create giant arc dis¬ 
charges. When the breakdown occurs the negative charges at the bottom of the 
thunderstorm are carried down to the earth in the lightning strokes. 

Now we will describe in some detail the character of the lightning. First of 
all, there are large voltage differences around, so that the air breaks down. There 
are lightning strokes between one piece of a cloud and another piece of a cloud, 
or between one cloud and another cloud, or between a cloud and the earth. In 
each of the independent discharge flashes—the kind of lightning strokes you see— 
there are approximately 20 or 30 coulombs of charge brought down. One question 
is: How long does it take for the cloud to regenerate the 20 or 30 coulombs which 
are taken away by the lightning bolt? This can be seen by measuring, far from a 
cloud, the electric field produced by the cloud’s dipole moment. In such measure¬ 
ments you see a sudden decrease in the field when the lightning strikes, and then 
an exponential return to the previous value with a time constant which is slightly 
different for different cases but which is in the neighborhood of 5 seconds. It takes 
a thunderstorm only 5 seconds after each lightning stroke to build its charge up 
again. That doesn’t necessarily mean that another stroke is going to occur in 
exactly 5 seconds every time, because, of course, the geometry is changed, and so on. 
The strokes occur more or less irregularly, but the important point is that it takes 
about 5 seconds to recreate the original condition. Thus there are approximately 

^ v 4 amperes of current in the generating machine of the thunderstorm. This means 
that any model made to explain how this storm generates its electricity must be one 
with plenty of juice—it must be a big, rapidly operating device. 

Before we go further we shall consider something which is almost certainly 
completely irrelevant, but nevertheless interesting, because it does show the effect 
of an electric field on water drops. We say that it may be irrelevant because it 
relates to an experiment one can do in the laboratory with a stream of water to 
show the rather strong effects of the electric field on drops of water. In a thunder¬ 
storm there is no stream of water; there is a cloud of condensing ice and drops of 
water. So the question of the mechanisms at work in a thunderstorm is probably 
not at all related to what you can see in the simple experiment we will describe. 
If you take a small nozzle connected to a water faucet and direct it upward at a 

with an steeP angle, as in Fig. 9-12, the water will come out in a fine stream that eventually 
breaks up into a spray of fine drops. If you now put an electric field across the 
stream at the nozzle (by bringing up a charged rod, for example), the form of the 
stream will change. With a weak electric field you will find that the stream breaks 
up into a smaller number of large-sized drops. But if you apply a stronger field, 
the stream breaks up into many, many fine drops—smaller than before.* With a 
weak electric field there is a tendency to inhibit the breakup of the stream into 
drops. With a stronger field, however, there is an increase in the tendency to sepa¬ 
rate into drops. 

The explanation of these effects is probably the following. If we have the 
stream of water coming out of the nozzle and we put a small electric field across it 
one side of the water gets slightly positive and the other side gets slightly negative. 
Then, when the stream breaks, the drops on one side may be positive, and those on 
the other side may be negative. They will attract each other and will have a tend¬ 
ency to stick together more than they would have before—the stream doesn’t 
break up as much. On the other hand, if the field is stronger, the charge in each 
one of the drops gets much larger, and there is a tendency for the charge itself to 
help break up the drops through their own repulsion. Each drop will break into 
many smaller ones, each carrying a charge, so that they are all repelled, and 
spread out so rapidly. So as we increase the field, the stream becomes more finely 
separated. The only point we wish to make is that in certain circumstances electric 
fields can have considerable influence on the drops. The exact machinery by 
which something happens in a thunderstorm is not at all known, and is not at all 
necessarily related to what we have just described. We have included it just so that 

* A handy way to observe the sizes of the drops is to let the stream fall on a large thin 
metal plate. The larger drops make a louder noise. 
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you will appreciate the complexities that could come into play. In fact, nobody 
has a theory applicable to clouds based on that idea. 

We would like to describe two theories which have been invented to account 
for the separation of the charges in a thunderstorm. All the theories involve the 
idea that there should be some charge on the precipitation particles and a different 
charge in the air. Then by the movement of the precipitation particles—the water 
or the ice—through the air there is a separation of electric charge. The only ques¬ 
tion is: How does the charging of the drops begin? One of the older theories is 
called the “breaking-drop’* theory. Somebody discovered that if you have a drop 
of water that breaks into two pieces in a windstream, there is positive charge on the 
water and negative charge in the air. This breaking-drop theory has several 
disadvantages, among which the most serious is that the sign is wrong. Second, 
in the large number of temperate-zone thunderstorms which do exhibit lightning, 
the precipitation effects at high altitudes are in ice, not in water. 

From what we have just said, we note that if we could imagine some way for 
the charge to be different at the top and bottom of a drop and if we could also see 
some reason why drops in a high-speed airstream would break up into unequal 
pieces—a large one in the front and a smaller one in the back because of the motion 
through the air or something—we would have a theory. (Different from any known 
theory!) Then the small drops would not fall through the air as fast as the big 
ones, because of the air resistance, and we would get a charge separation. You 
see, it is possible to concoct all kinds of possibilities. 

One of the more ingenious theories, which is more satisfactory in many re¬ 
spects than the breaking-drop theory, is due to C. T. R. Wilson. We will describe 
it, as Wilson did, with reference to water drops, although the same phenomenon 
would also work with ice. Suppose we have a water drop that is falling in the elec¬ 
tric field of about 100 volts per meter toward the negatively charged earth. The 
drop will have an induced dipole moment—with the bottom of the drop positive 
and the top of the drop negative, as drawn in Fig. 9-13. Now there are in the air 
the “nuclei” that we mentioned earlier—the large slow-moving ions. (The fast 
ions do not have an important effect here.) Suppose that as a drop comes down, 
it approaches a large ion. If the ion is positive, it is repelled by the positive bottom 
of the drop and is pushed away. So it does not become attached to the drop. 
If the ion were to approach from the top, however, it might attach to the negative, 
top side. But since the drop is falling through the air, there is an air drift relative 
to it, going upwards, which carries the ions away if their motion through the air 
is slow enough. Thus the positive ions cannot attach at the top either. This 
would apply, you see, only to the large, slow-moving ions. The positive ions of 
this type will not attach themselves either to the front or the back of a falling drop. 
On the other hand, as the large, slow, negative ions are approached by a drop, 
they will be attracted and will be caught. The drop will acquire negative charge— 
the sign of the charge having been determined by the original potential difference 
on the entire earth—and we get the right sign. Negative charge will be brought 
down to the bottom part of the cloud by the drops, and the positively charged ions 
which are left behind will be blown to the top of the cloud by the various updraft 
currents. The theory looks pretty good, and it at least gives the right sign. Also it 
doesn’t depend on having liquid drops. We will see, when we learn about polariza¬ 
tion in a dielectric, that pieces of ice will do the same thing. They also will develop 
positive and negative charges on their extremities when they are in an electric field. 

There are, however, some problems even with this theory. First of all, the 
total charge involved in a thunderstorm is very high. After a short time, the supply 
of large ions would get used up. So Wilson and others have had to propose that 
there are additional sources of the large ions. Once the charge separation starts, 
very large electric fields are developed, and in these large fields there may be places 
where the air will become ionized. If there is a highly charged point, or any small 
object like a drop, it may concentrate the field enough to make a “brush discharge.” 
When there is a strong enough electric field—let us say it is positive—electrons 
will fall into the field and will pick up a lot of speed between collisions. Their 
speed will be such that in hitting another atom they will tear electrons off at that 
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Fig. 9-13. C. T. R. Wilson's theory of 
charge separation in a thundercloud. 



Fig. 9-14. Photograph of a lightning 
flash taken with a “Boys" camera. [From 
Schonland, Malan, and Collens, Proc. Roy. 
Soc. London, Vol. 152 (1935).] 

EARTH 

Fig. 9-15. The formation of the "step 
leader." 

atom, leaving positive charges behind. These new electrons also pick up speed 
and collide with more electrons. So a kind of chain reaction or avalanche occurs, 
and there is a rapid accumulation of ions. The positive charges are left near their 
original positions, so the net effect is to distribute the positive charge on the point 
into a region around the point. Then, of course, there is no longer a strong field, 
and the process stops. This is the character of a brush discharge. It is possible that 
the fields may become strong enough in the cloud to produce a little bit of brush 
discharge; there may also be other mechanisms, once the thing is started, to pro¬ 
duce a large amount of ionization. But nobody knows exactly how it works. So 
the fundamental origin of lightning is really not thoroughly understood. We know 
it comes from the thunderstorms. (And we know, of course, that thunder comes 
from the lightning—from the thermal energy released by the bolt.) 

At least we can understand, in part, the origin of atmospheric electricity. Due 
to the air currents, ions, and water drops on ice particles in a thunderstorm, positive 
and negative charges are separated. The positive charges are carried upward to 
the top of the cloud (see Fig. 9-11), and the negative charges are dumped into the 
ground in lightning strokes. The positive charges leave the top of the cloud, enter 
the high-altitude layers of more highly conducting air, and spread throughout the 
earth. In regions of clear weather, the positive charges in this layer are slowly 
conducted to the earth by the ions in the air—ions formed by cosmic rays, by the 
sea, and by man’s activities. The atmosphere is a busy electrical machine! 

9-6 Lightning 

The first evidence of what happens in a lightning stroke was obtained in 
photographs taken with a camera held by hand and moved back and forth with 
the shutter open—while pointed toward a place where lightning was expected. 
The first photographs obtained this way showed clearly that lightning strokes are 
usually multiple discharges along the same path. Later, the “Boys” camera, 
which has two lenses mounted 180° apart on a rapidly rotating disc, was developed. 
The image made by each lens moves across the film—the picture is spread out in 
time. If, for instance, the stroke repeats, there will be two images side by side. 
By comparing the images of the two lenses, it is possible to work out the details 
of the time sequence of the flashes. Figure 9-14 shows a photograph taken with a 
“Boys” camera. 

We will now describe the lightning. Again, we don’t understand exactly how 
it works. We will give a qualitative description of what it looks like, but we won’t 
go into any details of why it does what it appears to do. We will describe only the 
ordinary case of the cloud with a negative bottom over flat country. Its potential 
is much more negative than the earth underneath, so negative electrons will be 
accelerated toward the earth. What happens is the following. It all starts with a 
thing called a “step leader,” which is not as bright as the stroke of lightning. On 
the photographs one can see a little bright spot at the beginning that starts from the 
cloud and moves downward very rapidly—at a sixth of the speed of light! It goes 
only about 50 meters and stops. It pauses for about 50 microseconds, and then 
takes another step. It pauses again and then goes another step, and so on. It 
moves in a series of steps toward the ground, along a path like that shown in Fig. 
9-15. In the leader there are negative charges from the cloud; the whole column 
is full of negative charge. Also, the air is becoming ionized by the rapidly moving 
charges that produce the leader, so the air becomes a conductor along the path 
traced out. The moment the leader touches the ground, we have a conducting 
“wire” that runs all the way up to the cloud and is full of negative charge. Now, 
at last, the negative charge of the cloud can simply escape and run out. The 
electrons at the bottom of the leader are the first ones to realize this; they dump 
out, leaving positive charge behind that attracts more negative charge from higher 
up in the leader, which in its turn pours out, etc. So finally all the negative charge 
in a part of the cloud runs out along the column in a rapid and energetic way. 
So the lightning stroke you see runs upwards from the ground, as indicated in Fig. 
9-16. In fact, this main stroke—by far the brightest part—is called the return 
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stroke. It is what produces the very bright light, and the heat, which by causing 
a rapid expansion of the air makes the thunder clap. 

The current in a lightning stroke is about 10,000 amperes at its peak, and it 
carries down about 20 coulombs. 

But we are still not finished. After a time of, perhaps, a few hundredths of a 
second, when the return stroke has disappeared, another leader comes down. 
But this time there are no pauses. It is called a “dark leader” this time, and it 
goes all the way down—from top to bottom in one swoop. It goes full steam on 
exactly the old track, because there is enough debris there to make it the easiest 
route. The new leader is again full of negative charge. The moment it touches the 
ground—zing!—there is a return stroke going straight up along the path. So you 
see the lightning strike again, and again, and again. Sometimes it strikes only 
once or twice, sometimes five or ten times—once as many as 42 times on the same 
track was seen—but always in rapid succession. 

Sometimes things get even more complicated. For instance, after one of its 
pauses the leader may develop a branch by sending out two steps—both toward the 
ground but in somewhat different directions, as shown in Fig. 9-15. What happens 
then depends on whether one branch reaches the ground definitely before the other. 
If that does happen, the bright return stroke (of negative charge dumping into the 
ground) works its way up along the branch that touches the ground, and when it 
reaches and passes the branching point on its way up to the cloud, a bright stroke 
appears to go down the other branch. Why? Because negative charge is dumping 
out and that is what lights up the bolt. This charge begins to move at the top of 
the secondary branch, emptying successive, longer pieces of the branch, so the 
bright lightning bolt appears to work its way down that branch, at the same time 
as it works up toward the cloud. If, however, one of these extra leader branches 
happens to have reached the ground almost simultaneously with the original leader, 
it can sometimes happen that the dark leader of the second stroke will take the 
second branch. Then you will see the first main flash in one place and the second 
flash in another place. It is a variant of the original idea. 

Also, our description is oversimplified for the region very near the ground. 
When the step leader gets to within a hundred meters or so from the ground, there 
is evidence that a discharge rises from the ground to meet it. Presumably, the 
field gets big enough for a brush-type discharge to occur. If, for instance, there is 
a sharp object, like a building with a point at the top, then as the leader comes 
down nearby the fields are so large that a discharge starts from the sharp point 
and reaches up to the leader. The lightning tends to strike such a point. 

It has apparently been known for a long time that high objects are struck by 
lightning. There is a quotation of Artabanis, the advisor to Xerxes, giving his 
master advice on a contemplated attack on the Greeks—during Xerxes’ campaign 
to bring the entire known world under the control of the Persians. Artabanis said, 
“See how God with his lightning always smites the bigger animals and will not 
suffer them to wax insolent, while these of a lesser bulk chafe him not. How like¬ 
wise his bolts fall ever on the highest houses and tallest trees.” And then he explains 
the reason: “So, plainly, doth he love to bring down everything that exalts itself.” 

Do you think—now that you know a true account of lightning striking tall 
trees—that you have a greater wisdom in advising kings on military matters than 
did Artabanis 2300 years ago? Do not exalt yourself. You could only do it less 
poetically. 

Fig. 9-16. The return lightning stroke 
runs back up the path made by the leader. 
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10 

Dielectrics 

10-1 The dielectric constant 

Here we begin to discuss another of the peculiar properties of matter under 
the influence of the electric field. In an earlier chapter we considered the behavior 
of conductors, in which the charges move freely in response to an electric field to 
such points that there is no field left inside a conductor. Now we will discuss 
insulators, materials which do not conduct electricity. One might at first believe 
that there should be no effect whatsoever. However, using a simple electroscope 
and a parallel-plate capacitor, Faraday discovered that this was not so. His experi¬ 
ments showed that the capacitance of such a capacitor is increased when an in¬ 
sulator is put between the plates. If the insulator completely fills the space between 
the plates, the capacitance is increased by a factor k which depends only on the 
nature of the insulating material. Insulating materials are also called dielectrics; 

the factor k is then a property of the dielectric, and is called the dielectric constant. 

The dielectric constant of a vacuum is, of course, unity. 
Our problem now is to explain why there is any electrical effect if the insulators 

are indeed insulators and do not conduct electricity. We begin with the experi¬ 
mental fact that the capacitance is increased and try to reason out what might 
be going on. Consider a parallel-plate capacitor with some charges on the surfaces 
of the conductors, let us say negative charge on the top plate and positive charge on 
the bottom plate. Suppose that the spacing between the plates is d and the area of 
each plate is A. As we have proved earlier, the capacitance is 

and the charge and voltage on the capacitor are related by 

Q = CV. (10.2) 

Now the experimental fact is that if we put a piece of insulating material like 
lucite or glass between the plates, we find that the capacitance is larger. That means, 
of course, that the voltage is lower for the same charge. But the voltage difference 
is the integral of the electric field across the capacitor; so we must conclude that 
inside the capacitor, the electric field is reduced even though the charges on the 
plates remain unchanged. 

10-1 The dielectric constant 

10-2 The polarization vector P 

10-3 Polarization charges 

10-4 The electrostatic equations 
with dielectrics 

10-5 Fields and forces with 
dielectrics 

Fig. 10-1. A parallel-plate capaci¬ 
tor with a dielectric. The lines of E are 
shown. 

Now how can that be? We have a law due to Gauss that tells us that the flux 
of the electric field is directly related to the enclosed charge. Consider the gaussian 
surface S shown by broken lines in Fig. 10-1. Since the electric field is reduced 
with the dielectric present, we conclude that the net charge inside the surface must 
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be lower than it would be without the material. There is only one possible conclu¬ 
sion, and that is that there must be positive charges on the surface of the dielectric. 
Since the field is reduced but is not zero, we would expect this positive charge to 
be smaller than the negative charge on the conductor. So the phenomena can be 
explained if we could understand in some way that when a dielectric material is 
placed in an electric field there is positive charge induced on one surface and nega¬ 
tive charge induced on the other. 

Fig. 10-2. If we put a conducting 

plate in the gap of a parallel-plate con¬ 
denser, the induced charges reduce the 
field in the conductor to zero. 

CONDUCTOR 
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We would expect that to happen for a conductor. For example, suppose that 
we had a capacitor with a plate spacing d, and we put between the plates a neutral 
conductor whose thickness is b, as in Fig. 10-2. The electric field induces a positive 
charge on the upper surface and a negative charge on the lower surface, so there is 
no field inside the conductor. The field in the rest of the space is the same as it 
was without the conductor, because it is the surface density of charge divided by 
e0; but the distance over which we have to integrate to get the voltage (the potential 
difference) is reduced. The voltage is 

v = f (d - b). 
€0 

The resulting equation for the capacitance is like Eq. (10.1), with (d — b) sub¬ 
stituted for d: 

_ 
" d[l - (b/d)] * 

(10.3) 

Fig. 10-3, A model of a dielectric: 
small conducting spheres embedded in 
an idealized insulator. 

The capacitance is increased by a factor which depends upon (b/d), the proportion 
of the volume which is occupied by the conductor. 

This gives us an obvious model for what happens with dielectrics—that inside 
the material there are many little sheets of conducting material. The trouble with 
such a model is that it has a specific axis, the normal to the sheets, whereas most 
dielectrics have no such axis. However, this difficulty can be eliminated if we 
assume that all insulating materials contain small conducting spheres separated 
from each other by insulation, as shown in Fig. 10-3. The phenomenon of the 
dielectric constant is explained by the effect of the charges which would be induced 
on each sphere. This is one of the earliest physical models of dielectrics used to 
explain the phenomenon that Faraday observed. More specifically, it was assumed 
that each of the atoms of a material was a perfect conductor, but insulated from 
the others. The dielectric constant k would depend on the proportion of space 
which was occupied by the conducting spheres. This is not, however, the model 
that is used today. 

10-2 The polarization vector P 

If we follow the above analysis further, we discover that the idea of regions 
of perfect conductivity and insulation is not essential. Each of the small spheres 
acts like a dipole, the moment of which is induced by the external field. The only 
thing that is essential to the understanding of dielectrics is that there are many 
little dipoles induced in the material. Whether the dipoles are induced because 
there are tiny conducting spheres or for any other reason is irrelevant. 
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Why should a field induce a dipole moment in an atom if the atom is not a 
conducting sphere? This subject will be discussed in much greater detail in the 
next chapter, which will be about the inner workings of dielectric materials. 
However, we give here one example to illustrate a possible mechanism. An atom 
has a positive charge on the nucleus, which is surrounded by negative electrons. 
In an electric field, the nucleus will be attracted in one direction and the electrons in 
the other. The orbits or wave patterns of the electrons (or whatever picture is 
used in quantum mechanics) will be distorted to some extent, as shown in Fig. 10-4; 
the center of gravity of the negative charge will be displaced and will no longer 
coincide with the positive charge of the nucleus. We have already discussed such 
distributions of charge. If we look from a distance, such a neutral configuration 
is equivalent, to a first approximation, to a little dipole. 

It seems reasonable that if the field is not too enormous, the amount of induced 
dipole moment will be proportional to the field. That is, a small field will displace 
the charges a little bit and a larger field will displace them further—and in propor¬ 
tion to the field—unless the displacement gets too large. For the remainder of this 
chapter, it will be supposed that the dipole moment is exactly proportional to the 
field. 

We will now assume that in each atom there are charges q separated by a 
distance 5, so that qh is the dipole moment per atom. (We use h because we are 
already using d for the plate separation.) If there are N atoms per unit volume, 
there will be a dipole moment per unit volume equal to Nqh. This dipole moment 
per unit volume will be represented by a vector, P. Needless to say, it is in the 
direction of the individual dipole moments, i.e., in the direction of the charge 
separation 5: 

P - Nqh. (10.4) 

In general, P will vary from place to place in the dielectric. However, at any 
point in the material, P is proportional to the electric field E. The constant of 
proportionality, which depends on the ease with which the electron are displaced, 
will depend on the kinds of atoms in the material. 

What actually determines how this constant of proportionality behaves, how 
accurately it is constant for very large fields, and what is going on inside different 
materials, we will discuss at a later time. For the present, we will simply suppose 
that there exists a mechanism by which a dipole moment is induced which is 
proportional to the electric field. 

10-3 Polarization charges 

Now let us see what this model gives for the theory of a condenser with a di¬ 
electric. First consider a sheet of material in which there is a certain dipole moment 
per unit volume. Will there be on the average any charge density produced by this? 
Not if P is uniform. If the positive and negative charges being displaced relative 
to each other have the same average density, the fact that they are displaced does 
not produce any net charge inside the volume. On the other hand, if P were larger 
at one place and smaller at another, that would mean that more charge would be 
moved into some region than away from it; we would then expect to get a volume 
density of charge. For the parallel-plate condenser, we suppose that P is uniform, 
so we need to look only at what happens at the surfaces. At one surface the nega¬ 
tive charges, the electrons, have effectively moved out a distance 5; at the other 
surface they have moved in, leaving some positive charge effectively out a distance 
8. As shown in Fig. 10-5, we will have a surface density of charge, which will be 
called the surface polarization charge. 

ELECTRON DISTRIBUTION 

Fig. 10-4. An atom in an electric 
field has its distribution of electrons dis¬ 
placed with respect to the nucleus. 

Fig. 10-5. A dielectric slab in a 
uniform field. The positive charges dis¬ 
placed the distance 8 with respect to 

the negatives. 
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This charge can be calculated as follows. If A is the area of the plate, the 
number of electrons that appear at the surface is the product of A and N, the 
number per unit volume, and the displacement 5, which we assume here is per¬ 
pendicular to the surface. The total charge is obtained by multiplying by the 
electronic charge qe. To get the surface density of the polarization charge induced 
on the surface, we divide by A. The magnitude of the surface charge density is 

Cpol = Nqe 5. 

But this is just equal to the magnitude P of the polarization vector P, Eq. (10.4): 

Cpol — P. (10.5) 

The surface density of charge is equal to the polarization inside the material. The 
surface charge is, of course, positive on one surface and negative on the other. 

Now let us assume that our slab is the dielectric of a parallel-plate capacitor. 
The plates of the capacitor also have a surface charge, which we will call <rfree, 
because they can move “freely” anywhere on the conductor. This is, of course, 
the charge that we put on when we charged the capacitor. It should be emphasized 
that <Tpoi exists only because of o"free- If Cfree is removed by discharging the capacitor, 
then (Tp0i will disappear, not by going out on the discharging wire, but by moving 
back into the material—by the relaxation of the polarization inside the material. 

We can now apply Gauss’ law to the gaussian surface S in Fig. 10-1. The 
electric field E in the dielectric is equal to the total surface charge density divided 
by €0. It is clear that <Tpoi and <rfree have opposite signs, so 

E = gfree ~ <^po1 • (10.6) 
*0 

Note that the field E0 between the metal plate and the surface of the dielectric 
is higher than the field E; it corresponds to <Tfree alone. But here we are concerned 
with the field inside the dielectric which, if the dielectric nearly fills the gap, is the 
field over nearly the whole volume. Using Eq. (10.5), we can write 

E - flfree P 

*0 
(10.7) 

This equation doesn’t tell us what the electric field is unless we know what P is. 
Here, however, we are assuming that P depends on E—in fact, that it is proportional 
to E. This proportionality is usually written as 

P = X€qE. (10.8) 

The constant x (Greek “khi”) is called the electric susceptibility of the dielectric. 
Then Eq. (10.7) becomes 

E = flfree 1 

e0 (1 + X)* 
(10.9) 

which gives us the factor 1/(1 4- x) by which the field is reduced. 
The voltage between the plates is the integral of the electric field. Since the 

field is uniform, the integral is just the product of E and the plate separation d. 
We have that 

V - Ed = Cfree^ 

€0(1 + X) ’ 

The total charge on the capacitor is cr{ieeAf so that the capacitance defined 
by (10.2) becomes 

^ __ €o^4(l + x) _ K€qA 
d ~ d 

(10.10) 

We have explained the observed facts. When a parallel-plate capacitor is 
filled with a dielectric, the capacitance is increased by the factor 

k — 1 + x, (10.11) 
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which is a property of the material. Our explanation, of course, is not complete 
until we have explained—as we will do later—how the atomic polarization comes 
about. 

Let’s now consider something a little bit more complicated—the situation in 
which the polarization P is not everywhere the same. As mentioned earlier, if the 
polarization is not constant, we would expect in general to find a charge density 
in the volume, because more charge might come into one side of a small volume 
element than leaves it on the other. How can we find out how much charge is gained 
or lost from a small volume? 

First let’s compute how much charge moves across any imaginary surface 
when the material is polarized. The amount of charge that goes across a surface 
is just P times the surface area if the polarization is normal to the surface. 
Of course, if the polarization is tangential to the surface, no charge moves 
across it. 

Following the same arguments we have already used, it is easy to see that the 
charge moved across any surface element is proportional to the component of P 
perpendicular to the surface. Compare Fig. 10-6 with Fig. 10-5. We see that 
Eq. (10.5) should, in the general case, be written 

ffpoi = P * n. (10.12) 

If we are thinking of an imagined surface element inside the dielectric, Eq. 
(10.12) gives the charge moved across the surface but doesn’t result in a net 
surface charge, because there are equal and opposite contributions from the di¬ 
electric on the two sides of the surface. 

The displacements of the charges can, however, result in a volume charge 
density. The total charge displaced out of any volume V by the polarization is the 
integral of the outward normal component of P over the surface S that bounds the 
volume (see Fig. 10-7). An equal excess charge of the opposite sign is left behind. 
Denoting the net charge inside V by Agpoi we write 

Agpoi - ~[ P-nda. (10.13) 
J s 

We can attribute AQpoi to a volume distribution of charge with the density 
and so 

A&01 = Ppol dV. (10.14) 

Combining the two equations yields 

j Ppo\dV = —J^P-n da. (10.15) 

We have a kind of Gauss’ theorem that relates the charge density from polarized 
materials to the polarization vector P. We can see that it agrees with the result 
we got for the surface polarization charge or the dielectric in a parallel-plate capaci¬ 
tor. Using Eq. (10.15) with the gaussian surface of Fig. 10-1, the surface integral 
gives P A A, and the charge inside is <Tpoi A A, so we get again that <r = P. 

Just as we did for Gauss’ law of electrostatics, we can convert Eq. (10.15) to 
a differential form—using Gauss’ mathematical theorem: 

We get 

V PdV. 

Ppol = -V-JP. (10.16) 

If there is a nonuniform polarization, its divergence gives the net density of charge 
appearing in the material. We emphasize that this is a perfectly real charge density; 
we call it “polarization charge” only to remind ourselves how it got there. 

Fig. 10-6. The charge moved across 
an element of an imaginary surface in a 

dielectric is proportional to the com¬ 
ponent of P normal to the surface. 

Fig. 10-7. A nonuniform polariza¬ 
tion P can result in a net charge in the 
body of a dielectric. 
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10-4 The electrostatic equations with dielectrics 

Now let’s combine the above result with our theory of electrostatics. The 
fundamental equation is 

V ■ E = £- • (10.17) 
€o 

The p here is the density of all electric charges. Since it is not easy to keep track of 
the polarization charges, it is convenient to separate p into two parts. Again we 
call ppoi the charges due to nonuniform polarizations, and call pfree all the rest. 
Usually pfree is the charge we put on conductors, or at known places in space. 
Equation (10.17) then becomes 

^ . jg _ Pfree ~H Ppol __ Pfree ^ * P * 
€0 «0 

or 

v • (e + = £6=2. • 
\ *o/ «o 

Of course, the equation for the curl of E is unchanged: 

V X E = 0. 

Taking P from Eq. (10.8), we get the simpler equation 

V-[(l + X)E] = V(kE) = Pfree 

€0 

(10.18) 

(10.19) 

(10.20) 

These are the equations of electrostatics when there are dielectrics. They don’t, 
of course, say anything new, but they are in a form which is more convenient for 
computation in cases where pfree is known and the polarization P is proportional 
to E. 

Notice that we have not taken the dielectric “constant,” k, out of the diver¬ 
gence. That is because it may not be the same everywhere. If it has everywhere the 
same value, it can be factored out and the equations are just those of electrostatics 
with the charge density pfree divided by k. In the form we have given, the equations 
apply to the general case where different dielectrics may be in different places in 
the field. Then the equations may be quite difficult to solve. 

There is a matter of some historical importance which should be mentioned 
here. In the early days of electricity, the atomic mechanism of polarization was 
not known and the existence of ppoi was not appreciated. The charge pfree was 
considered to be the entire charge density. In order to write Maxwell’s equations 
in a simple form, a new vector D was defined to be equal to a linear combination 
of E and P\ 

D = €qE + P. (10.21) 

As a result, Eqs. (10.18) and (10.19) were written in an apparently very simple form: 

V D = p^e, V X E = 0. (10.22) 

Can one solve these? Only if a third equation is given for the relationship between 
D and E. When Eq. (10.8) holds, this relationship is 

D = €0(1 + x)E = k€0E. (10.23) 

This equation was usually written 

D = eE, (10.24) 

where t is still another constant for describing the dielectric property of materials. 
It is called the “permittivity.” (Now you see why we have e0 in our equations, it is 
the “permittivity of empty space.”) Evidently, 
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Today we look upon these matters from another point of view, namely, that 
we have simpler equations in a vacuum, and if we exhibit in every case all the 
charges, whatever their origin, the equations are always correct. If we separate 
some of the charges away for convenience, or because we do not want to discuss 
what is going on in detail, then we can, if we wish, write our equations in any other 
form that may be convenient. 

One more point should be emphasized. An equation like D = eE is an attempt 
to describe a property of matter. But matter is extremely complicated, and such 
an equation is in fact not correct. For instance, if E gets too large, then D is no 
longer proportional to E. For some substances, the proportionality breaks down 
even with relatively small fields. Also, the “constant” of proportionality may de¬ 
pend on how fast E changes with time. Therefore this kind of equation is a kind 
of approximation, like Hooke’s law. It cannot be a deep and fundamental equation. 
On the other hand, our fundamental equations for E, (10.17) and (10.19), represent 
our deepest and most complete understanding of electrostatics. 

10-5 Fields and forces with dielectrics 

We will now prove some rather general theorems for electrostatics in situations 
where dielectrics are present. We have seen that the capacitance of a parallel-plate 
capacitor is increased by a definite factor if it is filled with a dielectric. We can 
show that this is true for a capacitor of any shape, provided the entire region in 
the neighborhood of the two conductors is filled with a uniform linear dielectric. 
Without the dielectric, the equations to be solved are 

V • E0 = £=2 and V X E0 = 0. 
*0 

With the dielectric present, the first of these equations is modified; we have instead 
the equations 

V • (kE) = and V X E = 0. (10.26) 
e0 

Now since we are taking k to be everywhere the same, the last two equations can 
be written as 

V • {kE) = ^22 and V X (kE) = 0. (10.27) 
*0 

We therefore have the same equations for kE as for E0, so they have the solu¬ 
tion kE ~ Eih In other words, the field is everywhere smaller, by the factor 1/k, 
than in the case without the dielectric. Since the voltage difference is a line integral 
of the field, the voltage is reduced by this same factor. Since the charge on the 
electrodes of the capacitor has been taken the same in both cases, Eq. (10.2) tells 
us that the capacitance, in the case of an everywhere uniform dielectric, is in¬ 
creased by the factor x. 

Let us now ask what the force would be between two charged conductors in a 
dielectric. We consider a liquid dielectric that is homogeneous everywhere. We 
have seen earlier that one way to obtain the force is to differentiate the energy with 
respect to the appropriate distance. If the conductors have equal and opposite 
charges, the energy U = Q2/2C, where C is their capacitance. Using the principle 
of virtual work, any component is given by a differentiation; for example, 

dU = _Q2± (}\ 
dx 2 dx \Cj ' 

(10.28) 

Since the dielectric increases the capacity by a factor k, all forces will be reduced 
by this same factor. 

One point should be emphasized. What we have said is true only if the di¬ 
electric is a liquid. Any motion of conductors that are embedded in solid dielectric 
changes the mechanical stress conditions of the dielectric and alters its electrical 
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properties, as well as causing some mechanical energy change in the dielectric. 
Moving the conductors in a liquid does not change the liquid. The liquid moves 
to a new place but its electrical characteristics are not changed. 

Many older books on electricity start with the “fundamental” law that the 
force between two charges is 

f = # 
4ire0Kr2 * 

(10.29) 

Fig. 10-8. A dielectric object in a 
nonuniform field feels a force toward 
regions of higher field strength. 

a point of view which is thoroughly unsatisfactory. For one thing, it is not true 
in general; it is true only for a world filled with a liquid. Secondly, it depends on 
the fact that k is a constant, which is only approximately true for most real materials. 
It is much better to start with Coulomb’s law for charges in a vacuum, which is 
always right (for stationary charges). 

What does happen in a solid? This is a very difficult problem which has not 
been solved, because it is, in a sense, indeterminate. If you put charges inside a 
dielectric solid, there are many kinds of pressures and ^trains. You cannot deal 
with virtual work without including also the mechanical energy required to com¬ 
press the solid, and it is a difficult matter, generally speaking, to make a unique 
distinction between the electrical forces and the mechanical forces due to the solid 
material itself. Fortunately, no one ever really needs to know the answer to the 
question proposed. He may sometimes want to know how much strain there is 
going to be in a solid, and that can be worked out. But it is much more complicated 
than the simple result we got for liquids. 

A surprisingly complicated problem in the theory of dielectrics is the follow¬ 
ing: Why does a charged object pick up little pieces of dielectric? If you comb your 
hair on a dry day, the comb readily picks up small scraps of paper. If you thought 
casually about it, you probably assumed the comb had one charge on it and the 
paper had the opposite charge on it. But the paper is initially electrically neutral. 
It hasn’t any net charge, but it is attracted anyway. It is true that sometimes the 
paper will come up to the comb and then fly away, repelled immediately after it 
touches the comb. The reason is, of course, that when the paper touches the comb, 
it picks up some negative charges and then the like charges repel. But that doesn’t 
answer the original question. Why did the paper come toward the comb in the 
first place? 

The answer has to do with the polarization of a dielectric when it is placed in 
an electric field. There are polarization charges of both signs, which are attracted 
and repelled by the comb. There is a net attraction, however, because the field 
nearer the comb is stronger than the field farther away—the comb is not an infinite 
sheet. Its charge is localized. A neutral piece of paper will not be attracted to 
either plate inside the parallel plates of a capacitor. The variation of the field is 
an essential part of the attraction mechanism. 

As illustrated in Fig. 10-8, a dielectric is always drawn from a region of weak 
field toward a region of stronger field. In fact, one can prove that for small objects 
the force is proportional to the gradient of the square of the electric field. Why 
does it depend on the square of the field? Because the induced polarization charges 
are proportional to the fields, and for given charges the forces are proportional to 
the field. However, as we have just indicated, there will be a net force only if the 
square of the field is changing from point to point. So the force is proportional to 
the gradient of the square of the field. The constant of proportionality involves, 
among other things, the dielectric constant of the object, and it also depends upon 
the size and shape of the object. 

There is a related problem in which the force on a dielectric can be worked out 
quite accurately. If we have a parallel-plate capacitor with a dielectric slab only 
partially inserted, as shown in Fig. 10-9, there will be a force driving the sheet in. 
A detailed examination of the force is quite complicated; it is related to nonuni¬ 
formities in the field near the edges of the dielectric and the plates. However, if 
we do not look at the details, but merely use the principle of conservation of energy, 
we can easily calculate the force. We can find the force from the formula we de- 
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Fig. 10-9. The force on a dielectric 

sheet in a parallel-plate capacitor can be 
computed by applying the principle of 
energy conservation. 

rived earlier. Equation (10.28) is equivalent to 

du = ac 
dx 2 dx 

(10.30) 

We need only find out how the capacitance varies with the position of the dielectric 
slab. 

Let’s suppose that the total length of the plates is L, that the width of the plates 
is W, that the plate separation and dielectric thickness are d, and that the distance 
to which the dielectric has been inserted is x. The capacitance is the ratio of the 
total free charge on the plates to the voltage between the plates. We have seen 
above that for a given voltage V the surface charge density of free charge is Ke0V/d. 
So the total charge on the plates is 

Q = xW + «oK 

d 
(L - x)W, 

from which we get the capacitance: 

Using (10.30), we have 

C = 
e0W 

d 
(kx + L — x). 

F* 
V2 e0W 
2 d (* - 1). 

(10.31) 

(10.32) 

Now this equation is not particularly useful for anything unless you happen to 
need to know the force in such circumstances. We only wished to show that the 
theory of energy can often be used to avoid enormous complications in determining 
the forces on dielectric materials—as there would be in the present case. 

Our discussion of the theory of dielectrics has dealt only with electrical phe¬ 
nomena, accepting the fact that the material has a polarization which is proportional 
to the electric field. Why there is such a proportionality is perhaps of greater interest 
to physics. Once we understand the origin of the dielectric constants from an atomic 
point of view, we can use electrical measurements of the dielectric constants in 
varying circumstances to obtain detailed information about atomic or molecular 
structure. This aspect will be treated in part in the next chapter. 
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11 

Inside Dielectrics 

11-1 Molecular dipoles 

In this chapter we are going to discuss why it is that materials are dielectric. 
We said in the last chapter that we could understand the properties of electrical 
systems with dielectrics once we appreciated that when an electric field is applied 
to a dielectric it induces a dipole moment in the atoms. Specifically, if the electric 
field E induces an average dipole moment per unit volume P, then k, the dielectric 
constant, is given by 

K - 1 = “• dl.l) 
e0E 

We have already discussed how this equation is applied; now we have to dis¬ 
cuss the mechanism by which polarization arises when there is an electric field 
inside a material. We begin with the simplest possible example—the polarization 
of gases. But even gases already have complications: there are two types. The 
molecules of some gases, like oxygen, which has a symmetric pair of atoms in each 
molecule, have no inherent dipole moment. But the molecules of others, like water 
vapor (which has a nonsymmetric arrangement of hydrogen and oxygen atoms) 
carry a permanent electric dipole moment. As we pointed out in Chapters 6 and 7, 
there is in the water vapor molecule an average plus charge on the hydrogen 
atoms and a negative charge on the oxygen. Since the center of gravity of the nega¬ 
tive charge and the center of gravity of the positive charge do not coincide, the 
total charge distribution of the molecule has a dipole moment. Such a molecule is 
called a polar molecule. In oxygen, because of the symmetry of the molecule, the 
centers of gravity of the positive and negative charges are the same, so it is a 
nonpolar molecule. It does, however, become a dipole when placed in an electric 
field. The forms of the two types of molecules are sketched in Fig. 11-1. 

11-2 Electronic polarization 

We will first discuss the polarization of nonpolar molecules. We can start with 
the simplest case of a monatomic gas (for instance, helium). When an atom of 
such a gas is in an electric field, the electrons are pulled one way by the field while 
the nucleus is pulled the other way, as shown in Fig. 10-4. Although the atoms are 
very stiff with respect to the electrical forces we can apply experimentally, there is a 
slight net displacement of the centers of charge, and a dipole moment is induced. 
For small fields, the amount of displacement, and so also the dipole moment, is 
proportional to the electric field. The displacement of the electron distribution 
which produces this kind of induced dipole moment is called electronic polarization. 

We have already discussed the influence of an electric field on an atom m 
Chapter 31 of Vol. I, when we were dealing with the theory of the index of refrac¬ 
tion. If you think about it for a moment, you will see that what we must do now is 
exactly the same as we did then. But now we need worry only about fields that do 
not vary with time, while the index of refraction depended on time-varying fields. 

In Chapter 31 of Vol. I we supposed that when an atom is placed in an oscilla¬ 
ting electric field the center of charge of the electrons obeys the equation 

m ^ -f mooox = qeE. (11.2) 

11-1 Molecular dipoles 

11-2 Electronic polarization 

11-3 Polar molecules; orientation 
polarization 

11-4 Electric fields in cavities of a 
dielectric 

11-5 The dielectric constant of 
liquids; the Clausius-Mossotti 
equation 

ll-4> Solid dielectrics 

11-7 Ferroelectricity; BaTi03 

Review: Chapter 31, Vol. I, The Origin 
of the Refractive Index 
Chapter 40, Vol. I, The Prin¬ 
ciples of Statistical Mechanics 

(b) 

Fig. 11-1. (a) An oxygen molecule 
with zero dipole moment, (b) The water 
molecule has a permanent dipole moment 
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The first term is the electron mass times its acceleration and the second is a restoring 
force, while the right-hand side is the force from the outside electric field. If the 
electric field varies with the frequency co, Eq. (11.2) has the solution 

r = q'E 

w2 - CO2) ’ 
(11.3) 

which has a resonance at w — co0. When we previously found this solution, we 
interpreted it as saying that co0 was the frequency at which light (in the optical 
region or in the ultraviolet, depending on the atom) was absorbed. For our 
purposes, however, we are interested only in the case of constant fields, i.e., for 
co — 0, so we can disregard the acceleration term in (11.2), and we find that the 
displacement is 

v = qeE 
mu, 2 

(11.4) 

From this we see that the dipole moment p of a single atom is 

p = qex = (11.5) 

In this theory the dipole moment p is indeed proportional to the electric field. 
People usually write 

p = ae0E. (11.6) 

(Again the e0 is put in for historical reasons.) The constant a is called the polariz¬ 
ability of the atom, and has the dimensions Z,3. It is a measure of how easy it is to 
induce a moment in an atom with an electric field. Comparing (11.5) and (11.6), 
our simple theory says that 

a 
€0WCo2 

(11.7) 

If there are N atoms in a unit volume, the polarization P—the dipole moment 
per unit volume—is given by 

P = Np = Nott0E. 

Putting (11.1) and (11.8) together, we get 

1 = 
or, using (11.7), 

K — \ — 
AirNe* 

™0 

(11.8) 

(11.9) 

(11.10) 

From Eq. (11.9) we would predict that the dielectric constant k of different 
gases should depend on the density of the gas and on the frequency o>0 of its optical 
absorption. 

Our formula is, of course, only a very rough approximation, because in Eq. 
(11.2) we have taken a model which ignores the complications of quantum me¬ 
chanics. For example, we have assumed that an atom has only one resonant 
frequency, when it really has many. To calculate properly the polarizability a of 
atoms we must use the complete quantum-mechanical theory, but the classical 
ideas above give us a reasonable estimate. 

Let’s see if we can get the right order of magnitude for the dielectric constant 
of some substance. Suppose we try hydrogen. We have once estimated (Chapter 
38, Vol. I) that the energy needed to ionize the hydrogen atom should be approxi¬ 
mately 

1 me4 
*“2 b2 

(11.11) 
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For an estimate of the natural frequency co0, we can set this energy equal to kw0— 
the energy of an atomic oscillator whose natural frequency is a?0. We get 

1 me4 
C0° ~ 2 h* 

If we now use this value of oj0 in Eq. (11.7), we find for the electronic polarizability 

a (11.12) 

The quantity (h2/me2) is the radius of the ground-state orbit of a Bohr atom (see 
Chapter 38, Yol. I) and equals 0.528 angstroms. In a gas at standard pressure and 
temperature (1 atmosphere, 0°C) there are 2.69 X 1019 atoms/cm3, so Eq. (11.9) 
gives us 

* = 1 + (2.69 X 1019)16tt (0.528 X 10~8)3 = 1.00020. (11.13) 

The dielectric constant for hydrogen gas is measured to be 

Kexp = 1.00026. 

We see that our theory is about right. We should not expect any better, because 
the measurements were, of course, made with normal hydrogen gas, which has 
diatomic molecules, not single atoms. We should not be surprised if the polariza¬ 
tion of the atoms in a molecule is not quite the same as that of the separate atoms. 
The molecular effect, however, is not really that large. An exact quantum- 
mechanical calculation of a for hydrogen atoms gives a result about 12% higher 
than (11.12) (the 167ris changed to 1 87t), and therefore predicts a dielectric constant 
somewhat closer to the observed one. In any case, it is clear that our model of a 
dielectric is fairly good. 

Another check on our theory is to try Eq. (11.12) on atoms which have a 
higher frequency of excitation. For instance, it takes about 24.5 volts to pull the 
electron off helium, compared with the 13.5 volts required to ionize hydrogen. 
We would, therefore, expect that the absorption frequency oj0 for helium would be 
about twice as big as for hydrogen and that a would be one-quarter as large. We 
expect that 

Experimentally, 
Khehum « 1.000050. 

K helium = 1.000068, 

so you see that our rough estimates are coming out on the right track. So we have 
understood the dielectric constant of nonpolar gas, but only qualitatively, because 
we have not yet used a correct atomic theory of the motions of the atomic electrons. 

11-3 Polar molecules; orientation polarization 

Next we will consider a molecule which carries a permanent dipole moment 
po—such as a water molecule. With no electric field, the individual dipoles point 
in random directions, so the net moment per unit volume is zero. But when an 
electric field is applied, two things happen: First, there is an extra dipole moment 
induced because of the forces on the electrons; this part gives just the same kind of 
electronic polarizability we found for a nonpolar molecule. For very accurate 
work, this effect should, of course, be included, but we will neglect it for the 
moment. (It can always be added in at the end.) Second, the electric field tends to 
line up the individual dipoles to produce a net moment per unit volume. If all the 
dipoles in a gas were to line up, there would be a very large polarization, but that 
does not happen. At ordinary temperatures and electric fields the collisions of the 
molecules in their thermal motion keep them from lining up very much. But there 
is some net alignment, and so some polarization (see Fig. 11-2). The polarization 
that does occur can be computed by the methods of statistical mechanics we 
described in Chapter 40 of Vol. I. 
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Fig. 11-2. (a) In a gas of polar 

molecules, the individual moments are 
oriented at random; the average moment 
in a small volume is zero, (b) When there 
is an electric field, there is some average 
alignment of the molecules. 
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Fig. 11-3. 
p0 in the field 

To use this method we need to know the energy of a dipole in an electric field. 
Consider a dipole of moment p0 in an electric field, as shown in Fig. 11-3. The 
energy of the positive charge is q<t>( 1), and the energy of the negative charge is 
—q<t>(2). Thus the energy of the dipole is 

The energy of a dipole 
E is -p0 • E. 

U = q<t>i 1) - #(2) = qd ■ V<t>, 
or 

U~ —po ‘ E ~ —p0Ecosds (11*14) 

where 8 is the angle between p0 and E. As we would expect, the energy is lower 
when the dipoles are lined up with the field. 

We now find out how much lining up occurs by using the methods of statis¬ 
tical mechanics. We found in Chapter 40 of Vol. I that in a state of thermal equili¬ 
brium, the relative number of molecules with the potential energy U is proportional 
to 

e-u}kT, (11.15) 

where U(x, y, z) is the potential energy as a function of position. The same argu¬ 
ments would say that using Eq. (11.14)* for the potential energy as a function of 
angle, the number of molecules at 8 per unit solid angle is proportional to e~ulkT. 

Letting n{8) be the number of molecules per unit solid angle at 6, we have 

n(8) = n0e+p°Eco9e!kT. (11.16) 

For normal temperatures and fields, the exponent is small, so we can approximate 
by expanding the exponential: 

n(0) = n0(l + PoEpiy (11.17) 

We can find n0 if we integrate (11.17) over all angles; the result should be just 
N, the total number of molecules per unit volume. The average value of cos 8 over 
all angles is zero, so the integral is just n0 times the total solid angle Air. We get 

»0 = ^- (11-18) 

We see from (11.17) that there will be more molecules oriented along the field 
(cos 8 = 1) than against the field (cos 8 = — 1). So in any small volume contain¬ 
ing many molecules there will be a net dipole moment per unit volume—that is, 
a polarization P. To calculate P, we want the vector sum of all the molecular 
moments in a unit volume. Since we know that the result is going to be in the 
direction of E, we will just sum the components in that direction (the components 
at right angles to E will sum to zero): 

p - X) p°cos 
unit 

volume 

We can evaluate the sum by integrating over the angular distribution. The 
solid angle at 8 is 2tt sin 8 d8, so 

P = / n(8)p0 cos 82ir sin 8 d8. (11.19) 
Jo 

Substituting for n{8) from (11.17), we have 

P = ~jf0 (* + cos Po cos e ^(cos 0)» 

which is easily integrated to give 
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The polarization is proportional to the field E, so there will be normal dielectric 
behavior. Also, as we expect, the polarization depends inversely on the tempera¬ 
ture, because at higher temperatures there is more disalignment by collisions. This 
1/r dependence is called Curie’s law. The permanent moment po appears squared 
for the following reason: In a given electric field, the aligning force depends upon 
Po, and the mean moment that is produced by the lining up is again proportional 
to po• The average induced moment is proportional to p\. 

We should now try to see how well Eq. (11.20) agrees with experiment. Let’s 
look at the case of steam. Since we don’t know what p0 is, we cannot compute P 
directly, but Eq. (11.20) does predict that k — 1 should vary inversely as the tem¬ 
perature, and this we should check. 

From (11.20) we get 

= J_ = Np% 
Co E 3cq kT 

(11.21) 

so k — 1 should vary in direct proportion to the density N, and inversely as the 
absolute temperature. The dielectric constant has been measured at several 
different pressures and temperatures, chosen such that the number of molecules in 
a unit volume remained fixed.* [Notice that if the measurements had all been 
taken at constant pressure, the number of molecules per unit volume would 
decrease linearly with increasing temperature and k — 1 would vary as T~2 
instead of as T"1.] In Fig. 11-4 we plot the experimental observations for k — l 
as a function of l/T. The dependence predicted by (11.21) is followed quite well. 

There is another characteristic of the dielectric constant of polar molecules— 
its variation with the frequency of the applied field. Due to the moment of inertia 
of the molecules, it takes a certain amount of time for the heavy molecules to turn 
toward the direction of the field. So if we apply frequencies in the high microwave 
region or above, the polar contribution to the dielectric constant begins to fall 
away because the molecules cannot follow. In contrast to this, the electronic 
polarizability still remains the same up to optical frequencies, because of the 
smaller inertia in the electrons. 

Fig. 11-4. Experimental measure¬ 
ments of the dielectric constant of water 
vapor at various temperatures. 

11-4 Electric fields in cavities of a dielectric 

We now turn to an interesting but complicated question—the problem of the 
dielectric constant in dense materials. Suppose that we take liquid helium or 
liquid argon or some other nonpolar material. We still expect electronic polari¬ 
zation. But in a dense material, P can be large, so the field on an individual atom 
will be influenced by the polarization of the atoms in its close neighborhood. The 
question is, what electric field acts on the individual atom? 

Imagine that the liquid is put between the plates of a condenser. If the plates 
are charged they will produce an electric field in the liquid. But there are also 
charges in the individual atoms, and the total field E is the sum of both of these 
effects. This true electric field varies very, very rapidly from point to point in the 
liquid. It is very high inside the atoms—particularly right next to the nucleus—and 
relatively small between the atoms. The potential difference between the plates is 
the line integral of this total field. If we ignore all the fine-grained variations, we 
can think of an average electric field E, which is just V/d. (This is the field we were 
using in the last chapter.) We should think of this field as the average over a space 
containing many atoms. 

Now you might think that an “average” atom in an “average” location would 
feel this average field. But it is not that simple, as we can show by considering what 
happens if we imagine different-shaped holes in a dielectric. For instance, suppose 
that we cut a slot in a polarized dielectric, with the slot oriented parallel to the 
field, as shown in part (a) of Fig. 11-5. Since we know that V X E = 0, the line 
integral of E around the curve, T, which goes as shown in (b) of the figure, should 

Fig. 11-5. The field in a slot cut in a 
dielectric depends on the shape and 
orientation of the slot. 
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be zero. The field inside the slot must give a contribution which just cancels the 
part from the field outside. Therefore the field E0 actually found in the center of 
a long thin slot is equal to E, the average electric field found in the dielectric. 

Now consider another slot whose large sides are perpendicular to E, as shown 
in part (c) of Fig. 11-5. In this case, the field E0 in the slot is not the same as E 
because polarization charges appear on the surfaces. If we apply Gauss’ law to 
a surface S drawn as in (d) of the figure, we find that the field E0 in the slot is 
given by 

E0=E+—, (11.22) 
Co 

where E is again the electric field in the dielectric. (The gaussian surface contains 
the surface polarization charge <Tpo\ = P.) We mentioned in Chapter 10 that 
e0E + P is often called Dt so €0EQ = D0 is equal to D in the dielectric. 

Earlier in the history of physics, when it was supposed to be very important 
to define every quantity by direct experiment, people were delighted to discover 
that they could define what they meant by E and D in a dielectric without having 
to crawl around between the atoms. The average field E is numerically equal to 
the field E0 that would be measured in a slot cut parallel to the field. And the field 
D could be measured by finding E0 in a slot cut normal to the field. But nobody 
ever measures them that way anyway, so it was just one of those philosophical 
things. 

Fig. 11-6. The field at any point A 
in a dielectric can be considered as the 
sum of the field in a spherical hole plus 
the field due to a spherical plug. 

For most liquids which are not too complicated in structure, we could expect 
that an atom finds itself, on the average, surrounded by the other atoms in what 
would be a good approximation to a spherical hole. And so we should ask: “What 
would be the field in a spherical hole?” We can find out by noticing that if we 
imagine carving out a spherical hole in a uniformly polarized material, we are just 
removing a sphere of polarized material. (We must imagine that the polarization 
is “frozen in” before we cut out the hole.) By superposition, however, the fields 
inside the dielectric, before the sphere was removed, is the sum of the fields from 
all charges outside the spherical volume plus the fields from the charges within the 
polarized sphere. That is, if we call E the field in the uniform dielectric, we can 
write 

E ~ £hoie 4- £piUg, (11.23) 

where Ehoie is the field in the hole and Epiug is the field inside a sphere which is 
uniformly polarized (see Fig. 11-6). The fields due to a uniformly polarized sphere 
are shown in Fig. 11-7. The electric field inside the sphere is uniform, and its 
value is 

^.ug=-3^- (11.24) 

Using (11.23), we get 

Ehole = E+£~- (11.25) 

The field in a spherical cavity is greater than the average field by the amount 
P/3e0. (The spherical hole gives a field 1/3 of the way between a slot parallel to 
the field and a slot perpendicular to the field.) 

11-5 The dielectric constant of liquids; the Clausius-Mossotti equation 

Fig. 1 1-7. The electric field of a 
uniformly polarized sphere. 

In a liquid we expect that the field which will polarize an individual atom is 
more like £hole than just E. If we use the Eboic of (11.25) for the polarizing field in 
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Eq. (11.6), then Eq. (11.8) becomes 

or 

P — Nat o 

Na 

(E + s)' 

P = 
1 - (Na/3) 

Remembering that k — 1 is just P/t$Es we have 

€qE. 

(11.2 6) 

(11.27) 

* ~ 1 - r- ik/3)’ <1128> 
which gives us the dielectric constant of a liquid in terms of a, the atomic polar¬ 
izability. This is called the Clausius-Mossotti equation. 

Whenever Na is very small, as it is for a gas (because the density N is small), 
then the term Na/3 can be neglected compared with 1, and we get our old result, 
Eq. (11.9), that 

K — 1 = Na* (11.29) 

Let’s compare Eq. (11.28) with some experimental results. It is first necessary 
to look at gases for which, using the measurement of k, we can find a from Eq. 
(11.29). For instance, for carbon disulfide at zero degrees centigrade the dielectric 
constant is 1.0029, so Na is 0.0029. Now the density of the gas is easily worked out 
and the density of the liquid can be found in handbooks. At 20°C, the density of 
liquid CS2 is 381 times higher than the density of the gas at 0°C. This means that 
A is 381 times higher in the liquid than it is in the gas so, that—if we make the 
approximation that the basic atomic polarizability of the carbon disulfide doesn’t 
change when it is condensed into a liquid—Na in the liquid is equal to 381 times 
0.0029, or 1.11. Notice that the Na/3 term amounts to almost 0.4, so it is quite 
significant. With these numbers we predict a dielectric constant of 2.76, which 
agrees reasonably well with the observed value of 2.64. 

In Table 11-1 we give some experimental data on various materials (taken 
from the Handbook of Chemistry and Physics), together with the dielectric constants 
calculated from Eq. (11.28) in the way just described. The agreement between 
observation and theory is even better for argon and oxygen than for CS2—and 
not so good for carbon tetrachloride. On the whole, the results show that Eq. 
(11.28) works very well. 

Table 11-1 

Computation of the dielectric constants of liquids 
from the dielectric constant of the gas. 

Gas Liquid 

Substance k (exp) Na Density Density Ratio* Na k (predict) k (exp) 

CS2 1.0029 0.0029 0.00339 1.293 381 1.11 2.76 2.64 
o2 1.000523 0.000523 0.00143 1.19 832 0.435 1.509 1.507 

CC14 1.0030 0.0030 0.00489 1.59 325 0.977 2.45 2.24 
A 1.000545 0.000545 0.00178 1.44 810 0.441 1.517 1.54 

* Ratio = density of liquid/density of gas. 

Our derivation of Eq. (11.28) is valid only for electronic polarization in liquids. 
It is not right for a polar molecule like H20. If we go through the same calcu¬ 
lations for water, we get 13.2 for Na, which means that the dielectric constant for 
the liquid is negative, while the observed value of k is 80. The problem has to do 
with the correct treatment of the permanent dipoles, and Onsager has pointed out 
the right way to go. We do not have the time to treat the case now, but if you are 
interested it is discussed in Kittel’s book, Introduction to Solid State Physics. 
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11-6 Solid dielectrics 
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Fig. 11-8. A complex crystal lattice 
can have a permanent intrinsic polariza¬ 
tion P. 

• Ti+4 O Ba+Z @0'e 

Fig. 11-9. The unit cell of BaTiC>3. 
The atoms really fill up most of the space; 
for clarity, only the positions of their 
centers are shown. 

Now we turn to the solids. The first interesting fact about solids is that there 
can be a permanent polarization built in—which exists even without applying an 
electric field. An example occurs with a material like wax, which contains long 
molecules having a permanent dipole moment. If you melt some wax and put a 
strong electric field on it when it is a liquid, so that the dipole moments get partly 
lined up, they will stay that way when the liquid freezes. The solid material will 
have a permanent polarization which remains when the field is removed. Such a 
solid is called an electret. 

An electret has permanent polarization charges on its surface. It is the electrical 
analog of a magnet. It is not as useful, though, because free charges from the air 
are attracted to its surfaces, eventually cancelling the polarization charges. The 
electret is “discharged” and there are no visible external fields. 

A permanent internal polarization P is also found occurring naturally in some 
crystalline substances. In such crystals, each unit cell of the lattice has an identical 
permanent dipole moment, as drawn in Fig. 11-8. All the dipoles point in the same 
direction, even with no applied electric field. Many complicated crystals have, in 
fact, such a polarization; we do not normally notice it because the external fields 
are discharged, just as for the electrets. 

If these internal dipole moments of a crystal are changed, however, external 
fields appear because there is not time for stray charges to gather and cancel the 
polarization charges. If the dielectric is in a condenser, free charges will be induced 
on the electrodes. For example, the moments can change when a dielectric is 
heated, because of thermal expansion. The effect is called pyroelectricity. Similarly, 
if we change the stresses in a crystal—for instance, if we bend it—again the mo¬ 
ment may change a little bit, and a small electrical effect, called piezoelectricity, 
can be detected. 

For crystals that do not have a permanent moment, one can work out a theory 
of the dielectric constant that involves the electronic polarizability of the atoms. 
It goes much the same as for liquids. Some crystals also have rotatable dipoles 
inside, and the rotation of these dipoles will also contribute to k. In ionic crystals 
such as NaCl there is also ionic polarizability. The crystal consists of a checkerboard 
of positive and negative ions, and in an electric field the positive ions are pulled 
one way and the negatives the other; there is a net relative motion of the plus and 
minus charges, and so a volume polarization. We could estimate the magnitude 
of the ionic polarizability from our knowledge of the stiffness of salt crystals, but 
we will not go into that subject here. 

11-7 Ferroelectricity; BaTi03 

We want to describe now one special class of crystals which have, just by 
accident almost, a built-in permanent moment. The situation is so marginal that 
if we increase the temperature a little bit they lose the permanent moment com¬ 
pletely. On the other hand, if they are nearly cubic crystals, so that their moments 
can be turned in different directions, we can detect a large change in the moment 
when an applied electric field is changed. All the moments flip over and we get a 
large effect. Substances which have this kind of permanent moment are called 
ferroelectric, after the corresponding ferromagnetic effects which were first dis¬ 
covered in iron. 

We would like to explain how ferroelectricity works by describing a particular 
example of a ferroelectric material. There are several ways in which the ferro¬ 
electric property can originate; but we will take up only one mysterious case—that 
of barium titanate, BaTi03. This material has a crystal lattice whose basic cell is 
sketched in Fig. 11-9. It turns out that above a certain temperature, specifically 
118°C, barium titanate is an ordinary dielectric with an enormous dielectric con¬ 
stant. Below this temperature, however, it suddenly takes on a permanent moment. 

In working out the polarization of solid material, we must first find what are 
the local fields in each unit cell. We must include the fields from the polarization 
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itself, just as we did for the case of a liquid. But a crystal is not a homogeneous 
liquid, so we cannot use for the local field what we would get in a spherical hole. 
If you work it out for a crystal, you find that the factor 1/3 in Eq. (11.24) becomes 
slightly different, but not far from 1/3. (For a simple cubic crystal, it is just 1/3.) 
We will, therefore, assume for our preliminary discussion that the factor is 1/3 
for BaTi03. 

Now when we wrote Eq. (11.28) you may have wondered what would happen 
if Net became greater than 3. It appears as though k would become negative. But 
that surely cannot be right. Let’s see what should happen if we were gradually to 
increase a in a particular crystal. As a gets larger, the polarization gets bigger, 
making a bigger local field. But a bigger local field will polarize each atom more, 
raising the local fields still more. If the “give” of the atoms is enough, the process 
keeps going; there is a kind of feedback that causes the polarization to increase 
without limit—assuming that the polarization of each atom increases in proportion 
to the field. The “runaway” condition occurs when Not = 3. The polarization 
does not become infinite, of course, because the proportionality between the in¬ 
duced moment and the electric field breaks down at high fields, so that our formulas 
are no longer correct. What happens is that the lattice gets “locked in” with a high, 
self-generated, internal polarization. 

In the case of BaTi03, there is, in addition to an electronic polarization, also 
a rather large ionic polarization, presumed to be due to titanium ions which can 
move a little within the cubic lattice. The lattice resists large motions, so after the 
titanium has gone a little way, it jams up and stops. But the crystal cell is then left 
with a permanent dipole moment. 

In most crystals, this is really the situation for all temperatures that can be 
reached. The very interesting thing about barium titanate is that there is such a 
delicate condition that if Na is decreased just a little bit it comes unstuck. Since 
N decreases with increasing temperature—because of thermal expansion—we can 
vary Na by varying the temperature. Below the critical temperature it is just 
barely stuck, so it is easy—by applying an external field—to shift the polarization 
and have it lock in a different direction. 

Let’s see if we can analyze what happens in more detail. We call Tc the critical 
temperature at which Na is exactly 3. As the temperature increases, N goes down a 
little bit because of the expansion of the lattice. Since the expansion is small, we 
can say that near the critical temperature 

Na = 3 - p{T - Tc\ (11.30) 

where /? is a small constant, of the same order of magnitude as the thermal expansion 
coefficient, or about 10-5 to 10“6 per degree C. Now if we substitute this relation 
into Eq. (11.28), we get that 

3 — (3(T — Tc) 
per - tc)/3 

Since we have assumed that fi(T — 
proximate this formula by 

k - 1 

This relation is right, of course, only for T > Tc. We see that just above the 
critical temperature k is enormous. Because Na is so close to 3, there is a tremen¬ 
dous magnification effect, and the dielectric constant can easily be as high as 50,000 
to 100,000. It is also very sensitive to temperature. For increases in temperature, 
the dielectric constant goes down inversely as the temperature, but, unlike the case 
of a dipolar gas, for which k — 1 goes inversely as the absolute temperature, for 
ferroelectrics it varies inversely as the difference between the absolute temperature 
and the critical temperature (this law is called the Curie-Weiss law). 

When we lower the temperature to the critical temperature, what happens? 
If we imagine a lattice of unit cells like that in Fig. 11-9, we see that it is possible 

11-9 

Tc) is small compared with one, we can ap- 

KT - Te) 
(11.31) 



H • t 

M t 
t • t 
f t 

f • t 
(a) 

t ♦ $ 

4> ^ 

I ♦ I* 

<(• 

$ ♦ I 
(b) 

to pick out chains of ions along vertical lines. One of them consists of alternating 
oxygen and titanium ions. There are other lines made up of either barium or 
oxygen ions, but the spacing along these lines is greater. We make a simple model 
to imitate this situation by imagining, as shown in Fig. 11—10(a), a series of chains 
of ions. Along what we call the main chain, the separation of the ions is a, which 
is half the lattice constant; the lateral distance between identical chains is 2a. 
There are less-dense chains in between which we will ignore for the moment. To 
make the analysis a little easier, we will also suppose that all the ions on the main 
chain are identical. (It is not a serious simplification because all the important 
effects will still appear. This is one of the tricks of theoretical physics. One does 
a different problem because it is easier to figure out the first time—then when one 
understands how the thing works, it is time to put in all the complications.) 

Now let’s try to find out what would happen with our model. We suppose that 
the dipole moment of each atom is p and we wish to calculate the field at one of 
the atoms of the chain. We must find the sum of the.fields from all the other atoms. 
We will first calculate the field from the dipoles in only one vertical chain; we will 
talk about the other chains later. The field at the distance r from a dipole in a 
direction along its axis is given by 

£= 1 2p 

4w€o r3 
(11.32) 

At any given atom, the dipoles at equal distances above and below it give fields in 
the same direction, so for the whole chain we get 

■^chain — 
P 2 

47T€0 a3 

2 2 2 
± _1_ _ _L _ 
8 ^ 27 ^ 64 

p 0.383 

e0 a3 
(11.33) 

It is not too hard to show that if our model were like a completely cubic crystal— 
that is, if the next identical lines were only the distance a away—the number 0.383 
would be changed to 1/3. In other words, if the next lines were at the distance a 
they would contribute only —0.050 unit to our sum. However, the next main 
chain we are considering is at the distance la and, as you remember from Chapter 7, 
the field from a periodic structure dies off exponentially with distance. Therefore 
these lines contribute much less than —0.050 and we can just ignore all the other 
chains. 

It is necessary now to find out what polarizability a is needed to make the 
runaway process work. Suppose that the induced moment p of each atom of the 
chain is proportional to the field on it, as in Eq. (11.6). We get the polarizing field 
on the atom from Echain, using Eq. (11.32). So we have the two equations 

Fig. 11-10. Models of a ferroelec¬ 

tric: (a) corresponds to an antiferro- and 
electric, and (b) to a normal ferroelectric. 

P ^O-^chain 

'chain 
0.383 p 

a3 e0 * 

There are two solutions: E and p both zero, or 

a 
0.383 ’ 

with E and p both finite. Thus if a is as large as a3/0.383, a permanent polarization 
sustained by its own field will set in. This critical equality must be reached for 
barium titanate at just the temperature Tc. (Notice that if a were larger than the 
critical value for small fields, it would decrease at larger fields and at equilibrium 
the same equality we have found would hold.) 

For BaTi03, the spacing a is 2 X 10”8 cm, so we must expect that a = 
21.8 X 10-24cm3. We can compare this with the known polarizabilities of the 
individual atoms. For oxygen, a = 30.2 X 10-24 cm3; we’re on the right track! 
But for titanium, a = 2.4 X 10“24 cm3; rather small. To use our model we should 
probably take the average. (We could work out the chain again for alternating 
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atoms, but the result would be about the same.) So a(average) = 16.3 X 10~24, 
which is not high enough to give a permanent polarization. 

But wait a moment! We have so far only added up the electronic polariz¬ 
abilities. There is also some ionic polarization due to the motion of the titanium 
ion. All we need is an ionic polarizability of 9.2 X 10“24 cm3. (A more precise 
computation using alternating atoms shows that actually 11.9 X 10"24 is needed.) 
To understand the properties of BaTi03, we have to assume that such an ionic 
polarizability exists. 

Why the titanium ion in barium titanate should have that much ionic polar¬ 
izability is not known. Furthermore, why, at a lower temperature, it polarizes along 
the cube diagonal and the face diagonal equally well is not clear. If we figure out 
the actual size of the spheres in Fig. 11-9, and ask whether the titanium is a little 
bit loose in the box formed by its neighboring oxygen atoms—which is what you 
would hope, so that it could be easily shifted—you find quite the contrary. It fits 
very tightly. The barium atoms are slightly loose, but if you let them be the ones 
that move, it doesn’t work out. So you see that the subject is really not one-hundred 
percent clear; there are still mysteries we would like to understand. 

Returning to our simple model of Fig. 11-10(a), we see that the field from one 
chain would tend to polarize the neighboring chain in the opposite direction, which 
means that although each chain would be locked, there would be no net permanent 
moment per unit volume! (Although there would be no external electric effects, 
there are still certain thermodynamic effects one could observe.) Such systems exist, 
and are called antiferroelectric. So what we have explained is really an anti- 
ferroelectric. Barium titanate, however, is really like the arrangement in Fig. 
11—10(b). The oxygen-titanium chains are all polarized in the same direction 
because there are intermediate chains of atoms in between. Although the atoms 
in these chains arc not very polarizable, or very dense, they will be somewhat 
polarized, in the direction antiparallel to the oxygen-titanium chains. The small 
fields produced at the next oxygen-titanium chain will get it started parallel to the 
first. So BaTi03 is really ferroelectric, and it is because of the atoms in between. 
You may be wondering: “But what about the direct effect between the two O-Ti 
chains?” Remember, though, the direct effect dies off exponentially with the 
separation; the effect of the chain of strong dipoles at 2a can be less than the effect 
of a chain of weak ones at the distance a. 

This completes our rather detailed report on our present understanding of the 
dielectric constants of gases, of liquids, and of solids. 
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Electrostatic Analogs 

12-1 The same equations have the same solutions 

The total amount of information which has been acquired about the physical 
world since the beginning of scientific progress is enormous, and it seems almost 
impossible that any one person could know a reasonable fraction of it. But it is 
actually quite possible for a physicist to retain a broad knowledge of the physical 
world rather than to become a specialist in some narrow area. The reasons for 
this are threefold: First, there are great principles which apply to all the different 
kinds of phenomena—such as the principles of the conservation of energy and of 
angular momentum. A thorough understanding of such principles gives an under¬ 
standing of a great deal all at once. Second, there is the fact that many compli¬ 
cated phenomena, such as the behavior of solids under compression, really 
basically depend on electrical and quantum-mechanical forces, so that if one 
understands the fundamental laws of electricity and quantum mechanics, there is 
at least some possibility of understanding many of the phenomena that occur 
in complex situations. Finally, there is a most remarkable coincidence: The 
equations for many different physical situations have exactly the same appearance. 
Of course, the symbols may be different—one letter is substituted for another— 
but the mathematical form of the equations is the same. This means that having 
studied one subject, we immediately have a great deal of direct and precise 
knowledge about the solutions of the equations of another. 

We are now finished with the subject of electrostatics, and will soon go on to 
study magnetism and electrodynamics. But before doing so, we would like to 
show that while learning electrostatics we have simultaneously learned about a 
large number of other subjects. We will find that the equations of electrostatics 
appear in several other places in physics. By a direct translation of the solutions 
(of course the same mathematical equations must have the same solutions) it is 
possible to solve problems in other fields with the same ease—or with the same 
difficulty—as in electrostatics. 

The equations of electrostatics, we know, are 

V • (kE) = 

V X E 

Pfree 
9 (12.1) 

*€0 

= 0. (12.2) 

(We take the equations of electrostatics with dielectrics so as to have the most 
general situation.) The same physics can be expressed in another mathematical 
form: 

E — — V<j>, (12.3) 

V • (k v<t>) = - ^ ■ (12.4) 
€0 

12-1 The same equations have the 
same solutions 

12-2 The flow of heat; a point 
source near an infinite plane 
boundary 

12-3 The stretched membrane 

12-4 The diffusion of neutrons; a 
uniform spherical source in a 
homogeneous medium 

12-5 Irrotational fluid flow; the 
flow past a sphere 

12-6 Illumination; the uniform 
lighting of a plane 

12-7 The “underlying unity” of 
nature 

Now the point is that there are many physics problems whose mathematical 
equations have the same form. There is a potential (<£) whose gradient multiplied 
by a scalar function (k) has a divergence equal to another scalar function (—p/e0). 

Whatever we know about electrostatics can immediately be carried over into 
that other subject, and vice versa. (It works both ways, of course—if the other 
subject has some particular characteristics that are known, then we can apply 
that knowledge to the corresponding electrostatic problem.) We want to consider 
a series of examples from different subjects that produce equations of this form. 
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12-2 The flow of heat; a point source near an infinite plane boundary 

We have discussed one example earlier (Section 3-4)—the flow of heat. 
Imagine a block of material, which need not be homogeneous but may consist of 
different materials at different places, in which the temperature varies from point 
to point. As a consequence of these temperature variations there is a flow of heat, 
which can be represented by the vector h. It represents the amount of heat energy 
which flows per unit time through a unit area perpendicular to the flow. The di¬ 
vergence of h represents the rate per unit volume at which heat is leaving a region: 

V • h = rate of heat out per unit volume. 

(We could, of course, write the equation in integral form—just as we did in electro¬ 
statics with Gauss’ law—which would say that the flux through a surface is equal 
to the rate of change of heat energy inside the material. We will not bother to 
translate the equations back and forth between the differential and the integral 
forms, because it goes exactly the same as in electrostatics.) 

The rate at which heat is generated or absorbed at various places depends, of 
course, on the problem. Suppose, for example, that there is a source of heat inside 
the material (perhaps a radioactive source, or a resistor heated by an electrical 
current). Let us call s the heat energy produced per unit volume per second by 
this source. There may also be losses (or gains) of thermal energy to other internal 
energies in the volume. If u is the internal energy per unit volume, —du/dt will 
also be a “source* * of heat energy. We have, then, 

Vh = s-^- (12.5) 

We are not going to discuss just now the complete equation in which things 
change with time, because we are making an analogy to electrostatics, where no¬ 
thing depends on the time. We will consider only steady heat-flow problems, in 
which constant sources have produced an equilibrium state. In these cases, 

V • h = 5. (12.6) 

It is, of course, necessary to have another equation, which describes how the 
heat flows at various places. In many materials the heat current is approximately 
proportional to the rate of change of the temperature with position: the larger the 
temperature difference, the more the heat current. As we have seen, the vector 
heat current is proportional to the temperature gradient. The constant of pro¬ 
portionality K, a property of the material, is called the thermal conductivity. 

h = -KVT. (12.7) 

If the properties of the material vary from place to place, then K = K{x, y9 z), a 
function of position. [Equation (12.7) is not as fundamental as (12.5), which 
expresses the conservation of heat energy, since the former depends upon a special 
property of the substance.] If now we substitute Eq. (12.7) into Eq. (12.6) we have 

V-(KVT) = -j, (12.8) 

which has exactly the same form as (12.4). Steady heat-flow problems and electro¬ 
static problems are the same. The heat flow vector h corresponds to E, and the 
temperature T corresponds to <t>. We have already noticed that a point heat source 
produces a temperature field which varies as \/r and a heat flow which varies as 
1/r2. This is nothing more than a translation of the statements from electrostatics 
that a point charge generates a potential which varies as 1 /r and an electric field 
which varies as 1/r2. We can, in general, solve static heat problems as easily as 
we can solve electrostatic problems. 

Consider a simple example. Suppose that we have a cylinder of radius a at the 
temperature Tmaintained by the generation of heat in the cylinder. (It could be, 
for example, a wire carrying a current, or a pipe with steam condensing inside.) 
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The cylinder is covered with a concentric sheath of insulating material which has a 
conductivity K. Say the outside radius of the insulation is b and the outside is 
kept at temperature T2 (Fig. 12-la). We want to find out at what rate heat will 
be lost by the wire, or steampipe, or whatever it is in the center. Let the total 
amount of heat lost from a length L of the pipe be called G—which is what we are 
trying to find. 

How can we solve this problem? We have the differential equations, but since 
these are the same as those of electrostatics, we have really already solved the 
mathematical problem. The analogous problem is that of a conductor of radius a 
at the potential <f>u separated from another conductor of radius b at the potential 
<}>2t with a concentric layer of dielectric material in between, as drawn in Fig. 
12-1 (b). Now since the heat flow h corresponds to the electric field E, the quantity 
G that we want to find corresponds to the flux of the electric field from a unit 
length (in other words, to the electric charge per unit length over e0)- We have 
solved the electrostatic problem by using Gauss’ law. We follow the same pro¬ 
cedure for our heat-flow problem. 

From the symmetry of the situation, we know that h depends only on the 
distance from the center. So we enclose the pipe in a gaussian cylinder of length 
L and radius r. From Gauss’ law, we know that the heat flow h multiplied by 
the area ItttL of the surface must be equal to the total amount of heat generated 
inside, which is what we are calling G: 

IwrLh = G or h - • (12.9) 

(a) 

The heat flow is proportional to the temperature gradient: (b) 

h - -KVT, 

or, in this case, the magnitude of h is 

This, together with (12.9), gives 

dT = G 
dr lirKLr 

Fig. 12-1. (a) Heat flow in a cylin¬ 
drical geometry, (b) The corresponding 
electrical problem. 

(12.10) 

Integrating from r ~ a to r — b, we get 

Solving for G, we find 

^ _ 2irKL{Tx - T2) 
U " In (b/d) 

This result corresponds exactly to the result for the charge on a cylindrical conden¬ 
ser: 

n — 27r€oL(ji>i — <fr2) 
y In 0b/a) 

(12.11) 

(12.12) 

The problems are the same, and they have the same solutions. From our knowledge 
of electrostatics, we also know how much heat is lost by an insulated pipe. 

Let’s consider another example of heat flow. Suppose we wish to know the 
heat flow in the neighborhood of a point source of heat located a little way beneath 
the surface of the earth, or near the surface of a large metal block. The localized 
heat source might be an atomic bomb that was set off underground, leaving an 
intense source of heat, or it might correspond to a small radioactive source inside 
a block of iron—there are numerous possibilities. 

We will treat the idealized problem of a point heat source of strength G at the 
distance a beneath the surface of an infinite block of uniform material whose 
thermal conductivity is K. And we will neglect the thermal conductivity of the 
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Fig. 12-2. The heat flow and iso¬ 
thermals near a point heat source at the 
distance a below the surface of a good 
thermal conductor. An image source is 
shown outside the material. 

air outside the material. We want to determine the distribution of the temperature 
on the surface of the block. How hot is it right above the source and at various 
places on the surface of the block? 

How shall we solve it? It is like an electrostatic problem with two materials 
with different dielectric coefficients k on opposite sides of a plane boundary. Aha! 
Perhaps it is the analog of a point charge near the boundary between a dielectric 
and a conductor, or something similar. Let’s see what the situation is near the 
surface. The physical condition is that the normal component of h on the surface 
is zero, since we have assumed there is no heat flow out of the block. We should 
ask: In what electrostatic problem do we have the condition that the normal 
component of the electric field E (which is the analog of h) is zero at a surface? 
There is none! 

That is one of the things that we have to watch out for. For physical reasons, 
there may be certain restrictions in the kinds of mathematical conditions which 
arise in any one subject. So if we have analyzed the differential equation only for 
certain limited cases, we may have missed some kinds of solutions that can occur 
in other physical situations. For example, there is no material with a dielectric 
constant of zero, whereas a vacuum does have zero thermal conductivity. So there 
is no electrostatic analogy for a perfect heat insulator. We can, however, still use 
the same methods. We can try to imagine what would happen if the dielectric 
constant were zero. (Of course, the dielectric constant is never zero in any real 
situation. But we might have a case in which there is a material with a very high 
dielectric constant, so that we could neglect the dielectric constant of the air out¬ 
side.) 

How shall we find an electric field that has no component perpendicular to 
the surface? That is, one which is always tangent at the surface? You will notice 
that our problem is opposite to the one of a point charge near a plane conductor. 
There we wanted the field to be perpendicular to the surface, because the conductor 
was all at the same potential. In the electrical problem, we invented a solution 
by imagining a point charge behind the conducting plate. We can use the same 
idea again. We try to pick an “image source” that will automatically make the 
normal component of the field zero at the surface. The solution is shown in 
Fig. 12-2. An image source of the same sign and the same strength placed at the 
distance a above the surface will cause the field to be always horizontal at the sur¬ 
face. The normal components of the two sources cancel out. 

Thus our heat flow problem is solved. The temperature everywhere is the 
same, by direct analogy, as the potential due to two equal point charges! The 
temperature T at the distance r from a single point source G in an infinite medium is 

T = 
G 

4irKr 
(12.13) 

(This, of course, is just the analog of <f> — q/4ire0r.) The temperature for a point 
source, together with its image source, is 

T = 
G 

4 irKn + G 
4wKr2 

(12.14) 

This formula gives us the temperature everywhere in the block. Several isothermal 
surfaces are shown in Fig. 12-2. Also shown are lines of A, which can be obtained 
from h = —K VT. 

We originally asked for the temperature distribution on the surface. For a 
point on the surface at the distance p from the axis, rx — r2 = Vp2 + so 

r(surface) = -L- 2G~- (12.15) 
4tK Vp2 + a2 

This function is also shown in the figure. The temperature is, naturally, higher 
right above the source than it is farther away. This is the kind of problem that 
geophysicists often need to solve. We now see that it is the same kind of thing we 
have already been solving for electricity. 
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12-3 The stretched membrane 

Now let us consider a completely different physical situation which, never¬ 
theless, gives the same equations again. Consider a thin rubber sheet—a membrane 
—which has been stretched over a large horizontal frame (like a drumhead). 
Suppose now that the membrane is pushed up in one place and down in another; 
as shown in Fig. 12-3. Can we describe the shape of the surface? We will show 
how the problem can be solved when the deflections of the membrane are not too 
large. 

There are forces in the sheet because it is stretched. If we were to make a 
small cut anywhere, the two sides of the cut would pull apart (see Fig. 12-4). So 
there is a surface tension in the sheet, analogous to the one-dimensional tension 
in a stretched string. We define the magnitude of the surface tension r as the force 
per unit length which will just hold together the two sides of a cut such as one of 
those shown in Fig. 12-4. 

Suppose now that we look at a vertical cross section of the membrane. It 
will appear as a curve, like the one in Fig. 12-5. Let u be the vertical displacement 
of the membrane from its normal position, and x and y the coordinates in the 
horizontal plane. (The cross section shown is parallel to the x-axis.) 

Consider a little piece of the surface of length Ax and width Ay. There will be 
forces on the piece from the surface tension along each edge. The force along 
edge 1 of the figure will be r i Ay, directed tangent to the surface—that is, at the 
angle from the horizontal. Along edge 2, the force will be t2 Ay at the angle 02■ 
(There will be similar forces on the other two edges of the piece, but we will forget 
them for the moment.) The net upward force on the piece from edges 1 and 2 is 

AF ~ r2 Ay sin 02 — T\ Ay sin B\. 

We will limit our considerations to small distortions of the membrane, i.e., to 
small slopes: we can then replace sin 0 by tan 0, which can be written as du/dx. The 
force is then 

AF = r2 

The quantity in brackets can be equally well written (for small Ax) as 

> / du\ 
x V dx) AX; 

d ( du\ 
dx \ dx) AF=te\Tte)AXAy- 

There will be another contribution to AF from the forces on the other two 
edges; the total is evidently 

AF=fe(rS) + ^(TS)]Ajc^- 
(12.16) 

The distortions of the diaphragm are caused by external forces. Let's let 
/ represent the upward force per unit area on the sheet (a kind of “pressure") 
from the external forces. When the membrane is in equilibrium (the static case), 

this force must be balanced by the internal force we have just computed, Eq 
(12.16). That is 

/= -_A^. 
J A v A it Ax Ay 

Equation (12.16) can then be written 

/ = - V * (r Vu), (12.17) 

where by V we now mean, of course, the two-dimensional gradient operator 
(d/dx, d/dy). We have the differential equation that relates u(x, y) to the applied 
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Fig. 12-3. A thin rubber sheet 

stretched over a cylindrical frame (like 
a drumhead). If the sheet is pushed up 
at A and down at B, what is the shape 
of the surface? 

Fig. 12-4. The surface tension r of 
a stretched rubber sheet is the force per 
unit length across a line. 

x 

Fig. 12-5. Cross section of the de¬ 
flected sheet. 



forces f(x, y) and the surface tension t(x, y), which may, in general, vary from 
place to place in the sheet. (The distortions of a three-dimensional elastic body are 
also governed by similar equations, but we will stick to two-dimensions.) We 
will worry only about the case in which the tension r is constant throughout the 
sheet. We can then write for Eq. (12.17), 

V2u = - £• (12.18) 

We have another equation that is the same as for electrostatics!—only this 
time, limited to two-dimensions. The displacement u corresponds to </>, and f/r 
corresponds to p/e0. So all the work we have done for infinite plane charged sheets, 
or long parallel wires, or charged cylinders is directly applicable to the stretched 
membrane. 

Suppose we push the membrane at some points up to a definite height—that is, 
we fix the value of u at some places. That is the analog of having a definite potential 
at the corresponding places in an electrical situation. So, for instance, we may 
make a positive “potential” by pushing up on the membrane with an object having 
the cross-sectional shape of the corresponding cylindrical conductor. For example, 
if we push the sheet up with a round rod, the surface will take on the shape shown 
in Fig. 12-6. The height u is the same as the electrostatic potential <i> of a charged 
cylindrical rod. It falls off as ln(l/r). (The slope, which corresponds to the 
electric 

Fig. 12-6. Cross section of a 
stretched rubber sheet pushed up by a 
round rod. The function u(x, y) is the same 
as the electric potential y) near a 
very long charged rod. 

£, drops off as 1/r.) 

The stretched rubber sheet has often been used as a way of solving complicated 
electrical problems experimentally. The analogy is used backwards! Various 
rods and bars are pushed against the sheet to heights that correspond to the po¬ 
tentials of a set of electrodes. Measurements of the height then give the electrical 
potential for the electrical situation. The analogy has been carried even further. 
If little balls are placed on the membrane, their motion corresponds approximately 
to the motion of electrons in the corresponding electric field. One can actually 
watch the “electrons” move on their trajectories. This method was used to design 
the complicated geometry of many photomultiplier tubes (such as the ones used 
for scintillation counters, and the one used for controlling the headlight beams on 
Cadillacs). The method is still used, but the accuracy is limited. For the most 
accurate work, it is better to determine the fields by numerical methods, using the 
large electronic computing machines. 

12-4 The diffusion of neutrons; a uniform spherical source in a homogeneous 
medium 

We take another example that gives the same kind of equation, this time 
having to do with diffusion. In Chapter 43 of Vol. I we considered the diffusion 
of ions in a single gas, and of one gas through another. This time, let’s take a 
different example—the diffusion of neutrons in a material like graphite. We choose 
to speak of graphite (a pure form of carbon) because carbon doesn’t absorb slow 
neutrons. In it the neutrons are free to wander around. They travel in a straight 
line for several centimeters, on the average, before being scattered by a nucleus 
and deflected into a new direction. So if we have a large block—many meters on 
a side—the neutrons initially at one place will diffuse to other places. We want to 
find a description of their average behavior—that is, their average flow. 
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Let N(x, y, z) AV be the number of neutrons in the element of volume AV 
at the point (*, z). Because of their motion, some neutrons will be leaving AV, 
and others will be coming in. If there are more neutrons in one region than in a 
nearby region, more neutrons will go from the first region to the second than come 
back; there will be a net flow. Following the arguments of Chapter 43 in VoL I, 
we describe the flow by a flow vector J. Its ^-component Jx is the net number of 
neutrons that pass in unit time a unit area perpendicular to the x-direction. We 
found that 

SN 

J*= 9 (l2A9) 

where the diffusion constant D is given in terms of the mean velocity v, and the 
mean-free-path / between scatterings is given by 

D = j Iv. 

The vector equation for J is 

J — — D VN. (12.20) 

The rate at which neutrons flow across any surface element da is / • nda 
(where, as usual, n is the unit normal). The net flow out of a volume element is then 
(following the usual gaussian argument) V • JdV, This flow would result in 
a decrease with time of the number in AV unless neutrons are being created in 
AV (by some nuclear process). If there are sources in the volume that generate 5 
neutrons per unit time in a unit volume, then the net flow out of AV will be equal 
to (S — dN/dt) AV. We have then that 

V / = S 
dN 
dt 

(12.21) 

Combining (12.21) with (12.20), we get the neutron diffusion equation 

V * (-/) VN) (12.22) 

In the static case—where dN/dt — 0—we have Eq. (12.4) all over again! 
We can use our knowledge of electrostatics to solve problems about the diffusion 
of neutrons. So let’s solve a problem. (You may wonder: Why do a problem if 
we have already done all the problems in electrostatics? We can do it faster this 
time because we have done the electrostatic problems!) 

Suppose we have a block of material in which neutrons are being generated— 
say by uranium fission—uniformly throughout a spherical region of radius a 
(Fig. 12-7). We would like to know: What is the density of neutrons everywhere? 
How uniform is the density of neutrons in the region where they are being gen- 
erated ? What is the ratio of the neutron density at the center to the neutron density 
at the surface of the source region? Finding the answers is easy. The source 
density S0 replaces the charge density p, so our problem is the same as the problem 
of a sphere of uniform charge density. Finding N is just like finding the potential 
cp. We have already worked out the fields inside and outside of a uniformly charged 
sphere; we can integrate them to get the potential. Outside, the potential is 
2/47r€0r, with the total charge Q given by 4?ra3p/3. So 

^outside — 
pa 
3 €0r 

(12.23) 

For points inside, the field is due only to the charge Q{r) inside the sphere of radius 
r, Q(r) = 47rr3p/3, so 

Fig. 12-7. (a) Neutrons are produced 
uniformly throughout a sphere of radius a 
in a large graphite block and diffuse 
outward. The neutron density N is found 
as a function of r, the distance from the 
center of the source, (b) The analogous 
electrostatic situation: a uniform sphere of 
charge, where N corresponds to <j> and J 
corresponds to B. 

(12.24) 
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The field increases linearly with r. Integrating E to get <j>, we have 

^inside ~ 7 4" ^ constant. 
OCo 

At the radius a, ^inslde must be the same as Outside, so the constant must be 
pa2/2e0. (We are assuming that 4> is zero at large distances from the source, which 
will correspond to N being zero for the neutrons.) Therefore, 

- £ (¥ - t) ■ <,i25) 

We know immediately the neutron density in our other problem. The answer 
is 

^outside = (12.26) 

and 

(¥-?)• (,2'27) 
N is shown as a function of r in Fig. 12-7. 

Now what is the ratio of density at the center to that at the edge? At the center 
(r — 0), it is proportional to 3a2/2. At the edge (r = a) it is proportional to 
la2/2, so the ratio of densities is 3/2. A uniform source doesn’t produce a uniform 
density of neutrons. You see, our knowledge of electrostatics gives us a good start 
on the physics of nuclear reactors. 

There are many physical circumstances in which diffusion plays a big part. 
The motion of ions through a liquid, or of electrons through a semiconductor, 
obeys the same equation. We find again and again the same equations. 

12-5 Irrotational fluid flow; the flow past a sphere 

Let’s now consider an example which is not really a very good one, because 
the equations we will use will not really represent the subject with complete 
generality but only in an artificial idealized situation. We take up the problem 
of water flow. In the case of the stretched sheet, our equations were an approxima¬ 
tion which was correct only for small deflections. For our consideration of water 
flow, we will not make that kind of an approximation; we must make restrictions 
that do not apply at all to real water. We treat only the case of the steady flow of 
an incompressible, nonviscous, circulation-free liquid. Then we represent the flow 
by giving the velocity v(r) as a function of position r. If the motion is steady 
(the only case for which there is an electrostatic analog) v is independent of time. 
If p is the density of the fluid, then pv is the amount of mass which passes per unit 
time through a unit area. By the conservation of matter, the divergence of pv will 
be, in general, the time rate of change of the mass of the material per unit volume. 
We will assume that there are no processes for the continuous creation or destruc¬ 
tion of matter. The conservation of matter then requires that V • pv ~ 0. (It 
should, in general, be equal to —dp/dt, but since our fluid is incompressible, p 
cannot change.) Since p is everywhere the same, we can factor it out, and our equa¬ 
tion is simply 

V • v = 0. 

Good! We have electrostatics again (with no charges); it’s just like V * E = 0. 
Not so! Electrostatics is not simply v * E = 0. It is a pair of equations. One 
equation does not tell us enough; we need still an additional equation. To match 
electrostatics, we should have also that the curl of v is zero. But that is not generally 
true for real liquids. Most liquids will ordinarily develop some circulation. So 
we are restricted to the situation in which there is no circulation of the fluid. Such 
flow is often called irrotational. Anyway, if we make all our assumptions, we can 
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imagine a case of fluid flow that is analogous to electrostatics. So we take 

and 
V • v = 0 (12.28) 

V X v « 0. (12.29) 

We want to emphasize that the number of circumstances in which liquid 
flow follows these equations is far from the great majority, but there are a few. 
They must be cases in which we can neglect surface tension, compressibility, and 
viscosity, and in which we can assume that the flow is irrotational. These assump¬ 
tions are valid so rarely for real water that the mathematician John von Neumann 
said that people who analyze Eqs. (12.28) and (12.29) are studying “dry water”! 
(We take up the problem of fluid flow in more detail in Chapters 40 and 41.) 

Because V X v = 0, the velocity of “dry water” can be written as the 
gradient of some potential: 

v = -V0. (12.30) 

What is the physical meaning of 0? There isn’t any very useful meaning. The 
velocity can be written as the gradient of a potential simply because the flow is 
irrotational. And by analogy with electrostatics, 0 is called the velocity potential, 
but it is not related to a potential energy in the way that 0 is. Since the divergence 
of v is zero, we have 

V • (V0) = V20 = 0- (12.31) 

The velocity potential 0 obeys the same differential equation as the electrostatic 
potential in free space (p = 0). 

Let’s pick a problem in irrotational flow and see whether we can solve it by 
the methods we have learned. Consider the problem of a spherical ball falling 
through a liquid. If it is going too slowly, the viscous forces, which we are dis¬ 
regarding, will be important. If it is going too fast, little whirlpools (turbulence) 
will appear in its wake and there will be some circulation of the water. But if the 
ball is going neither too fast nor too slow, it is more or less true that the water flow 
will fit our assumptions, and we can describe the motion of the water by our 
simple equations. 

It is convenient to describe what happens in a frame of reference fixed in the 
sphere, In this frame we are asking the question: How does water flow past a sphere 
at rest when the flow at large distances is uniform? That is, when, far from the 
sphere, the flow is everywhere the same. The flow near the sphere will be as shown 
by the streamlines drawn in Fig. 12-8. These lines, always parallel to v, correspond 
to lines of electric field. We want to get a quantative description for the velocity 
field, i.e., an expression for the velocity at any point P. 

We can find the velocity from the gradient of 0, so we first work out the po¬ 
tential. We want a potential that satisfies Eq. (12.31) everywhere, and which 
also satisfies two restrictions: (1) there is no flow in the spherical region inside 
the surface of the ball, and (2) the flow is constant at large distances. To satisfy 
(1), the component of v normal to the surface of the sphere must be zero. That 
means that df/dr is zero at r = a. To satisfy (2), we must have d^/dz = v0 at 
all points where r a. Strictly speaking, there is no electrostatic case which 
corresponds exactly to our problem. It really corresponds to putting a sphere of 
dielectric constant zero in a uniform electric field. If we had worked out the 
solution to the problem of a sphere of a dielectric constant k in a uniform field, 
then by putting x = 0 we would immediately have the solution to this problem. 

We have not actually worked out this particular electrostatic problem in de¬ 
tail, but let’s do it now. (We could work directly on the fluid problem with v and 
0, but we will use E and <j> because we are so used to them.) 

The problem is: Find a solution of v2<f> = 0 such that E — — v<p is a con¬ 

stant, say Eq, for large /*, and such that the radial component of E is equal to zero 
at r = a. That is, 

Fig. 12-8. The velocity field of ir¬ 
rotational fluid flow past a sphere. 

(12.32) 
<90 
dr r~a 
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Our problem involves a new kind of boundary condition, not one for which 
^ is a constant on a surface, but for which d<f>/dr is a constant. That is a 
little different. It is not easy to get the answer immediately. First of all, without 
the sphere, <j> would be — Eqz. Then E would be in the z-direction and have the con¬ 
stant magnitude E0, everywhere. Now we have analyzed the case of a dielectric 
sphere which has a uniform polarization inside it, and we found that the field 
inside such a polarized sphere is a uniform field, and that outside it is the same as 
the field of a point dipole located at the center. So let’s guess that the solution we 
want is a superposition of a uniform field plus the field of a dipole. The potential 
of a dipole (Chapter 6) is pz/4T60rz. Thus we assume that 

+ <1233> 
Since the dipole field falls off as 1/r3, at large distances we have just the field Eq, 
Our guess will automatically satisfy condition (2) above. But what do we take for 
the dipole strength pi To find out, we may use the other condition on <£, Eq. (12.32). 
We must differentiate <f> with respect to r, but of course we must do so at a constant 
angle 0, so it is more convenient if we first express 4> in terms of r and 0, rather than 
of z and r. Since z = r cos 0, we get 

-forces « + (12.34) 

The radial component of E is 

-£-+* + 02.35) 

This must be zero at r — a for all 0. This will be true if 

p — — 27r€O03£o* (12.36) 

Note carefully that if both terms in Eq. (12.35) had not had the same 0-depen¬ 
dence, it would not have been possible to choose p so that (12.35) turned out to be 
zero at r — a for all angles. The fact that it works out means that we have guessed 
wisely in writing Eq. (12.33). Of course, when we made the guess we were looking 
ahead; we knew that we would need another term that (a) satisfied V2<£ = 0 (any 
real field would do that), (b) dependent on cos 0, and (c) fell to zero at large r. 
The dipole field is the only one that does all three. 

Using (12.36), our potential is 

$ = —Eq cos 0 + 2^2^ * (12.37) 

The solution of the fluid flow problem can be written simply as 

i = -v0 cos 6 • (12.38) 

It is straightforward to find v from this potential. We will not pursue the matter 
further. 

12-6 Illumination; the uniform lighting of a plane 

In this section we turn to a completely different physical problem—we want 
to illustrate the great variety of possibilities. This time we will do something that 
leads to the same kind of integral that we found in electrostatics. (If we have a 
mathematical problem which gives us a certain integral, then we know something 
about the properties of that integral if it is the same integral that we had to do for 
another problem.) We take our example from illumination engineering. Suppose 
there is a light source at the distance a above a plane surface. What is the illumina¬ 
tion of the surface? That is, what is the radiant energy per unit time arriving at a 
unit area of the surface? (See Fig. 12-9.) We suppose that the source is spherically 
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Fig. 12-9. The illumination /„ of a 
surface is the radiant energy per unit 
time arriving at a unit area of the surface. 

symmetric, so that light is radiated equally in all directions. Then the amount of 
radiant energy which passes through a unit area at right angles to a light flow varies 
inversely as the square of the distance. It is evident that the intensity of the light in 
the direction normal to the flow is given by the same kind of formula as for the 
electric field from a point source. If the light rays meet the surface at an angle 9 to 
the normal, then /, the energy arriving per unit area of the surface, is only cos 6 as 
great, because the same energy goes onto an area larger by 1/cos 6. If we call the 
strength of our light source S, then In, the illumination of a surface, is 

In = | • n, (12.39) 

where er is the unit vector from the source and n is the unit normal to the surface. 
The illumination In corresponds to the normal component of the electric field from 
a point charge of strength 4t€0S. Knowing that, we see that for any distribution of 
light sources, we can find the answer by solving the corresponding electrostatic 
problem. We calculate the vertical component of electric field on the plane due to 
a distribution of charge in the same way as for that of the light sources.* 

Consider the following example. We wish for some special experimental 
situation to arrange that the top surface of a table will have a very uniform illumina¬ 
tion. We have available long tubular fluorescent lights which radiate uniformly 
along their lengths. We can illuminate the table by placing the fluorescent tubes 
in a regular array on the ceiling, which is at the height z above the table. What is 
the widest spacing b from tube to tube that we should use if we want the surface 
illumination to be uniform to, say, within one part in a thousand? Answer; (l) 
Find the electric field from a grid of wires with the spacing b, each charged uni¬ 
formly; (2) compute the vertical component of the electric field; (3) find out what 
b must be so that the ripples of the field are not more than one part in a thousand. 

In Chapter 7 we saw that the electric field of a grid of charged wires could be 
represented as a sum of terms, each one of which gave a sinusoidal variation of 
the field with a period of b/n, where n is an integer. The amplitude of any one of 
these terms is given by Eq. (7.44): 

Fn — Ane —2rmfb 

We need consider only n = 1, so long as we only want the field at points not too 
close to the grid. For a complete solution, we would still need to determine the 
coefficients An, which we have not yet done (although it is a straightforward 
calculation). Since we need only A i, we can estimate that its magnitude is roughly 
the same as that of the average field. The exponential factor would then give us 
directly the relative amplitude of the variations. If we want this factor to be 10~3, 
we find that b must be 0.91 z. If we make the spacing of the fluorescent tubes 3/4 

* Since we are talking about incoherent sources whose intensities always add linearly, 
the analogous electric charges will always have the same sign. Also, our analogy applies 
only to the light energy arriving at the top of an opaque surface, so we must include in 
our integral only the sources which shine on the surface (and, naturally, not sources 
located below the surface!). 
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of the distance to the ceiling, the exponential factor is then 1/4000, and we have a 
safety factor of 4, so we are fairly sure that we will have the illumination constant 
to one part in a thousand. (An exact calculation shows that A i is really twice the 
average field, so the exact answer is b = 0.8z.) It is somewhat surprising that for 
such a uniform illumination the allowed separation of the tubes comes out so large. 

12-7 The “underlying unity” of nature 

In this chapter, we wished to show that in learning electrostatics you have 
learned at the same time how to handle many subjects in physics, and that by 
keeping this in mind, it is possible to learn almost all of physics in a limited number 
of years. 

However, a question surely suggests itself at the end of such a discussion: 
Why are the equations from different phenomena so similar? We might say: “It is 
the underlying unity of nature.” But what does that mean? What could such a 
statement mean? It could mean simply that the equations are similar for different 
phenomena; but then, of course, we have given no explanation. The “underlying 
unity” might mean that everything is made out of the same stuff, and therefore 
obeys the same equations. That sounds like a good explanation, but let us 
think. The electrostatic potential, the diffusion of neutrons, heat flow—are we 
really dealing with the same stuff? Can we really imagine that the electrostatic po¬ 
tential is physically identical to the temperature, or to the density of particles? 
Certainly <f> is not exactly the same as the thermal energy of particles. The displace¬ 
ment of a membrane is certainly not like a temperature. Why, then, is there “an 
underlying unity” ? 

A closer look at the physics of the various subjects shows, in fact, that the 
equations are not really identical. The equation we found for neutron diffusion is 
only an approximation that is good when the distance over which we are looking 
is large compared with the mean free path. If we look more closely, we would see 
the individual neutrons running around. Certainly the motion of an individual 
neutron is a completely different thing from the smooth variation we get from 
solving the differential equation. The differential equation is an approximation, 
because we assume that the neutrons are smoothly distributed in space. 

Is it possible that this is the clue? That the thing which is common to all the 
phenomena is the space, the framework into which the physics is put? As long as 
things are reasonably smooth in space, then the important things that will be 
involved will be the rates of change of quantities with position in space. That is 
why we always get an equation with a gradient. The derivatives must appear in 
the form of a gradient or a divergence; because the laws of physics are independent 
of direction, they must be expressible in vector form. The equations of electro¬ 
statics are the simplest vector equations that one can get which involve only the 
spatial derivatives of quantities. Any other simple problem—or simplification of a 
complicated problem—must look like electrostatics. What is common to all our 
problems is that they involve space and that we have imitated what is actually a 
complicated phenomenon by a simple differential equation. 

That leads us to another interesting question. Is the same statement perhaps 
also true for the electrostatic equations? Are they also correct only as a smoothed- 
out imitation of a really much more complicated microscopic world ? Could it be 
that the real world consists of little X-ons which can be seen only at very tiny dis¬ 
tances? And that in our measurements we are always observing on such a large 
scale that we can’t see these little X-ons, and that is why we get the differential 
equations? 

Our currently most complete theory of electrodynamics does indeed have its 
difficulties at very short distances. So it is possible, in principle, that these equations 
are smoothed-out versions of something. They appear to be correct at distances 
down to about 10“14 cm, but then they begin to look wrong. It is possible that 
there is some as yet undiscovered underlying “machinery,” and that the details of 
an underlying complexity are hidden in the smooth-looking equations—as is so 
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in the “smooth” diffusion of neutrons. But no one has yet formulated a successful 
theory that works that way. 

Strangely enough, it turns out (for reasons that we do not at all understand) 
that the combination of relativity and quantum mechanics as we know them seems 
to forbid the invention of an equation that is fundamentally different from Eq. 
(12.4), and which does not at the same time lead to some kind of contradiction. 
Not simply a disagreement with experiment, but an internal contradiction. As, for 
example, the prediction that the sum of the probabilities of all possible occurrences 
is not equal to unity, or that energies may sometimes come out as complex numbers, 
or some other such idiocy. No one has yet made up a theory of electricity for which 
V24> = —p/e0 is understood as a smoothed-out approximation to a mechanism 
underneath, and which does not lead ultimately to some kind of an absurdity. 
But, it must be added, it is also true that the assumption that V2<f> = —p/e0 is 
valid for all distances, no matter how small, leads to absurdities of its own (the 
electrical energy of an electron is infinite)—absurdities from which no one yet 
knows an escape. 

12-13 



13 

Magnetoataties 

13-1 The magnetic field 

The force on an electric charge depends not only on where it is, but also on 
how fast it is moving. Every point in space is characterized by two vector quantities 
which determine the force on any charge. First, there is the electric force, which 
gives a force component independent of the motion of the charge. We describe it 
by the electric field, E. Second, there is an additional force component, called the 
magnetic force, which depends on the velocity of the charge. This magnetic force 
has a strange directional character: At any particular point in space, both the 
direction of the force and its magnitude depend on the direction of motion of the 
particle: at every instant the force is always at right angles to the velocity vector; 
also, at any particular point, the force is always at right angles to a fixed direction 
in space (see Fig. 13-1); and finally, the magnitude of the force is proportional to 
the component of the velocity at right angles to this unique direction. It is possible 
to describe all of this behavior by defining the magnetic field vector B, which speci¬ 
fies both the unique direction in space and the constant of proportionality with the 
velocity, and to write the magnetic force as qv X B. The total electromagnetic 
force on a charge can, then, be written as 

F = q(E + v X B). (13.1) 

This is called the Lorentz force. 
The magnetic force is easily demonstrated by bringing a bar magnet close to a 

cathode-ray tube. The deflection of the electron beam shows that the presence of 
the magnet results in forces on the electrons transverse to their direction of motion, 
as we described in Chapter 12 of Vol. I. 

The unit of magnetic field B is evidently one newton second per 
coulomb-meter. The same unit is also one volt-second per meter2. It is also 
called one weber per square meter. 

13-1 The magnetic field 

13-2 Electric current; the 
conservation of charge 

13-3 The magnetic force on a 
current 

13-4 The magnetic field of steady 
currents; Ampere’s law 

13-5 The magnetic field of a 
straight wire and of a solenoid; 
atomic currents 

13-6 The relativity of magnetic and 
electric fields 

13-7 The transformation of currents 
and charges 

13-8 Superposition; the right-hand 
rule 

Review: Chapter 15, Yol. I: The Special 
Theory of Relativity 

13-2 Electric current; the conservation of charge 

We consider first how we can understand the magnetic forces on wires carrying 
electric currents. In order to do this, we define what is meant by the current density. 
Electric currents are electrons or other charges in motion with a net drift or flow. 
We can represent the charge flow by a vector which gives the amount of charge 
passing per unit area and per unit time through a surface element at right angles to 
the flow (just as we did for the case of heat flow). We call this the current density 
and represent it by the vector j. It is directed along the motion of the charges. 
If we take a small area AS at a given place in the material, the amount of charge 
flowing across that area in a unit time is 

j * n AS, (13.2) 

where n is the unit vector normal to AS. 
The current density is related to the average flow velocity of the charges. 

Suppose that we have a distribution of charges whose average motion is a drift 
with the velocity v. As this distribution passes over a surface element AS, the charge 
Aq passing through the surface element in a time At is equal to the charge contained 
in a parallelepiped whose base is AS and whose height is v At, as shown in Fig. 13-2. 
The volume of the parallelepiped is the projection of AS at right angles to v times 
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Fig. 13-1. The velocity-dependent 

component of the force on a moving 
charge is at right angles to v and to the 

direction of B. It is also proportional to 
the component of v at right angles to B, 

that is, to v sin 0. 



v At, which when multiplied by the charge density p will give Aq. Thus 

Fig. 13-2. If a charge distribution of 
density p moves with the velocity v, the 
charge per unit time through AS is 

pv • n AS. 

SURFACE S 

Fig. 13-3. The current / through the 

surface S is fj • n dS. 

Fig. 13-4. The integral of j • n over 
a closed surface is the rate of change of 
the total charge Q inside. 

Aq ~ pv • n AS At. 

The charge per unit time is then pv • n AS, from which we get 

j = pv. (13.3) 

If the charge distribution consists of individual charges, say electrons, each 
with the charge q and moving with the mean velocity v, then the current density is 

j = Nqv, (13.4) 

where N is the number of charges per unit volume. 
The total charge passing per unit time through any surface S is called the 

electric current, I. It is equal to the integral of the normal component of the flow 
through all of the elements of the surface: 

I = 
(13.5) 

(see Fig. 13-3). 
The current / out of a closed surface S represents the rate at which charge 

leaves the volume V enclosed by S. One of the basic laws of physics is that 
electric charge is indestructible; it is never lost or created. Electric charges can 
move from place to place but never appear from nowhere. We say that charge is 
conserved. If there is a net current out of a closed surface, the amount of charge 
inside must decrease by the corresponding amount (Fig. 13-4). We can, therefore, 
write the law of the conservation of charge as 

/ 
any dosed 

surface 

j * n dS — —jj (Qinside)- (13.6) 

The charge inside can be written as a volume integral of the charge density: 

2i„8ide = f pdV. (13.7) 

V 
inside S 

If we apply (13.6) to a small volume AV, we know that the left-hand integral 
is V 'j A V. The charge inside is p A F, so the conservation of charge can also be 
written as 

vj=- Je 03.8) 

(Gauss’ mathematics once again!). 

13-3 The magnetic force on a current 

Now we are ready to find the force on a current-carrying wire in a magnetic 
field. The current consists of charged particles moving with the velocity v along 
the wire. Each charge feels a transverse force 

F = qv X B 

(Fig. 13-5a). If there are N such charges per unit volume, the number in a small 
volume AV of the wire is N AV. The total magnetic force AF on the volume AK 
is the sum of the forces on the individual charges, that is, 

But Nqv is just y, so 
AF = (NAV)(qv X B). 

AF = j X B AV (13.9) 

(Fig. 13—5b). The force per unit volume is j X B. 
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If the current is uniform across a wire whose cross-sectional area is A, we 
may take as the volume element a cylinder with the base area A and the length 
AL. Then 

AF = jXBAAL. (13.10) 

Now we can call JA the vector current / in the wire. (Its magnitude is the electric 
current in the wire, and its direction is along the wire.) Then 

AF = IXBAL. (13.11) 

The force per unit length on a wire is I X B. 
This equation gives the important result that the magnetic force on a wire, 

due to the movement of charges in it, depends only on the total current, and not on 
the amount of charge carried by each particle—or even its sign! The magnetic 
force on a wire near a magnet is easily shown by observing its deflection when a 
current is turned on, as was described in Chapter 1 (see Fig. 1-6). 

13-4 The magnetic field of steady currents; Ampere’s law 

We have seen that there is a force on a wire in the presence of a magnetic field, 
produced, say, by a magnet. From the principle that action equals reaction we 
might expect that there should be a force on the source of the magnetic field, i.e., 
on the magnet, when there is a current through the wire.* There are indeed such 
forces, as is seen by the deflection of a compass needle near a current-carrying 
wire. Now we know that magnets feel forces from other magnets, so that means 
that when there is a current in a wire, the wire itself generates a magnetic field. 
Moving charges, then, produce a magnetic field. We would like now to try to 
discover the laws that determine how such magnetic fields are created. The question 
is: Given a current, what magnetic field does it make? The answer to this question 
was determined experimentally by three critical experiments and a brilliant 
theoretical argument given by Ampere. We will pass over this interesting historical 
development and simply say that a large number of experiments have demonstrated 
the validity of Maxwell’s equations. We take them as our starting point. If we 
drop the terms involving time derivatives in these equations we get the equations of 
magnetostatics: 

V B = 0 (13.12) 
and 

c2V X B = — ■ (13.13) 
€0 

These equations are valid only if all electric charge densities are constant and all 
currents are steady, so that the electric and magnetic fields are not changing with 
time—all of the fields are “static.” 

We may remark that it is rather dangerous to think that there is such a thing 
as a static magnetic situation, because there must be currents in order to get a 
magnetic field at all—and currents can come only from moving charges. “Mag¬ 
netostatics” is, therefore, an approximation. It refers to a special kind of dynamic 
situation with large numbers of charges in motion, which we can approximate by 
a steady flow of charge. Only then can we speak of a current density j which does 
not change with time. The subject should more accurately be called the study of 
steady currents. Assuming that all fields are steady, we drop all terms in dE/dt 
and dB/dt from the complete Maxwell equations, Eqs. (2.41), and obtain the 
two equations (13.12) and (13.13) above. Also notice that since the divergence of 
the curl of any vector is necessarily zero, Eq. (13.13) requires that V - j — 0. This 
is true, by Eq. (13.8), only if dp/dt is zero. But that must be so if E is not changing 
with time, so our assumptions are consistent. 

* We will see later, however, that such assumptions are not generally correct for electro¬ 
magnetic forces! 

(b) 

Fig. 13-5. The magnetic force on a 
current-carrying wire is the sum of the 

forces on the individual moving charges. 
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Fig. 13-6. The line integral of the 
tangential component of 6 is equal to the 
surface integral of the normal component 
of V X B. 

The requirement that V • j — 0 means that we may only have charges which 
flow in paths that close back on themselves. They may, for instance, flow in wires 
that form complete loops—called circuits. The circuits may, of course, contain 
generators or batteries that keep the charges flowing. But they may not include 
condensers which are charging or discharging. (We will, of course, extend the 
theory later to include dynamic fields, but we want first to take the simpler case of 
steady currents.) 

Now let us look at Eqs. (13.12) and (13.13) to see what they mean. The first 
one says that the divergence of B is zero. Comparing it to the analogous equation 
in electrostatics, which says that V ■ E = p/e0, we can conclude that there is no 
magnetic analog of an electric charge. There are no magnetic charges from which 
lines of B can emerge. If we think in terms of “lines” of the vector field B, they can 
never start and they never stop. Then where do they come from? Magnetic fields 
“appear” in the presence of currents; they have a curl proportional to the current 
density. Wherever there are currents, there are lines of magnetic field making 
loops around the currents. Since lines of B do not begin or end, they will often 
close back on themselves, making closed loops. But there can also be complicated 
situations in which the lines are not simple closed loops. But whatever they do, 
they never diverge from points. No magnetic charges have ever been discovered, 
so V ■ B — 0. This much is true not only for magnetostatics, it is always true— 
even for dynamic fields. 

The connection between the B field and currents is contained in Eq. (13.13). 
Here we have a new kind of situation which is quite different from electrostatics, 
where we had V X E = 0. That equation meant that the line integral of E around 
any closed path is zero: 

<j> E • ds = 0. 

loop 

We got that result from Stokes’ theorem, which says that the integral around any 
closed path of any vector field is equal to the surface integral of the normal com¬ 
ponent of the curl of the vector (taken over any surface which has the closed loop 
as its periphery). Applying the same theorem to the magnetic field vector and 
using the symbols shown in Fig. 13-6, we get 

= J (V X B) n dS. (13.14) 

Taking the curl of B from Eq. (13.13), we have 

f Bds = ~ / j ndS. 
Jr «oc2 JSJ 

(13.15) 

The integral over j, according to (13.5), is the total current / through the surface S. 
Since for steady currents the current through S is independent of the shape of 5, 
so long as it is bounded by the curve r, one usually speaks of “the current through 
the loop T.” We have, then, a general law: the circulation of B around any closed 
curve is equal to the current / through the loop, divided by €0c2: 

f B ds = /th-roufr- (13.16) 
Jr e0c2 

This law—called Ampere's law—plays the same role in magnetostatics that Gauss’ 
law played in electrostatics. Ampere’s law alone does not determine B from cur¬ 
rents; we must, in general, also use V • B = 0. But, as we will see in the next 
section, it can be used to find the field in special circumstances which have certain 
simple symmetries. 
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13-5 The magnetic field of a straight wire and of a solenoid; atomic 
currents 

We can illustrate the use of Ampere’s law by finding the magnetic field near 
a wire. We ask: What is the field outside a long straight wire with a cylindrical 
cross section? We will assume something which may not be at all evident, but which 
is nevertheless true: that the field lines of B go around the wire in closed circles. 
If we make this assumption, then Ampere’s law, Eq. (13.16), tells us how strong the 
field is. From the symmetry of the problem, B has the same magnitude at all 
points on a circle concentric with the wire (see Fig. 13-7). We can then do the line 
integral of B • ds quite easily; it is just the magnitude of B times the circumference. 
If r is the radius of the circle, then 

B • ds = B • lirr. 

The total current through the loop is merely the current 1 in the wire, so 

or 

B • 27rr = —^ > 
e0c2 

n _ 12/ 

4tt€qC2 r 
(13.17) 

Fig. 13-7. The magnetic field outside 
of a long wire carrying the current /. 

The strength of the magnetic field drops off inversely as /*, the distance from the 
axis of the wire. We can, if we wish, write Eq. (13.17) in vector form. Remembering 
that B is at right angles both to I and to i% we have 

1 21 X er 
47re0c2 r 

(13.18) 

We have separated out the factor 1/47T€0c2, because it appears often. It is 
worth remembering that it is exactly 10~7 (in the mks system), since an equation 
like (13.17) is used to define the unit of current, the ampere. At one meter from a 
current of one ampere the magnetic field is 2 X 10~7 webers per square meter. 

Since a current produces a magnetic field, it will exert a force on a nearby wire 
which is also carrying a current. In Chapter 1 we described a simple demonstration 
of the forces between two current-carrying wires. If the wires are parallel, each is 
at right angles to the B field of the other; the wires should then be pushed either 
toward or away from each other. When currents are in the same direction, the 
wires attract; when the currents are moving in opposite directions, the wires repel. 

Let’s take another example that can be analyzed by Ampere’s law if we add 
some knowledge about the field. Suppose we have a long coil of wire wound in a 
tight spiral, as shown by the cross sections in Fig. 13-8. Such a coil is called a 
solenoid. We observe experimentally that when a solenoid is very long compared 
with its diameter, the field outside is very small compared with the field inside. 
Using just that fact, together with Ampere’s law, we can find the size of the field 
inside. 

Since the field stays inside (and has zero divergence), its lines must go along 
parallel to the axis, as shown in Fig. 13-8. That being the case, we can use Ampere’s 
law with the rectangular “curve” V shown in the figure. This loop goes the distance 
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L inside the solenoid, where the field is, say, B0i then goes at right angles to the 
field, and returns along the outside, where the field is negligible. The line integral 
of B for this curve is just B0L, and it must be 1 /e0c2 times the total current through 
r, which is NI if there are N turns of the solenoid in the length L. We have 

Fig. 13-9. The magnetic field outside 
of a solenoid. 

Or, letting n be the number of turns per unit length of the solenoid (that is, n ~ 
N/L), we get 

nl 

€0 C2 
(13.19) 

What happens to the lines of B when they get to the end of the solenoid? 
Presumably, they spread out in some way and return to enter the solenoid at the 
other end, as sketched in Fig. 13-9. Such a field is just what is observed outside of 
a bar magnet. But what is a magnet anyway ? Our equations say that B comes from 
the presence of currents. Yet we know that ordinary bars of iron (no batteries or 
generators) also produce magnetic fields. You might expect that there should be 
some other terms on the right-hand side of (13.12) or (13.13) to represent “the 
density of magnetic iron” or some such quantity. But there is no such term. Our 
theory says that the magnetic effects of iron come from some internal currents 
which are already taken care of by the j term. 

Matter is very complex when looked at from a fundamental point of view—as 
we saw when we tried to understand dielectrics. In order not to interrupt our pres¬ 
ent discussion, we will wait until later to deal in detail with the interior mechanisms 
of magnetic materials like iron. You will have to accept, for the moment, that all 
magnetism is produced from currents, and that in a permanent magnet there are 
permanent internal currents. In the case of iron, these currents come from electrons 
spinning around their own axes. Every electron has such a spin, which corresponds 
to a tiny circulating current. Of course, one electron doesn’t produce much mag¬ 
netic field, but in an ordinary piece of matter there are billions and billions of elec¬ 
trons. Normally these spin and point every which way, so that there is no net 
effect. The miracle is that in a very few substances, like iron, a large fraction of 
the electrons spin with their axes in the same direction—for iron, two electrons from 
each atom takes part in this cooperative motion. In a bar magnet there are large 
numbers of electrons all spinning in the same direction and, as we will see, their 
total effect is equivalent to a current circulating on the surface of the bar. (This is 
quite analogous to what we found for dielectrics—that a uniformly polarized di¬ 
electric is equivalent to a distribution of charges on its surface.) It is, therefore, no 
accident that a bar magnet is equivalent to a solenoid. 

13-6 The relativity of magnetic and electric fields 

When we said that the magnetic force on a charge was proportional to its 
velocity, you may have wondered: “What velocity? With respect to which refer¬ 
ence frame?” It is, in fact, clear from the definition of B given at the beginning of 
this chapter that what this vector is will depend on what we choose as a reference 
frame for our specification of the velocity of charges. But we have said nothing 
about which is the proper frame for specifying the magnetic field. 

It turns out that any inertial frame will do. We will also see that magnetism 
and electricity are not independent things—that they should always be taken to¬ 
gether as one complete electromagnetic field. Although in the static case Maxwell’s 
equations separate into two distinct pairs, one pair for electricity and one pair for 
magnetism, with no apparent connection between the two fields, nevertheless, in 
nature itself there is a very intimate relationship between them that arises from the 
principle of relativity. Historically, the principle of relativity was discovered after 
Maxwell’s equations. It was, in fact, the study of electricity and magnetism which 
led ultimately to Einstein’s discovery of his principle of relativity. But let’s see 
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Fig. 13-10. The interaction of a current-carrying wire and a particle with the 
charge q as seen in two frames. In frame S (part a)f the wire is at rest; in frame 
S' (part b|# the charge is at rest. 

what our knowledge of relativity would tell us about magnetic forces if we assume 
that the relativity principle is applicable—as it is—to electromagnetism. 

Suppose we think about what happens when a negative charge moves with 
velocity v0 parallel to a current-carrying wire, as in Fig. 13-10. We will try to under¬ 
stand what goes on in two reference frames: one fixed with respect to the wire, 
as in part (a) of the figure, and one fixed with respect to the particle, as in part (b). 
We will call the first frame S and the second S'. 

In the S-frame, there is clearly a magnetic force on the particle. The force is 
directed toward the wire, so if the charge is moving freely we would see it curve in 
toward the wire. But in the S"-frame there can be no magnetic force on the particle, 
because its velocity is zero. Does it, therefore, stay where it is? Would we see 
different things happening in the two systems? The principle of relativity would 
say that in S' we should also see the particle move closer to the wire. We must 
try to understand why that would happen. 

We return to our atomic description of a wire carrying a current. In a normal 
conductor, like copper, the electric currents come from the motion of some of the 
negative electrons—called the conduction electrons—while the positive nuclear 
charges and the remainder of the electrons stay fixed in the body of the material. 
We let the density of the conduction electrons be p_ and their velocity in S be v. 
The density of the charges at rest in S is p+, which must be equal to the negative 
of p_, since we are considering an uncharged wire. There is thus no electric field 
outside the wire, and the force on the moving particle is just 

F ~ qv0 X B. 

Using the result we found in Eq. (13.18) for the magnetic field at the distance 
r from the axis of a wire, we conclude that the force on the particle is directed 
toward the wire and has the magnitude 

P = 1 2Iqv o 
47T€oC2 r 

Using Eqs. (13.4) and (13.5), the current / can be written as p^vA, where A is 
the area of a cross section of the wire. Then 

F = 
1 

4?reoC2 

2qp„Avv0 
r 

(13.20) 

We could continue to treat the general case of arbitrary velocities for v and v0, 
but it will be just as good to look at the special case in which the velocity v0 of 
the particle is the same as the velocity v of the conduction electrons. So we write 
v0 = v, and Eq. (13,20) becomes 

q P-A v2 

27reo r c2 
(13.21) 

Now we turn our attention to what happens in S', in which the particle is at 
rest and the wire is running past (toward the left in the figure) with the speed v. 
The positive charges moving with the wire will make some magnetic field B' at 
the particle. But the particle is now at rest, so there is no magnetic force on it! 
If there is any force on the particle, it must come from an electric field. It must 
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be that the moving wire has produced an electric field. But it can do that only if it 
appears charged—it must be that a neutral wire with a current appears to be charged 
when set in motion. 

We must look into this. We must try to compute the charge density in the 
wire in S' from what we know about it in S. One might, at first, think they are the 
same; but we know that lengths are changed between S and S' (see Chapter 15, 
Vol. I), so volumes will change also. Since the charge densities depend on the 
volume occupied by charges, the densities will change, too. 

Before we can decide about the charge densities in S', we must know what 
happens to the electric charge of a bunch of electrons when the charges are moving. 
We know that the apparent mass of a particle changes by 1 /V1 — v2/c2. Does 
its charge do something similar? No! Charges are always the same, moving or 
not. Otherwise we would not always observe that the total charge is conserved. 

Suppose that we take a block of material, say a conductor, which is initially 
uncharged. Now we heat it up. Because the electrons have a different mass than 
the protons, the velocities of the electrons and of the protons will change by differ¬ 
ent amounts. If the charge of a particle depended on the speed of the particle carry¬ 
ing it, in the heated block the charge of the electrons and protons would no longer 
balance. A block would become charged when heated. As we have seen earlier, a 
very small fractional change in the charge of all the electrons in a block would give 
rise to enormous electric fields. No such effect has ever been observed. 

Also, we can point out that the mean speed of the electrons in matter depends 
on its chemical composition. If the charge on an electron changed with speed, the 
net charge in a piece of material would be changed in a chemical reaction. Again, 
a straightforward calculation shows that even a very small dependence of charge 
on speed would give enormous fields from the simplest chemical reactions. No 
such effect is observed, and we conclude that the electric charge of a single particle 
is independent of its state of motion. 

So the charge q on a particle is an invariant scalar quantity, independent of 
the frame of reference. That means that in any frame the charge density of a 
distribution of electrons is just proportional to the number of electrons per unit 
volume. We need only worry about the fact that the volume can change because 
of the relativistic contraction of distances. 

We now apply these ideas to our moving wire. If we take a length L0 of the 
wire, in which there is a charge density p0 of stationary charges, it will contain 
the total charge Q = p0L0A0. If the same charges are observed in a different frame 
to be moving with velocity v, they will all be found in a piece of the material with 
the shorter length 

L = L0V1 - t>2M (13.22) 

but with the same area A0 (since dimensions transverse to the motion are un¬ 
changed). See Fig. 13-11. 

If we call p the density of charges in the frame in which they are moving, the 
total charge Q will be pLA0. This must also be equal to p0L0Af because charge is 
the same in any system, so that pL = p0L0 or, from (13.22), 

P o 

Vl — v2/c2 

Fig. 13-11. If a distribution of charged particles at rest has the charge density 
Po, the same charges will have the density p = po/Vl — v2/c2 when seen from a 
frame with the relative velocity v. 
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The charge density of a moving distribution of charges varies in the same way as the 
relativistic mass of a particle. 

We now use this general result for the positive charge density p+ of our wire. 
These charges are at rest in frame S. In S', however, where the wire moves with 
the speed v9 the positive charge density becomes 

P+ = 
P+ 

Vl-^Vc2 
(13.24) 

The negative charges are at rest in S'. So they have their “rest density” p0 in 
this frame. In Eq. (13.23) p0 = P-, because they have the density pL when the 
wire is at rest, i.e., in frame S, where the speed of the negative charges is v. For 
the conduction electrons, we then have that 

or 

P- = 
P- s 

Vl — v2fc2 

pL — p__Vl — v2/c2. 

(13.25) 

(13.26) 

Now we can see why there are electric fields in S'—because in this frame the 
wire has the net charge density p' given by 

P' = P+ + Pa¬ 

using (13.24) and (13.26), we have 

p' = . P+ - r ; + P-V1 - V2/C2- 
Vl — v2/c2 

Since the stationary wire is neutral, p_ = — p+, and we have 

v2/c2 
p' = p+ 

Vl — v2/c2 
(13.27) 

Our moving wire is positively charged and will produce an electric field E' at the 
external stationary particle. We have already solved the electrostatic problem of a 
uniformly charged cylinder. The electric field at the distance r from the axis of the 
cylinder is 

fj = P*A = P+Av2/c2 

27re0r 27re0rV l—^2/^ 
(13.28) 

The force on the negatively charged particle is toward the wire. We have, at least, 
a force in the same direction from the two points of view; the electric force in S' 
has the same direction as the magnetic force in S. 

The magnitude of the force in S' is 

F> = S+A-tli.- (13.29) 
2ire0 r Vl - w2/c2 

Comparing this result for F' with our result for F in Eq. (13.21), we see that the 
magnitudes of the forces are almost identical from the two points of view. In fact, 

F' = ■ - - F- ■■ - , (13.30) 
Vl “ v2/c2 

so for the small velocities we have been considering, the two forces are equal. 
We can say that for low velocities, at least, we understand that magnetism and 
electricity are just “two ways of looking at the same thing.” 

But things are even better than that. If we take into account the fact that 
forces also transform when we go from one system to the other, we find that the 
two ways of looking at what happens do indeed give the same physical result for 
any velocity. 
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(b) 

Fig. 13-12. In frame S the charge 
density is zero and the current density is 
/. There is only a magnetic field. In S', 
there is a charge density p', and a differ¬ 
ent current density /'. The magnetic field 
B' is different and there is an electric 
field £'. 

One way of seeing this is to ask a question like: What transverse momentum 
will the particle have after the force has acted for a little while? We know from 
Chapter 16 of Vol. I that the transverse momentum of a particle should be the same 
in both the S- and S'-frames. Calling the transverse coordinate y, we want to 
compare Apy and Ap'y. Using the relativistically correct equation of motion, 
F = dp/dt, we expect that after the time At our particle will have a transverse 
momentum Apy in the 5-system given by 

Apy - F At. (13.31) 

In the S'-system, the transverse momentum will be 

Apy = F' At'. (13.32) 

We must, of course, compare Apy and Ap'y for corresponding time intervals At and 
At'. We have seen in Chapter 15 of Vol. I that the time intervals referred to a 
moving particle appear to be longer than those in the rest system of the particle. 
Since our particle is initially at rest in S', we expect, for small At, that 

At' 
At = - , - > (13.33) 

VI - v*/c2 

and everything comes out O.K. From (13.31) and (13.32), 

Ap'u _ F' At' 
Apy ~ F At ’ 

which is just = 1 if we combine (13.30) and (13.33). 
We have found that we get the same physical result whether we analyze the 

motion of a particle moving along a wire in a coordinate system at rest with respect 
to the wire, or in a system at rest with respect to the particle. In the first instance, 
the force was purely “magnetic,” in the second, it was purely “electric.” The two 
points of view are illustrated in Fig. 13-12 (although there is still a magnetic field 
B' in the second frame, it produces no forces on the stationary particle). 

If we had chosen still another coordinate system, we would have found a 
different mixture of E and B fields. Electric and magnetic forces are part of one 
physical phenomenon—the electromagnetic interactions of particles. The separa¬ 
tion of this interaction into electric and magnetic parts depends very much on the 
reference frame chosen for the description. But a complete electromagnetic de¬ 
scription is invariant; electricity and magnetism taken together are consistent 
with Einstein’s relativity. 

Since electric and magnetic fields appear in different mixtures if we change our 
frame of reference, we must be careful about how we look at the fields E and B. 
For instance, if we think of “lines” of E or B, we must not attach too much reality 
to them. The lines may disappear if we try to observe them from a different co¬ 
ordinate system. For example, in system S' there are electric field lines, which we 
do not find “moving past us with velocity v in system 5.” In system 5 there are no 
electric field lines at all! Therefore it makes no sense to say something like: When 
I move a magnet, it takes its field with it, so the lines of B are also moved. There 
is no way to make sense, in gf leral, out of the idea of “the speed of a moving field 
line.” The fields are our way of describing what goes on at a point in space. In 
particular, E and B tell us about the forces that will act on a moving particle. The 
question “What is the force on a charge from a moving magnetic field?” doesn’t 
mean anything precise. The force is given by the values of E and B at the charge, 
and the formula (13.1) is not to be altered if the source of E or B is moving (it is 
the values of E and B that will be altered by the motion). Our mathematical de¬ 
scription deals only with the fields as a function of x, y, z, and t with respect to 
some inertial frame. 

We will later be speaking of “a wave of electric and magnetic fields travelling 
through space,” as, for instance, a light wave. But that is like speaking of a wave 
travelling on a string. We don’t then mean that some part of the string is moving 
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in the direction of the wave, we mean that the displacement of the string appears 
first at one place and later at another. Similarly, in an electromagnetic wave, the 
wave travels,* but the magnitude of the fields change. So in the future when we—or 
someone else—speaks of a “moving” field, you should think of it as just a handy, 
short way of describing a changing field in some circumstances. 

13-7 The transformation of currents and charges 

You may have worried about the simplification we made above when we 
took the same velocity v for the particle and for the conduction electrons in the 

' wire. We could go back and carry through the analysis again for two different 
velocities, but it is easier to simply notice that charge and current density are the 
components of a four-vector (see Chapter 17, Vol. I). 

We have seen that if p0 is the density of the charges in their rest frame, then 
in a frame in which they have the velocity v, the density is 

p = - Po • 

VI - V2/C2 

In that frame their current density is 

j = PP = 
Pot* 

VI - w2/c2 

(13.34) 

Now we know that the energy U and momentum p of a particle moving with 
velocity v are given by 

m0c2 _ m0v 
U = —-■ —: = > p = — - ~ > 

Vl - V2/c2 VI - V2/c2 

where m0 is its rest mass. We also know that U andp form a relativistic four-vector. 
Since p and./ depend on the velocity v exactly as do U andp, we can conclude that p 
and j are also the components of a relativistic four-vector. This property is the key 
to a general analysis of the field of a wire moving with any velocity, which we 
would need if we want to do the problem again with the velocity vQ of the particle 
different from the velocity of the conduction electrons. 

If we wish to transform p and j to a coordinate system moving with a velocity 
u in the x-direction, we know that they transform just like t and (x, y, z), so that 
we have (see Chapter 15, Vol. I) 

. X ~ ut x — , II 

•"-I 

jx “ up 

Vl — U2/c2 Vl — u2/c2 

y = y> Jv = Jy> 

z' = z, j'z = jzt 

, _ t — ux/c2 
p' = 

P - ujjc2 

Vl — u2/c2 Vl - «2/c2 

(13.35) 

With these equations we can relate charges and currents in one frame to those 
in another. Taking the charges and currents in either frame, we can solve the 
electromagnetic problem in that frame by using our Maxwell equations. The 
result we obtain for the motions ofparticles will be the same no matter which frame 
we choose. We will return at a later time to the relativistic transformations of the 
electromagnetic fields. 

13-8 Superposition; the right-hand rule 

We will conclude this chapter by making two further points regarding the 
subject of magnetostatics. First, our basic equations for the magnetic field, 

V X B = j/ch0. V • B = 0, 
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are linear in B and j. That means that the principle of superposition also applies 
to magnetic fields. The field produced by two different steady currents is the sum 
of the individual fields from each current acting alone. Our second remark con¬ 
cerns the right-hand rules which we have encountered (such as the right-hand 
rule for the magnetic field produced by a current). We have also observed that the 
magnetization of an iron magnet is to be understood from the spin of the electrons 
in the material. The direction of the magnetic field of a spinning electron is related 
to its spin axis by the same right-hand rule. Because B is determined by a “handed” 
rule—involving either a cross product or a curl—it is called an axial vector. (Vec¬ 
tors whose direction in space does not depend on a reference to a right or left hand 
are called polar vectors. Displacement, velocity, force, and E> for example, are 
polar vectors.) 

Physically observable quantities in electromagnetism are not, however, right- 
(or left-) handed. Electromagnetic interactions are symmetrical under reflection 
(see Chapter 52, Vol. I). Whenever magnetic forces between two sets of currents are 
computed, the result is invariant with respect to a change in the hand convention. 
Our equations lead, independently of the right-hand convention, to the end result 
that parallel currents attract, or that currents in opposite directions repel. (Try 
working out the force using “left-hand rules.”) An attraction or repulsion is a 
polar vector. This happens because in describing any complete interaction, we 
use the right-hand rule twice—once to find B from currents, again to find the force 
this B produces on a second current. Using the right-hand rule twice is the same 
as using the left-hand rule twice. If we were to change our conventions to a left- 
hand system all our B fields would be reversed, but all forces—or, what is perhaps 
more relevant, the observed accelerations of objects—would be unchanged. 

Although physicists have recently found to their surprise that all the laws of 
nature are not always invariant for mirror reflections, the laws of electromagnetism 
do have such a basic symmetry. 
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14 

The Magnetic Field in Various Situations 

14-1 The vector potential 

In this chapter we continue our discussion of magnetic fields associated with 
steady currents—the subject of magnetostatics. The magnetic field is related to 
electric currents by our basic equations 

V B = 0, (14.1) 

c2V X B = ■£- * (14.2) 
€o 

We want now to solve these equations mathematically in a general way, that is, 
without requiring any special symmetry or intuitive guessing. In electrostatics, 
we found that there was a straightforward procedure for finding the field when the 
positions of all electric charges are known; One simply works out the scalar 
potential 4> by taking an integral over the charges—as in Eq. (4.25). Then if one 
wants the electric field, it is obtained from the derivatives of <j>. We will now show 
that there is a corresponding procedure for finding the magnetic field B if we know 
the current density j of all moving charges. 

In electrostatics we saw that (because the curl of E was always zero) it was 
possible to represent E as the gradient of a scalar field <j>. Now the curl of B is not 
always zero, so it is not possible, in general, to represent it as a gradient. However, 
the divergence of B is always zero, and this means that we can always represent B as 
the curl of another vector field. For, as we saw in Section 2-8, the divergence of a 
curl is always zero. Thus we can always relate B to a field we will call A by 

B = V X A. (14.3) 

Or, by writing out the components, 

A. (TX 

<•«> 

Writing B = V X A guarantees that Eq. (14.1) is satisfied, since, necessarily, 

14-1 The vector potential 

14-2 The vector potential of known 
currents 

14-3 A straight wire 

14-4 A long solenoid 

14-5 The field of a small loop; the 
magnetic dipole 

14-6 The vector potential of a 
circuit 

14-7 The law of Biot and Savart 

V • B = V * (V X A) = 0. 

The field A is called the vector potential. 
You will remember that the scalar potential <f> was not completely specified 

by its definition. If we have found <f> for some problem, we can always find another 
potential 4>( that is equally good by adding a constant: 

<p' = <p + C. 

The new potential <f>' gives the same electric fields, since the gradient VC is zero; 
<f>' and 0 represent the same physics. 

Similarly, we can have different vector potentials A which give the same 
magnetic fields. Again, because B is obtained from A by differentiation, adding a 
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constant to A doesn’t change anything physical. But there is even more latitude 
for A. We can add to A any field which is the gradient of some scalar field, without 
changing the physics. We can show this as follows. Suppose we have an A that 
gives correctly the magnetic field B for some real situation, and ask in what cir¬ 
cumstances some other new vector potential A' will give the same field B if sub¬ 
stituted into (14.3). Then A and Af must have the same curl: 

Therefore 
B = V X Af = V X A, 

V X A' - V X A = V X (A' - A) = 0. 

But if the curl of a vector is zero it must be the gradient of some scalar field, say 
so A' — A — V^. That means that if A is a satisfactory vector potential for a 

problem then, for any ^ at all, 

A' = A + (14.5) 

will be an equally satisfactory vector potential, leading to the same field B. 
It is usually convenient to take some of the “latitude” out of A by arbitrarily 

placing some other condition on it (in much the same way that we found it con¬ 
venient—often—to choose to make the potential <f> zero at large distances). We 
can, for instance, restrict A by choosing arbitrarily what the divergence of A must 
be. We can always do that without affecting B. This is because although Af and 
A have the same curl, and give the same B, they do not need to have the same 
divergence. In fact, V • A1 = V • A + vV, and by a suitable choice of \f/ we can 
make V ■ Af anything we wish. 

What should we choose for V ■ A ? The choice should be made to get the 
greatest mathematical convenience and will depend on the problem we are doing. 
For magnetostatics, we will make the simple choice 

V • A = 0. (14.6) 

(Later, when we take up electrodynamics, we will change our choice.) Our complete 
definition* of A is then, for the moment, V X A = B and V • A =0. 

To get some experience with the vector potential, let’s look first at what it is 
for a uniform magnetic field B0. Taking our z-axis in the direction of Bq, we must 
have 

z> dAz BAy n 

Bx = -ajr “ it ” °> 

* - >Jk ~ Hi - <>■ <14-7> 

Bz 
BAy BAX n 

~ 0 

By inspection, we see that one possible solution of these equations is 

Ay —— xBo, Ax — 0, A % = 0. 

Or we could equally well take 

Ax = yB0i Ay — 0, Ag = 0. 

Still another solution is a linear combination of the two: 

Ax = -iyB0, Ay = ixB0i Ag = 0. (14.8) 

* Our definition still does not uniquely determine A. For a unique specification we 
would also have to say something about how the field A behaves on some boundary, or 
at large distances. It is sometimes convenient, for example, to choose a field which 
goes to zero at large distances. 
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It is clear that for any particular field B, the vector potential A is not unique; 
there are many possibilities. 

The third solution, Eq. (14.8), has some interesting properties. Since the 
^-component is proportional to —y and the ^-component is proportional to +*, 
A must be at right angles to the vector from the z-axis, which we will call r' (the 
“prime” is to remind us that it is not the vector displacement from the origin). 
Also, the magnitude of A is proportional to \/x2 + y2 and, hence, to r'. So A 
can be simply written (for our uniform field) as 

A = iB X r'. (14.9) 

The vector potential A has the magnitude Br'/2 and rotates about the z-axis as 
shown in Fig. 14-1. If, for example, the B field is the axial field inside a solenoid, 
then the vector potential circulates in the same sense as do the currents of the 
solenoid. 

The vector potential for a uniform field can be obtained in another way. 
The circulation of A on any closed loop T can be related to the surface integral of 
V X A by Stokes’ theorem, Eq. (3.38): 

jrA-ds= f (V X A) • nda. (14.10) 
inside F 

But the integral on the right is equal to the flux of B through the loop, so 

k A-ds / 
inside F 

B • nda. (14.11) 

So the circulation of A around any loop is equal to the flux of B through the loop. 
If we take a circular loop, of radius r' in a plane perpendicular to a uniform field 
B, the flux is just 

irrt2B, 

If we choose our origin on an axis of symmetry, so that we can take A as circum¬ 
ferential and a function only of r\ the circulation will be 

j> A * ds — hrr'A = 7rrf2B. 

We get, as before, 

A 
BS 
2 

In the example we have just given, we have calculated the vector potential from 
the magnetic field, which is opposite to what one normally does. In complicated 
problems it is usually easier to solve for the vector potential, and then determine 
the magnetic field from it. We will now show how this can be done. 

14-2 The vector potential of known currents 

Since B is determined by currents, so also is A. We want now to find A in 
terms of the currents. We start with our basic equation (14.2): 

c2V X B = j-. 
Co 

which means, of course, that 

c2V X (V X A) = J- • (14.12) 
€o 

This equation is for magnetostatics what the equation 

V • V<£ = - — (14.13) 
€0 

y 

Fig. 14-1. A uniform magnetic field 
B in the z-directton corresponds to a 
vector potential A that rotates about the 
z-axis, with the magnitude A = Br /2 
(rf is the displacement from the z-axis). 

was for electrostatics. 
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Our equation (14.12) for the vector potential looks even more like that for 
<t> if we rewrite V X (V X A) using the vector identity Eq. (2.58): 

V X (V X A) = V(V • A) - V2A. (14.14) 

Since we have chosen to make V • A = 0 (and now you see why), Eq. (14.12) 
becomes 

V2A = - 

* 
J 

€0 C2 
(14.15) 

This vector equation means, of course, three equations: 

Fig. 14-2. The vector potential A at 
point 1 is given by an integral over the 
current elements jdV at all points 2. 

V2AX V2Av v2a. 

And each of these equations is mathematically identical to 

V2<*> = P , 

€o 

jz 

€0C2 
(14.16) 

(14.17) 

All we have learned about solving for potentials when p is known can be used for 
solving for each component of A when j is known! 

We have seen in Chapter 4 that a general solution for the electrostatic equation 
(14.17) is 

<P(1) = 
1 f p(2) dV2 

47T€0 J r 12 

So we know immediately that a general solution for Ax is 

4*0) = 
1 f U2)dV2 

47T€0C2 J 7*12 
(14.18) 

and similarly for Ay and Az. (Figure 14-2 will remind you of our conventions for 
r 12 and dV2.) We can combine the three solutions in the vector form 

^(0 = 

1 [j(2)dV2 
47TCQC2 J 7*12 

(14.19) 

(You can verify if you wish, by direct differentiation of components, that this inte¬ 
gral for A satisfies V ■ A = 0 so long as V *y — 0, which, as we saw, must happen 
for steady currents.) 

We have, then, a general method for finding the magnetic field of steady cur¬ 
rents. The principle is: the jc-component of vector potential arising from a current 
density j is the same as the electric potential <j> that would be produced by a charge 
density p equal to jx/c2—and similarly for they- and z-components. (This principle 
works only with components in fixed directions. The “radial” component of A 
does not come in the same way from the “radial” component of y, for example.) 
So from the vector current density y, we can find A using Eq. (14.19)—that is, we 
find each component of A by solving three imaginary electrostatic problems for 
the charge distributions p\ = yx/c2, p2 = jy/c2, and p3 = jz/c2. Then we get 
B by taking various derivatives of A to obtain V X A. It’s a little more compli¬ 
cated than electrostatics, but the same idea. We will now illustrate the theory by 
solving for the vector potential in a few special cases. 

14-3 A straight wire 

For our first example, we will again find the field of a straight wire—which we 
solved in the last chapter by using Eq. (14.2) and some arguments of symmetry. 
We take a long straight wire of radius a, carrying the steady current I. Unlike the 
charge on a conductor in the electrostatic case, a steady current in a wire is uni¬ 
formly distributed throughout the cross section of the wire. If we choose our 
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coordinates as shown in Fig. 14-3, the current density vector j has only a z-com- 
ponent. Its magnitude is 

jz 
I 

ira2 
(14.20) 

inside the wire, and zero outside. 
Since jx and jy are both zero, we have immediately 

Ax = 0, Ay — 0. 

To get Ag we can use our solution for the electrostatic potential 4> of a wire with a 
uniform charge density p = jz/c2- For points outside an infinite charged cylinder, 
the electrostatic potential is 

4* = 
27T€q 

In rf. 

where rf = x2 + y2 and X is the charge per unit length, ira2p. So Az must be 

A* = ~2*eifi2]nr' 

for points outside a long wire carrying a uniform current. Since 7ra2jz = /, we 
can also write 

/ 
Az = 

2t€o c2 
In r\ (14.21) 

Now we can find B from (14.4). There are only two of the six derivatives that 
are not zero. We get 

Bx = I d i / ■7— In r* = 

By = 

Bz = 0. 

27re0c2 dy 

I d . , 
T- In rf = 

27T€0c2 r*2 

I X 

2t€qC2 dx 27T€0C2 f2 

(14.22) 

(14.23) 

We get the same result as before: B circles around the wire, and has the magnitude 

1 21 
B = 

47T€qC2 f 
(14.24) 

14-4 A long solenoid 

Next, we consider again the infinitely long solenoid with a circumferential 
current on the surface of nl per unit length. (We imagine there are n turns of wire 
per unit length, carrying the current/, and we neglect the slight pitch of the winding.) 

Just as we have defined a “surface charge density” <r, we define here a “sur¬ 
face current density” J equal to the current per unit length on the surface of the 
solenoid (which is, of course, just the average j times the thickness of the thin 
winding). The magnitude of / is, here, nL This surface current (see Fig. 14-4) has 
the components. 

Jx = —J sin 0, Jy ~ J cos 0, Jz ~ 0. 

Now we must find A for such a current distribution. 
First, we wish to find Ax for points outside the solenoid. The result is the same 

as the electrostatic potential outside a cylinder with a surface charge 

<t = <x 0 sin 0, 

with Oq = J/c2. We have not solved such a charge distribution, but we have done 
something similar. This charge distribution is equivalent to two solid cylinders of 
charge, one positive and one negative, with a slight relative displacement of their 
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Fig. 14-3. A long cylindrical wire 
along the z-axis with a uniform current 
density j. 

z 

1 t 
1 1 

Fig. 14-4. A long solenoid with a 
surface current density J. 



axes in the ^-direction. The potential of such a pair of cylinders is proportional 
to the derivative with respect to y of the potential of a single uniformly charged 
cylinder. We could work out the constant of proportionality, but let’s not worry 
about it for the moment. 

The potential of a cylinder of charge is proportional to In r'; the potential 
of the pair is then 

So we know that 

6 In r' 
dy - r1 

Ax (14.25) 

where K is some constant. Following the same argument, we would find 

Ay — (14.26) 

Although we said before that there was no magnetic field outside a solenoid, we 
find now that there is an A -field which circulates around the z-axis, as in Fig. 14-4. 
The question is: Is its curl zero? 

Clearly, Bx and By are zero, and 

Bz Tx(K£)-7r,(-K£) 

A \rf 2 r*4 r'2 r'4 / 
= 0. 

Fig. 14-5. A rotating charged cylin¬ 

der produces a magnetic field inside. A 
short radial wire rotating with the cylinder 
has charges induced on its ends. 

So the magnetic field outside a very long solenoid is indeed zero, even though the 
vector potential is not. 

We can check our result against something else we know: The circulation of 
the vector potential around the solenoid should be equal to the flux of B inside the 
coil (Eq. 14.11). The circulation is A * 2wr' or, since A = K/r', the circulation is 
2ttK. Notice that it is independent of rf. That is just as it should be if there is no 
B outside, because the flux is just the magnitude of B inside the solenoid times 
7ra2. It is the same for all circles of radius r > a. We have found in the last chapter 
that the field inside is nI/eQc2, so we can determine the constant K: 

~ ~ 2 nl 
2ttK = 7ra —^ > 

€0c2 

or 

„ __ nla2 

2e0c2 * 

So the vector potential outside has the magnitude 

A = w?’ (R27) 

and is always perpendicular to the vector #*'. 
We have been thinking of a solenoidal coil of wire, but we would produce 

the same fields if we rotated a long cylinder with an electrostatic charge on the 
surface. If we have a thin cylindrical shell of radius a with a surface charge <r, 
rotating the cylinder makes a surface current J = av, where v = aoo is the velocity 
of the surface charge. There will then be a magnetic field B = <raa}/e0c2 inside 
the cylinder. 

Now we can raise an interesting question. Suppose we put a short piece of 
wire W perpendicular to the axis of the cylinder, extending from the axis out to 
the surface, and fastened to the cylinder so that it rotates with it, as in Fig. 14-5. 
This wire is moving in a magnetic field, so the v X B forces will cause the ends of 
the wire to be charged (they will charge up until the li-field from the charges just 
balances the v X B force). If the cylinder has a positive charge, the end of the wire 
at the axis will have a negative charge. By measuring the charge oh the end of the 
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wire, we could measure the speed of rotation of the system. We would have an 
“angular-velocity meter”! 

But are you wondering: “What if I put myself in the frame of reference of the 
rotating cylinder? Then there is just a charged cylinder at rest, and I know that the 
electrostatic equations say there will be no electric fields inside, so there will be no 
force pushing charges to the center. So something must be wrong.” But there is 
nothing wrong. There is no “relativity of rotation.” A rotating system is not an 
inertial frame, and the laws of physics are different. We must be sure to use equa¬ 
tions of electromagnetism only with respect to inertial coordinate systems. 

It would be nice if we could measure the absolute rotation of the earth with 
such a charged cylinder, but unfortunately the effect is much too small to observe 
even with the most delicate instruments now available. 

14-5 The field of a small loop; the magnetic dipole 

Let’s use the vector-potential method to find the magnetic field of a small 
loop of current. As usual, by “small” we mean simply that we are interested in 
the fields only at distances large compared with the size of the loop. It will turn 
out that any small loop is a “magnetic dipole.” That is, it produces a magnetic 
field like the electric field from an electric dipole. 

Fig. 14-6. A rectangular loop of wire with the 
current /. What is the magnetic field at P? (R a, or b.) 

Fig. 14-7. The distribution of /x in 
the current loop of Fig. 14-6. 

We take first a rectangular loop, and choose our coordinates as shown in 
Fig. 14-6. There are no currents in the z-direction, so Az is zero. There are currents 
in the x-direction on the two sides of length a. In each leg, the current density 
(and current) is uniform. So the solution for Ax is just like the electrostatic po¬ 
tential from two charged rods (see Fig. 14-7). Since the rods have opposite charges, 
their electric potential at large distances would be just the dipole potential (Section 
6-5). At the point P in Fig. 14-6, the potential would be 

4> = 
1 P • cr . 

47T€q R2 
(14.28) 

where p is the dipole moment of the charge distribution. The dipole moment, in 
this case, is the total charge on one rod times the separation between them: 

p ~ \ab. (14.29) 

The dipole moment points in the negative ^-direction, so the cosine of the angle 
between R and p is —y/R (where y is the coordinate of P). So we have 

__   1 \ab y_ 

0 “ 4tt€0 R2 R 

We get Ax simply by replacing X by //c2: 

A = Iab y 
4lT€oC2 R3 

(14.30) 
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By the same reasoning, 

I 

Fig. 14-8. The vector potential of a 
small current loop at the origin (in the 
xy-plane); a magnetic dipole field. 

lab x 
V " 47T€0c2 i?3 

(14.31) 

Again, Av is proportional to x and Ax is proportional to —y9 so the vector potential 
(at large distances) goes in circles around the z-axis, circulating in the same sense 
as / in the loop, as shown in Fig. 14-8. 

The strength of A is proportional to lab, which is the current times the area 
of the loop. This product is called the magnetic dipole moment (or, often, just 
“magnetic moment”) of the loop. We represent it by 

M = lab. (14.32) 

The vector potential of a small plane loop of any shape (circle, triangle, etc.) is 
also given by Eqs. (14.30) and (14.31) provided we replace lab by 

ju = /• (area of loop). (14.33) 

We leave the proof of this to you. 
We can put our equation in vector form if we define the direction of the vector 

fi to be the normal to the plane of the loop, with a positive sense given by the right- 
hand rule (Fig. 14-8), Then we can write 

1 (i X R _ 1 ju X e% 
47T€0C2 4tT€0c2 R2 

(14.34) 

We have still to find B. Using (14.33) and (14.34), together with (14.4), we get 

d p x _ 3xz 
dz 4tt€oC2 R3 R5 

(where by ... we mean ju/47r€0c2), 

(14.35) 

(14.36) 

The components of the 5-field behave exactly like those of the 5-field for a 
dipole oriented along the z-axis. (See Eqs. (6.14) and (6.15); also Fig. 6-5.) 
That’s why we call the loop a magnetic dipole. The word “dipole” is slightly 
misleading when applied to a magnetic field because there are no magnetic “poles” 
that correspond to electric charges. The magnetic “dipole field” is not produced 
by two “charges,” but by an elementary current loop. 

It is curious, though, that starting with completely different laws, V • E = p/e0 
and V X B = y/€0c2, we can end up with the same kind of a field. Why should 
that be? It is because the dipole fields appear only when we are far away from 
all charges or currents. So through most of the relevant space the equations for 
E and B are identical: both have zero divergence and zero curl. So they give the 
same solutions. However, the sources whose configuration we summarize by the 
dipole moments are physically quite different—in one case, it’s a circulating cur¬ 
rent; in the other, a pair of charges, one above and one below the plane of the loop 
for the corresponding field. 

14-6 The vector potential of a circuit 

We are often interested in the magnetic fields produced by circuits of wire in 
which the diameter of the wire is very small compared with the dimensions of the 
whole system. In such cases, we can simplify the equations for the magnetic field. 
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For a thin wire we can write our volume element as 

dV = Sds, 

where S is the cross-sectional area of the wire and ds is the element of distance 
along the wire. In fact, since the vector ds is in the same direction as jt as shown in 
Fig. 14-9 (and we can assume that j is constant across any given cross section), 
we can write a vector equation: 

jdV^jSds. (14.37) 

But jS is just what we call the current / in a wire, so our integral for the vector 
potential (14.19) becomes 

A(1) = j-i-j f ^2 (14.38) 
47re0c2 J r12 

(see Fig. 14-10). (We assume that / is the same throughout the circuit. If there are 
several branches with different currents, we should, of course, use the appropriate 
/ for each branch.) 

Again, we can find the fields from (14.38) either by integrating directly or by 
solving the corresponding electrostatic problems. 

14-7 The law of Biot and Savart 

In studying electrostatics we found that the electric field of a known charge 
distribution could be obtained directly with an integral (Eq. 4-16): 

1 fp(2)e12dV2 
*(1)~47T0J -FT- 

As we have seen, it is usually more work to evaluate this integral—there are really 
three integrals, one for each component—than to do the integral for the potential 
and take its gradient. 

There is a similar integral which relates the magnetic field to the currents. 
We already have an integral for A, Eq. (14.19); we can get an integral for B by 
taking the curl of both sides: 

*(.) - v x x(l> - y x f Eg*] ■ (14.39) 

Now we must be careful: The curl operator means taking the derivatives of 
/4(1), that is, it operates only on the coordinates (xuyuzi). We can move the 
V X operator inside the integral sign if we remember that it operates only on 
variables with the subscript 1, which of course, appear only in 

r 12 = [(*i - x2f + 0’i - )>2)2 + (zi - Zif]1'2- (14.40) 

We have, for the x-component of B, 

Bx = 
dA.. dA, 
dyi dzi 

-4 

4 

The quantity in brackets is just the ^-component of 

j_Xri2 _jX*12 

j*3 
ri2 r2 i2 

(14.41) 

Fig. 14-9. For a fine wire / dV is the 
same as / d$. 

Fig. 14-10. The magnetic field of a 
wire can be obtained from an integral 

around the circuit. 
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Corresponding results will be found for the other components, so we have 

B(l) = 
1 f 7(2) X «ifl 

47re0c2 J rf2 
dV2. (14.42) 

The integral gives B directly in terms of the known currents. The geometry in¬ 
volved is the same as that shown in Fig. 14-2. 

If the currents exist only in circuits of small wires we can, as in the last section, 
immediately do the integral across the wire, replacing jdV by Ids, where ds is an 
element of length of the wire. Then, using the symbols in Fig. 14-10, 

B{ 1) = 
I f Ie 12 X ds2 

47re0c2 J r\2 
(14.43) 

(The minus sign appears because we have reversed the order of the cross product.) 
This equation for B is called the Biot-Samrt law, after its discoverers. It gives a 
formula for obtaining directly the magnetic field produced by wires carrying 
currents. 

You may wonder: “What is the advantage of the vector potential if we can 
find B directly with a vector integral? After all, A also involves three integrals!” 
Because of the cross product, the integrals for B are usually more complicated, as 
is evident from Eq. (14.41). Also, since the integrals for A are like those of electro¬ 
statics, we may already know them. Finally, we will see that in more advanced 
theoretical matters (in relativity, in advanced formulations of the laws of me¬ 
chanics, like the principle of least action to be discussed later, and in quantum 
mechanics) the vector potential plays an important role. 
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15 

The Vector Potential 

15-1 The forces on a current loop; energy of a dipole 

In the last chapter we studied the magnetic field produced by a small rec¬ 
tangular current loop. We found that it is a dipole field, with the dipole moment 
given by 

M = IA, (15.1) 

where I is the current and A is the area of the loop. The direction of the moment 
is normal to the plane of the loop, so we can also write 

fi — lAn, 

where n is the unit normal to the area A. 
A current loop—or magnetic dipole—not only produces magnetic fields, but 

will also experience forces when placed in the magnetic field of other currents. 
We will look first at the forces on a rectangular loop in a uniform magnetic field. 
Let the 2-axis be along the direction of the field, and the plane of the loop be 
placed through the .y-axis, making the angle 0 with the xy-plane as in Fig. 15-1. 
Then the magnetic moment of the loop—which is normal to its plane—will make 
the angle 0 with the magnetic field. 

Since the currents are opposite on opposite sides of the loop, the forces are 
also opposite, so there is no net force on the loop (when the field is uniform). 
Because of forces on the two sides marked 1 and 2 in the figure, however, there is a 
torque which tends to rotate the loop about the y-axis. The magnitude of these 
forces Fj and F2 is 

Fi = F2 = IBb. 

Their moment arm is 

a sin 0, 

so the torque is 
r = lab B sin 0, 

or, since lab is the magnetic moment of the loop, 

r = fxB sin 0. 

The torque can be written in vector notation: 

t = (iX B. (15.2) 

Although*we have only shown that the torque is given by Eq. (15.2) in one rather 
special case, the result is right for a small loop of any shape, as we will see. You will 
remember that we found the same kind of relation for the torque on an electric 
dipole: 

t = p X E, 

We now ask about the mechanical energy of our current loop. Since there is 
a torque, the energy evidently depends on the orientation. The principle of virtual 
work says that the torque is the rate of change of energy with angle, so we can write 

dU = -7 d$. 

15-1 The forces on a current loop; 
energy of a dipole 

15-2 Mechanical and electrical 
energies 

15-3 The energy of steady currents 

15-4 B versus A 

15-5 The vector potential and 
quantum mechanics 

15-6 What is true for statics is 
false for dynamics 

Fig. 15-1. A rectangular loop carry¬ 
ing the current / sits in a uniform field B 

(in the z-direction). The torque on the 

loop is r = fx X B, where the magnetic 
moment ju = lab. 
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Setting r = — pB sin 0, and integrating, we can write for the energy 

U — — jui?cos0+ a constant. (15.3) 

(The sign is negative because the torque tries to line up the moment with the field; 
the energy is lowest when p and B are parallel.) 

For reasons which we will discuss later, this energy is not the total energy of a 
current loop. (We have, for one thing, not taken into account the energy required 
to maintain the current in the loop.) We will, therefore, call this energy t/mech, 
to remind us that it is only part of the energy. Also, since we are leaving out some 
of the energy anyway, we can set the constant of integration equal to zero in Eq. 
(15.3). So we rewrite the equation: 

U,nech = ~f> B. (15.4) 

Again, this corresponds to our result for an electric dipole: 

U — —p • E. (15.5) 

Now the electrostatic energy C/inEq. (15.5) is the true energy, but t/mech in 
(15.4) is not the real energy. It can, however, be used in computing forces, by the 
principle of virtual work, supposing that the current in the loop—or at least ju—is 
kept constant. 

We can show for our rectangular loop that £/meoh also corresponds to the 
mechanical work done in bringing the loop into the field. The total force on the 
loop is zero only in a uniform field; in a nonuniform field there are net forces on a 
current loop. In putting the loop into a region with a field, we must have gone 
through places where the field was not uniform, and so work was done. To make 
the calculation simple, we shall imagine that the loop is brought into the field with 
its moment pointing along the field. (It can be rotated to its final position after it 
is in place.) 

Imagine that we want to move the loop in the x-direction—toward a region of 
stronger field—and that the loop is oriented as shown in Fig. 15-2. We start 
somewhere where the field is zero and integrate the force times the distance as we 
bring the loop into the field. 

Fig. 15-2. A loop is carried 
the x-direction through the field 
right angles to x. 

First, let’s compute the work done on each side separately and then take the 
sum (rather than adding the forces before integrating). The forces on sides 3 and 4 
are at right angles to the direction of motion, so no work is done on them. The 
force on side 2 is IbB(x) in the x-direction, and to get the work done against the 
magnetic forces we must integrate this from some x where the field is zero, say at 
x = — oo, to x2, its present position: 

W2-f2 F2 dx = -lb H B(x) dx. (15.6) 
J-00 J-00 

Similarly, the work done against the forces on side 1 is 

15-2 

W1 = - f1 F1dx = lb f1 B(x) dx. 
J—00 J—00 

(15.7) 



To find each integral, we need to know how B(x) depends on x. But notice that 
side 1 follows along right behind side 2, so that its integral includes most of the 
work done on side 2. In fact, the sum of (15.6) and (15.7) is just 

W = -lb [*2 B(x)dx. (15.8) 
JX i 

But if we are in a region where B is nearly the same on both sides 1 and 2, we can 
write the integral as 

f 2 B(x)dx — (x2 “ xi)B = aB, 
Jxi 

where B is the field at the center of the loop. The total mechanical energy we have 
put in is 

Umeoh = W = -lab B = -fiB. (15.9) 

The result agrees with the energy we took for Eq. (15.4). 
We would, of course, have gotten the same result if we had added the forces 

on the loop before integrating to find the work. If we let Bi be the field at side 1 
and B2 be the field at side 2, then the total force in the x-direction is 

Fx = Ib{B2 - BJ. 

If the loop is “small,” that is, if B2 and B\ are not too different, we can write 

So the force is 
Bi = Bi + IfAx = Bi + ®- 

dB 
Fx = lab ^ • 

dx 
(15.10) 

The total work done on the loop by external forces is 

which is again just — nB. Only now we see why it is that the force on a small 
current loop is proportional to the derivative of the magnetic field, as we would 
expect from 

FxAx = -At/mech = —A(—|i ■ B). (15.11) 

Our result, then, is that even though I7mech = —M ' B may not include all the 
energy of a system—it is a fake kind of energy—it can still be used with the principle 
of virtual work to find the forces on steady current loops. 

15-2 Mechanical and electrical energies 

We want now to show why the energy t/mech discussed in the previous section 
is not the correct energy associated with steady currents—that it does not keep 
track of the total energy in the world. We have, indeed, emphasized that it can 
be used like the energy, for computing forces from the principle of virtual work, 
provided that the current in the loop (and all other currents) do not change. Let’s 
see why all this works. 

Imagine that the loop in Fig. 15-2 is moving in the 4-x-direction and take the 
z-axis in the direction of B. The conduction electrons in side 2 will experience a 
force along the wire, in the ^-direction. But because of their flow—as an electric 
current—there is a component of their motion in the same direction as the force. 
Each electron is, therefore, having work done on it at the rate Fyvy, where vy is the 
component of the electron velocity along the wire. We will call this work done on 
the electrons electrical work. Now it turns out that if the loop is moving in a 
uniform field, the total electrical work is zero, since positive work is done on some 
parts of the loop and an equal amount of negative work is done on other parts. 
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But this is not true if the circuit is moving in a nonuniform field—then there will 
be a net amount of work done on the electrons. In general, this work would tend 
to change the flow of the electrons, but if the current is being held constant, energy 
must be absorbed or delivered by the battery or other source that is keeping the 
current steady. This energy was not included when we computed t/mech in Eq. 
(15.9), because our computations included only the mechanical forces on the body 
of the wire. 

You may be thinking: But the force on the electrons depends on how fast 
the wire is moved; perhaps if the wire is moved slowly enough this electrical energy 
can be neglected. It is true that the rate at which the electrical energy is delivered 
is proportional to the speed of the wire, but the total energy delivered is propor¬ 
tional also to the lime that this rate goes on. So the total electrical energy is pro¬ 
portional to the velocity times the time, which is just the distance moved. For a 
given distance moved in a field the same amount of electrical work is done. 

Let’s consider a segment of wire of unit length carrying the current / and mov¬ 
ing in a direction perpendicular to itself and to a magnetic field B with the speed 
vwlre. Because of the current the electrons will have a drift velocity thrift along the 
wire. The component of the magnetic force on each electron in the direction of the 
drift is qevwlTeB. So the rate at which electrical work is being done is Fvdrift = 
(^wire^drift- If there are N conduction electrons in the unit length of the wire, 
the total rate at which electrical work is being done is 

= NqevwinBvdtm. 

But Nqevdrnt = /, the current in the wire, so 

dUe\ect 
dt 

&B. 

Now since the current is held constant, the forces on the conduction electrons 
do not cause them to accelerate; the electrical energy is not going into the electrons 
but into the source that is keeping the current constant. 

But notice that the force on the wire is IB, so IBvwlTe is also the rate of me¬ 
chanical work done on the wire, dUmQ<&/dt — IBv^ire. We conclude that the 
mechanical work done on the wire is just equal to the electrical work done on the 
current source, so the energy of the loop is a constantl 

This is not a coincidence, but a consequence of the law we already know. 
The total force on each charge in the wire is 

F = q(E + v X B), 

The rate at which work is done is 

v • F = q[v ■ E + v • (v X B)]. (15.12) 

If there are no electric fields we have only the second term, which is always zero. 
We shall see later that changing magnetic fields produce electric fields, so our 
reasoning applies only to moving wires in steady magnetic fields. 

How is it then that the principle of virtual work gives the right answer? 
Because we still have not taken into account the total energy of the world. We have 
not included the energy of the currents that are producing the magnetic field we 
start out with. 

Suppose we imagine a complete system such as that drawn in Fig. 15-3 (a), in 
which we are moving our loop with the current h into the magnetic field B\ pro¬ 
duced by the current I2 in a coil. Now the current Ix in the loop will also be pro¬ 
ducing some magnetic field B2 at the coil. If the loop is moving, the field B2 will 
be changing. As we shall see in the next chapter, a changing magnetic field gen¬ 
erates an E-field; and this E-field will do work on the charges in the coil. This 
energy must also be included in our balance sheet of the total energy. 
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Fig. 15-3. Finding the energy of a small loop in a magnetic field. 

We could wait until the next chapter to find out about this new energy term, 
but we can also see what it will be if we use the principle of relativity in the following 
way. When we are moving the loop toward the stationary coil we know that its 
electrical energy is just equal and opposite to the mechanical work done. So 

t^mech ”1” ^elect(lOOp) 0. 

Suppose now we look at what is happening from a different point of view, 
in which the loop is at rest, and the coil is moved toward it. The coil is then moving 
into the field produced by the loop. The same arguments would give that 

f^rnech ^elect(coil) — 0. 

The mechanical energy is the same in the two cases because it comes from the force 
between the two circuits. 

The sum of the two equations gives 

2£^mech “f* ^elect(loop) + C/elect(coil) 0. 

The total energy of the whole system is, of course, the sum of the two electrical 
energies plus the mechanical energy taken only once. So we have 

^total £/elect(l0Op) H- t/e]ect(coil) “h 1/mech ^rnech- (15.13) 

The total energy of the world is really the negative of Umech. If we want the 
true energy of a magnetic dipole, for example, we should write 

Ctotal ~ ' 3. 

It is only if we make the condition that all currents are constant that we can use 
only a part of the energy, Umech (which is always the negative of the true energy), 
to find the mechanical forces. In a more general problem, we must be careful to 
include all energies. 

We have seen an analogous situation in electrostatics. We showed that the 
energy of a capacitor is equal to Q2/2C. When we use the principle of virtual work 
to find the force between the plates of the capacitor, the change in energy is equal 
to 672 times the change in 1/C. That is, 

A U 
G! AC 
2 C2 

(15.14) 

Now suppose that we were to calculate the work done in moving two con¬ 
ductors subject to the different condition that the voltage between them is held 
constant. Then we can get the right answers for force from the principle of virtual 
work if we do something artificial. Since Q = CV, the real energy is \CV2. But 
if we define an artificial energy equal to — 2 CK2, then the principle of virtual work 
can be used to get forces by setting the change in the artificial energy equal to the 
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B 

Fig. 15-4. The energy of a large 
loop in a magnetic field can be considered 
as the sum of energies of smaller loops. 

mechanical work, provided that we insist that the voltage V be held constant. Then 

At/mech = A (- = - — AC, (15.15) 

which is the same as Eq. (15.14). We get the correct result even though we are 
neglecting the work done by the electrical system to keep the voltage constant. 
Again, this electrical energy is just twice as big as the mechanical energy and of 
the opposite sign. 

Thus if we calculate artificially, disregarding the fact that the source of the 
potential has to do work to maintain the voltages constant, we get the right answer. 
It is exactly analogous to the situation in magnetostatics. 

15-3 The energy of steady currents 

We can now use our knowledge that t/totai = — Umech to find the true energy 
of steady currents in magnetic fields. We can begin with the true energy of a small 
current loop. Calling Uu>tai just U, we write 

U = /t B. (15.16) 

Although we calculated this energy for a plane rectangular loop, the same result 
holds for a small plane loop of any shape. 

We can find the energy of a circuit of any shape by imagining that it is made 
up of small current loops. Say we have a wire in the shape of the loop Y of Fig. 
15-4. We fill in this curve with the surface 5, and on the surface mark out a large 
number of small loops, each of which can be considered plane. If we let the current 
/circulate around each of the little loops, the net result will be the same as a current 
around T, since the currents will cancel on all lines internal to T. Physically, the 
system of little currents is indistinguishable from the original circuit. The 
energy must also be the same, and so is just the sum of the energies of the little loops. 

If the area of each little loop is Aa, its energy is I AaBn, where Bn is the com¬ 
ponent normal to A a. The total energy is 

U = £ IBn Aa. 

Going to the limit of infinitesimal loops, the sum becomes an integral, and 

U = ljBnda = ijB-ttda, (15.17) 

where n is the unit normal to da. 
If we set B = V X A, we can connect the surface integral to a line integral, 

using Stokes’ theorem, 

lfs (V X A) ■ n da = A • ds, (15.18) 

where ds is the line element along T. So we have the energy for a circuit of any 
shape: 

U = / f A • ds. (15.19) 

circuit 

In this expression A refers, of course, to the vector potential due to those currents 
(other than the / in the wire) which produce the field B at the wire. 

Now any distribution of steady currents can be imagined to be made up of 
filaments that run parallel to the lines of current flow. For each pair of such circuits, 
the energy is given by (15.19), where the integral is taken around one circuit, using 
the vector potential A from the other circuit. For the total energy we want the 
sum of all such pairs. If, instead of keeping track of the pairs, we take the complete 
sum over all the filaments, we would be counting the energy twice (we saw a 
similar effect in electrostatics), so the total energy can be written 

U = ijj • A dV. (15.20) 
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This formula corresponds to the result we found for the electrostatic energy: 

U=ijf»f>dV. (15.21) 

So we may if we wish think of A as a kind of potential energy for currents in 
magnetostatics. Unfortunately, this idea is not too useful, because it is true only 
for static fields. In fact, neither of the equations (15.20) and (15.21) gives the cor¬ 
rect energy when the fields change with time. 

15-4 B versus A 

In this section we would like to discuss the following questions: Is the vector 
potential merely a device which is useful in making calculations—as the scalar 
potential is useful in electrostatics—or is the vector potential a “real” field? Isn’t 
the magnetic field the “real” field, because it is responsible for the force on a 
moving particle? First we should say that the phrase “a real field” is not very 
meaningful. For one thing, you probably don’t feel that the magnetic field is 
very “real” anyway, because even the whole idea of a field is a rather abstract thing. 
You cannot put out your hand and feel the magnetic field. Furthermore, the value 
of the magnetic field is not very definite; by choosing a suitable moving coordinate 
system, for instance, you can make a magnetic field at a given point disappear. 

What we mean here by a “real” field is this: a real field is a mathematical 
function we use for avoiding the idea of action at a distance. If we have a charged 
particle at the position P, it is affected by other charges located at some distance 
from P. One way to describe the interaction is to say that the other charges make 
some “condition”—whatever it may be—in the environment at P. If we know 
that condition, which we describe by giving the electric and magnetic fields, then 
we can determine completely the behavior of the particle—with no further reference 
to how those conditions came about. 

In other words, if those other charges were altered in some way, but the 
conditions at P that are described by the electric and magnetic field at P remain 
the same, then the motion of the charge will also be the same. A “real” field is 
then a set of numbers we specify in such a way that what happens at a point depends 
only on the numbers at that point. We do not need to know any more about what’s 
going on at other places. It is in this sense that we will discuss whether the vector 
potential is a “real” field. 

You may be wondering about the fact that the vector potential is not unique— 
that it can be changed by adding the gradient of any scalar with no change at all 
in the forces on particles. That has not, however, anything to do with the question 
of reality in the sense that we are talking about. For instance, the magnetic field 
is in a sense altered by a relativity change (as are also E and A). But we are not 
worried about what happens if the field can be changed in this way. That doesn’t 
really make any difference; that has nothing to do with the question of whether 
the vector potential is a proper “real”* field for describing magnetic effects, or 
whether it is just a useful mathematical tool. 

We should also make some remarks on the usefulness of the vector potential 
A. We have seen that it can be used in a formal procedure for calculating the mag¬ 
netic fields of known currents, just as <f> can be used to find electric fields. In 
electrostatics we saw that <f> was given by the scalar integral 

*“>-4<15J2> 

From this <f>, we get the three components of E by three differential operations. 
This procedure is usually easier to handle than evaluating the three integrals in 
the vector formula r 

e<»-4^ 

First, there are three integrals; and second, each integral is in general somewhat 
more difficult. 
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The advantages are much less clear for magnetostatics. The integral for A is 
already a vector integral : 

^(D = 
1 [j(2)dV2 

47T€0c2 J r 12 
(15.24) 

which is, of course, three integrals. Also, when we take the curl of A to get B, we 
have six derivatives to do and combine by pairs. It is not immediately obvious 
whether in most problems this procedure is really any easier than computing B 
directly from 

B( 1) = 
1 f j(2) X gi2 

4tt€0c2 J rf2 dV2 (15.25) 

Using the vector potential is often more difficult for simple problems for the 
following reason. Suppose we are interested only in the magnetic field B at one 
point, and that the problem has some nice symmetry—say we want the field at a 
point on the axis of a ring of current. Because of the symmetry, we can easily get 
B by doing the integral of Eq. (15.25). If, however, we were to find A first, we would 
have to compute B from derivatives of A, so we must know what A is at all points 
in the neighborhood of the point of interest. And most of these points are off the 
axis of symmetry, so the integral for A gets complicated. In the ring problem, for 
example, we would need to use elliptic integrals. In such problems, A is clearly 
not very useful. It is true that in many complex problems it is easier to work with 
A, but it would be hard to argue that this ease of technique would justify making 
you learn about one more vector field. 

We have introduced A because it does have an important physical significance. 
Not only is it related to the energies of currents, as we saw in the last section, but 
it is also a “real” physical field in the sense that we described above. In classical 
mechanics it is clear that we can write the force on a particle as 

F = q(E + v X B% (15.26) 

so that, given the forces, everything about the motion is determined. In any region 
where B = 0 even if A is not zero, such as outside a solenoid, there is no dis¬ 
cernible effect of A. Therefore for a long time it was believed that A was not a 
“real” field. It turns out, however, that there are phenomena involving quantum 
mechanics which show that the field A is in fact a “real” field in the sense we have 
defined it. In the next section we will show you how that works. 

15-5 The vector potential and quantum mechanics 

There are many changes in what concepts are important when we go from 
classical to quantum mechanics. We have already discussed some of them in 
Vol. I. In particular, the force concept gradually fades away, while the concepts 
of energy and momentum become of paramount importance. You remember that 
instead of particle motions, one deals with probability amplitudes which vary in 
space and time. In these amplitudes there are wavelengths related to momenta, 
and frequencies related to energies. The momenta and energies, which determine 
the phases of wave functions, are therefore the important quantities in quantum 
mechanics. Instead of forces, we deal with the way interactions change the wave¬ 
length of the waves. The idea of a force becomes quite secondary—if it is there at 
all. When people talk about nuclear forces, for example, what they usually analyze 
and work with are the energies of interaction of two nucleons, and not the force 
between them. Nobody ever differentiates the energy to find out what the force 
looks like. In this section we want to describe how the vector and scalar poten¬ 
tials enter into quantum mechanics. It is, in fact, just because momentum and 
energy play a central role in quantum mechanics that A and <t> provide the most 
direct way of introducing electromagnetic effects into quantum descriptions. 

We must review a little how quantum mechanics works. We will consider 
again the imaginary experiment described in Chapter 37 of Vol. I, in which elec- 
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Fig. 15-5. An interference experiment with electrons 

(see also Chapter 37 of Vol. I). 

trons are diffracted by two slits. The arrangement is shown again in Fig. 15-5. 
Electrons, all of nearly the same energy, leave the source and travel toward a wall 
with two narrow slits. Beyond the wall is a “backstop” with a movable detector. 
The detector measures the rate, which we call /, at which electrons arrive at a small 
region of the backstop at the distance x from the axis of symmetry. The rate is 
proportional to the probability that an individual electron that leaves the source 
will reach that region of the backstop. This probability has the complicated-looking 
distribution shown in the figure, which we understand as due to the interference of 
two amplitudes, one from each slit. The interference of the two amplitudes 
depends on their phase difference. That is, if the amplitudes are and C2e1*2, 
the phase difference 6 = — <$>2 determines their interference pattern [see Eq. 
(29.12) in Vol. I]. If the distance between the screen and the slits is L, and if the 
difference in the path lengths for electrons going through the two slits is a, as 
shown in the figure, then the phase difference of the two waves is given by 

i = | • (15.27) 
A 

As usual, we let X = X/27T, where X is the wavelength of the space variation of the 
probability amplitude. For simplicity, we will consider only values of x much 
less than L; then we can set 

and 

i = zr (15-28) 
When x is zero, 6 is zero; the waves are in phase, and the probability has a maxi¬ 
mum. When 5 is tt, the waves are out of phase, they interfere destructively, and the 
probability is a minimum. So we get the wavy function for the electron intensity. 

Now we would like to state the law that for quantum mechanics replaces the 
force law F = qv X B. It will be the law that determines the behavior of quantum- 
mechanical particles in an electromagnetic field. Since what happens is determined 
by amplitudes, the law must tell us how the magnetic influences affect the ampli¬ 
tudes; we are no longer dealing with the acceleration of a particle. The law is the 
following: the phase of the amplitude to arrive via any trajectory is changed by 
the presence of a magnetic field by an amount equal to the integral of the vector 
potential along the whole trajectory times the charge of the particle over Planck’s 
constant. That is, 

Magnetic change in phase -if A • ds. 

trajectory 

(15.29) 
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If there were no magnetic field there would be a certain phase of arrival. If there is 
a magnetic field anywhere, the phase of the arriving wave is increased by the integral 
in Eq. (15.29). 

Although we will not need to use it for our present discussion, we mention 
that the effect of an electrostatic field is to produce a phase change given by the 
negative of the time integral of the scalar potential <f>: 

Electric change in phase 

These two expressions are correct not only for static fields, but together give the 
correct result for any electromagnetic field, static or dynamic. This is the law that 
replaces F = q{E + v X B). We want now, however, to consider only a static 
magnetic field. 

Suppose that there is a magnetic field present in the two-slit experiment. We 
want to ask for the phase of arrival at the screen of the two waves whose paths pass 
through the two slits. Their interference determines where the maxima in the 
probability will be. We may call the phase of the wave along trajectory (1). 

= 0) is the phase without the magnetic field, then when the field is turned 
on the phase will be 

= $!(fl = 0) + | / A ■ ds. (15.30) 
« J( i) 

Similarly, the phase for trajectory (2) is 

$2 = $2(B = 0) + f / A ds. (15.31) 
n J (2) 

The interference of the waves at the detector depends on the phase difference 

S = (B = 0) - $2(B = 0) + I / A ds - § A-ds. (15.32) 
n J a) n J (2) 

The no-field difference we will call 5(5 = 0); it is just the phase difference we 
have calculated above in Eq. (15.28). Also, we notice that the two integrals can 
be written as one integral that goes forward along (1) and back along (2); we call 
this the closed path (1-2). So we have 

s = S(B = 0) + I f A-ds. (15.33) 
^ 1-2) 

This equation tells us how the electron motion is changed by the magnetic field; 
with it we can find the new positions of the intensity maxima and minima at the 
backstop. 

Before we do that, however, we want to raise the following interesting and 
important point. You remember that the vector potential function has some 
arbitrariness. Two different vector potential functions A and Af whose difference 
is the gradient of some scalar function both represent the same magnetic field, 
since the curl of a gradient is zero. They give, therefore, the same classical force 
qv X B, If in quantum mechanics the effects depend on the vector potential, 
which of the many possible ^-functions is correct? 

The answer is that the same arbitrariness in A continues to exist for quantum 
mechanics. If in Eq. (15.33) we change A to A’ = A + V^, the integral on 
A becomes 

The integral of is around the closed path (1-2), but the integral of the tangential 
component of a gradient on a closed path is always zero, by Stokes’ theorem. 
Therefore both A and A' give the same phase differences and the same quantum- 
mechanical interference effects. In both classical and quantum theory it is only the 
curl of A that matters; any choice of the function of A which has the correct curl 
gives the correct physics. 
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The same conclusion is evident if we use the results of Section 14-1. There 
we found that the line integral of A around a closed path is the flux of B through 
the path, which here is the flux between paths (1) and (2). Equation (15.33) can, 
if we wish, be written as 

5 = 8(B = 0) + I [flux of B between (1) and (2)], (15.34) 
n 

where by the flux of B we mean, as usual, the surface integral of the normal com¬ 
ponent of B. The result depends only on B, and therefore only on the curl of A. 

Now because we can write the result in terms of B as well as in terms of A, 
you might be inclined to think that the B holds its own as a “real” field and that 
the A can still be thought of as an artificial construction. But the definition of 
“real” field that we originally proposed was based on the idea that a “real” field 
would not act on a particle from a distance. We can, however, give an example 
in which B is zero—or at least arbitrarily small—at any place where there is some 
chance to find the particles, so that it is not possible to think of it acting directly 
on them. 

You remember that for a long solenoid carrying an electric current there is 
a B-field inside but none outside, while there is lots of A circulating around outside, 
as shown in Fig. 15-6. If we arrange a situation in which electrons are to be found 
only outside of the solenoid—only where there is A—there will still be an influence 
on the motion, according to Eq. (15.33). Classically, that is impossible. Classically, 
the force depends only on B; in order to know that the solenoid is carrying current, 
the particle must go through it. But quantum-mechanically you can find out that 
there is a magnetic field inside the solenoid by going around it—without ever going 
close to it! 

Suppose that we put a very long solenoid of small diameter just behind the 
wall and between the two slits, as shown in Fig. 15-7. The diameter of the solenoid 
is to be much smaller than the distance d between the two slits. In these circum¬ 
stances, the diffraction of the electrons at the slit gives no appreciable probability 
that the electrons will get near the solenoid. What will be the effect on our inter¬ 
ference experiment? 

Fig. 15-6. The magnetic field and 
vector potential of a long solenoid. 

Fig. 15-7. A magnetic field can influence the motion of electrons even though 
it exists only in regions where there is an arbitrarily small probability of finding the 
electrons. 

We compare the situation with and without a current through the solenoid. 
If we have no current, we have no B or A and we get the original pattern of elec¬ 
tron intensity at the backstop. If we turn the current on in the solenoid and build 
up a magnetic field B inside, then there is an A outside. There is a shift in the 
phase difference proportional to the circulation of A outside the solenoid, which will 
mean that the pattern of maxima and minima is shifted to a new position. In fact, 
since the flux of B inside is a constant for any pair of paths, so also is the circula¬ 
tion of A. For every arrival point there is the same phase change; this corresponds 
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to shifting the entire pattern in x by a constant amount, say x0i that we can easily 
calculate. The maximum intensity will occur where the phase difference between 
the two waves is zero. Using Eq. (15.32) or Eq. (15.33) for 5 and Eq. (15.28) for 
8(B — 0), we have 

*0 =-4*1? A-ds, (15.35) 
« ft 7(1-2) 

or 

x0 = — ~ X | [flux of B between (1) and (2)]. (15.36) 

The pattern with the solenoid in place should appear* as shown in Fig. 15-7. At 
least, that is the prediction of quantum mechanics. 

Precisely this experiment has recently been done. It is a very, very difficult 
experiment. Because the wavelength of the electrons is so small, the apparatus must 
be on a tiny scale to observe the interference. The slits must be very close together, 
and that means that one needs an exceedingly small solenoid. It turns out that in 
certain circumstances, iron crystals will grow in the form of very long, microsco¬ 
pically thin filaments called whiskers. When these iron whiskers are magnetized 
they are like a tiny solenoid, and there is no field outside except near the ends. 
The electron interference experiment was done with such a whisker between two 
slits, and the predicted displacement in the pattern of electrons was observed. 

In our sense then, the ^4-field is “real.” You may say: “But there was a mag¬ 
netic field.” There was, but remember our original idea—that a field is “real” if it is 
what must be specified at the position of the particle in order to get the motion. 
The 5-field in the whisker acts at a distance. If we want to describe its influence 
not as action-at-a-distance, we must use the vector potential. 

This subject has an interesting history. The theory we have described was 
known from the beginning of quantum mechanics in 1926. The fact that the vector 
potential appears in the wave equation of quantum mechanics (called the Schrod- 
inger equation) was obvious from the day it was written. That it cannot be replaced 
by the magnetic field in any easy way was observed by one man after the other 
who tried to do so. This is also clear from our example of electrons moving in a 
region where there is no field and being affected nevertheless. But because in 
classical mechanics A did not appear to have any direct importance and, further¬ 
more, because it could be changed by adding a gradient, people repeatedly said 
that the vector potential had no direct physical significance—that only the magnetic 
and electric fields are “right” even in quantum mechanics. It seems strange in 
retrospect that no one thought of discussing this experiment until 1956, when 
Bohm and Aharanov first suggested it and made the whole question crystal clear. 
The implication was there all the time, but no one paid attention to it. Thus 
many people were rather shocked when the matter was brought up. That’s why 
someone thought it would be worth while to do the experiment to see that it really 
was right, even though quantum mechanics, which had been believed for so many 
years, gave an unequivocal answer. It is interesting that something like this can 
be around for thirty years but, because of certain prejudices of what is and is not 
significant, continues to be ignored. 

Now we wish to continue in our analysis a little further. We will show the 
connection between the quantum-mechanical formula and the classical formula— 
to show why it turns out that if we look at things on a large enough scale it will 
look as though the particles are acted on by a force equal to qv X the curl of A. 
To get classical mechanics from quantum mechanics, we need to consider cases in 
which all the wavelengths are very small compared with distances over which ex¬ 
ternal conditions, like fields, vary appreciably. We shall not prove the result in 
great generality, but only in a very simple example, to show how it works. Again 
we consider the same slit experiment. But instead of putting all the magnetic field 
in a very tiny region between the slits, we imagine a magnetic field that extends 

* If the field B comes out of the plane of the figure, the flux as we have defined it is 
negative and xo is positive. 
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over a larger region behind the slits, as shown in Fig. 15-8. We will take the ideal¬ 
ized case where we have a magnetic field which is uniform in a narrow strip of 
width w, considered small as compared with L. (That can easily be arranged; the 
backstop can be put as far out as we want.) In order to calculate the shift in phase, 
we must take the two integrals of A along the two trajectories (1) and (2). They 
differ, as we have seen, merely by the flux of B between the paths. To our approxi¬ 
mation, the flux is Bwd. The phase difference for the two paths is then 

i = s(B = 0) + | Bwd. (15.37) 

We note that, to our approximation, the phase shift is independent of the angle. 
So again the effect will be to shift the whole pattern upward by an amount Ax. 
Using Eq. (15.28), 

Ax = Q AS = Q [6 - S(B = 0)]. 

Using (15.37) for 8 — 8(B = 0), 

Ax = LX | Bw. (15.38) 

Such a shift is equivalent to deflecting all the trajectories by the small angle a 
(see Fig. 15-8), where 

a = T = \ qBw‘ (15.39) 

Now classically we would also expect a thin strip of magnetic field to deflect 
all trajectories through some small angle, say a', as shown in Fig. 15-9(a). As the 
electrons go through the magnetic field, they feel a transverse force qv X B which 
lasts for a time wfv. The change in their transverse momentum is just equal to 
this impulse, so 

Apx = qwB. (15.40) 

The angular deflection [Fig. 15—9(b)] is equal to the ratio of this transverse mo¬ 
mentum to the total momentum p. We get that 

aj _ AP* . <lwB 

P P 
(15.41) 

Pver. 
P 

(b) 

We can compare this result with Eq. (15.39), which gives the same quantity Fig. 15-9. Deflection of a particle 

computed quantum-mechanically. But the connection between classical mechanics due to passage through a strip of 

and quantum mechanics is this: A particle of momentump corresponds to a quan- magnetic field. 
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turn amplitude varying with the wavelength X = h/p. With this equality, a and a' 
are identical; the classical and quantum calculations give the same result. 

From the analysis we see how it is that the vector potential which appears in 
quantum mechanics in an explicit form produces a classical force which depends 
only on its derivatives. In quantum mechanics what matters is the interference 
between nearby paths; it always turns out that the effects depend only on how much 
the field A changes from point to point, and therefore only on the derivatives of 
A and not on the value itself. Nevertheless, the vector potential A (together with 
the scalar potential <t> that goes with it) appears to give the most direct description 
of the physics. This becomes more and more apparent the more deeply we go 
into the quantum theory. In the general theory of quantum electrodynamics, one 
takes the vector and scalar potentials as the fundamental quantities in a set 
of equations that replace the Maxwell equations: E and B are slowly disappear¬ 
ing from the modern expression of physical laws; they are being replaced by A 
and (f>. 

15-6 What is true for statics is false for dynamics 

We are now at the end of our exploration of the subject of static fields. Already 
in this chapter we have come perilously close to having to worry about what 
happens when fields change with time. We were barely able to avoid it in our 
treatment of magnetic energy by taking refuge in a relativistic argument. Even so, 
our treatment of the energy problem was somewhat artificial and perhaps even 
mysterious, because we ignored the fact that moving coils must, in fact, produce 
changing fields. It is now time to take up the treatment of time-varying fields—the 
subject of electrodynamics. We will do so in the next chapter. First, however, we 
would like to emphasize a few points. 

Although we began this course with a presentation of the complete and correct 
equations of electromagnetism, we immediately began to study some incomplete 
pieces—because that was easier. There is a great advantage in starting with the 
simpler theory of static fields, and proceeding only later to the more complicated 
theory which includes dynamic fields. There is less new material to learn all at 
once, and there is time for you to develop your intellectual muscles in preparation 
for the bigger task. 

But there is the danger in this process that before we get to see the complete 
story, the incomplete truths learned on the way may become ingrained and taken 
as the whole truth—that what is true and what is only sometimes true will become 
confused. So we give in Table 15-1 a summary of the important formulas we have 
covered, separating those which are true in general from those which are true for 
statics, but false for dynamics. This summary also shows, in part, where we are 
going, since as we treat dynamics we will be developing in detail what we must just 
state here without proof. 

It may be useful to make a few remarks about the table. First, you should 
notice that the equations we started with are the true equations—we have not 
misled you there. The electromagnetic force (often called the Lorentz force) 
F = q(E + v X B) is true. It is only Coulomb’s law that is false, to be used only 
for statics. The four Maxwell equations for E and B are also true. The equations 
we took for statics are false, of course, because we left off all terms with time 
derivatives. 

Gauss’ law, V * E = p/€0, remains, but the curl of E is not zero in general. 
So E cannot always be equated to the gradient of a scalar—the electrostatic po¬ 

tential. We will see that a scalar potential still remains, but it is a time-varying 
quantity that must be used together with vector potentials for a complete descrip¬ 
tion of the electric field. The equations governing this new scalar potential are, 
necessarily, also new. 

We must also give up the idea that E is zero in conductors. When the fields are 
changing, the charges in conductors do not, in general, have time to rearrange 
themselves to make the field zero. They are set in motion, but never reach equili¬ 
brium. The only general statement is: electric fields in conductors produce cur- 
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Table 15-1 

FALSE IN GENERAL (true only for statics) TRUE ALWAYS 

V20 = - - 
eo 

V2A = - 

V* A = 0 

(Poisson’s equation) 

0(D = 7-J- / ~ <^2 
4x60 y H2 

^(1) = f ^ dVi 
4xeoc2 y n2 

tA = i J p<)> dV + iJj-AdV 

The equations marked by an arrow (-*) are Maxwell’s equations. 

v^-I^= -JL 
V C2 3/2 Co 

Vi* _ Ia_jl = _ J_ 
C2 a/2 toe2 

c2V-A + ~ = 0 
ot 

*0.0 -5-/^^ 

A(l,f) ± zr~5 f rfK2 47T60C2 J /*12 

/' = r - ^ 

15-15 



rents. So in varying fields a conductor is not an equipotential. It also follows that 
the idea of a capacitance is no longer precise. 

Since there are no magnetic charges, the divergence of B is always zero. So 
B can always be equated to V X A. (Everything doesn’t change!) But the genera¬ 
tion of B is not only from currents; V X Bis proportional to the current density 
plus a new term dE/dt. This means that A is related to currents by a new equation. 
It is also related to <f>. If we make use of our freedom to choose V * A for our own 
convenience, the equations for A or <f> can be arranged to take on a simple and ele¬ 
gant form. We therefore make the condition that c2V • A = —d^/dt, and the 
differential equations for A or <f> appear as shown in the table. 

The potentials A and <f> can still be found by integrals over the currents and 
charges, but not the same integrals as for statics. Most wonderfully, though, the 
true integrals are like the static ones, with only a small and physically appealing 
modification. When we do the integrals to find the potentials at some point, say 
point (1) in Fig. 15-10, we must use the values of j and p at the point (2) at an 
earlier time tf = t — rx2/c. As you would expect, the influences propagate from 
point (2) to point (1) at the speed c. With this small change, one can solve for the 
fields of varying currents and charges, because once we have A and <£, we get B 
from V X A, as before, and E from - — BA/dt. 

Fig. 15-10. The potentials at point 
(1) and at the time t are given by sum¬ 

ming the contributions from each element 
of the source at the roving point (2), 
using the currents and charges which were 
present at the earlier time t — fi2/c. 

Finally, you will notice that some results—for example, that the energy density 
in an electric field is e0E2/2—are true for electrodynamics as well as for statics. 
You should not be misled into thinking that this is at all “natural.” The validity 
of any formula derived in the static case must be demonstrated over again for the 
dynamic case. A contrary example is the expression for the electrostatic energy in 
terms of a volume integral of ptf>. This result is true only for statics. 

We will consider all these matters in more detail in due time, but it will perhaps 
be useful to keep in mind this summary, so you will know what you can forget, 
and what you should remember as always true. 
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Induced Currents 

15-1 Motors and generators 

The discovery in 1820 that there was a close connection between electricity 
and magnetism was very exciting—until then, the two subjects had been considered 
as quite independent. The first discovery was that currents in wires make magnetic 
fields; then, in the same year, it was found that wires carrying current in a magnetic 
field have forces on them. 

One of the excitements whenever there is a mechanical force is the possibility 
of using it in an engine to do work. Almost immediately after their discovery, 
people started to design electric motors using the forces on current-carrying wires. 
The principle of the electromagnetic motor is shown in bare outline in Fig. 16-1. 
A permanent magnet—usually with some pieces of soft iron—is used to produce 
a magnetic field in two slots. Across each slot there is a north and south pole, 
as shown. A rectangular coil of copper is placed with one side in each slot. When 
a current passes through the coil, it flows in opposite directions in the two slots, 
so the forces are also opposite, producing a torque on the coil about the axis 
shown. If the coil is mounted on a shaft so that it can turn, it can be coupled to 
pulleys or gears and can do work. 

The same idea can be used for making a sensitive instrument for electrical 
measurements. Thus the moment the force law was discovered the precision of 
electrical measurements was greatly increased. First, the torque of such a motor 
can be made much greater for a given current by making the current go around 
many turns instead of just one. Then the coil can be mounted so that it turns with 
•very little torque—either by supporting its shaft on very delicate jewel bearings or 
by hanging the coil on a very fine wire or a quartz fiber. Then an exceedingly small 
current will make the coil turn, and for small angles the amount of rotation will 
be proportional to the current. The rotation can be measured by gluing a pointer 
to the coil or, for the most delicate instruments, by attaching a small mirror to the 
coil and looking at the shift of the image of a scale. Such instruments are called 
galvanometers. Voltmeters and ammeters work on the same principle. 

The same ideas can be applied on a large scale to make large motors for pro¬ 
viding mechanical power. The coil can be made to go around and around by ar¬ 
ranging that the connections to the coil are reversed each half-turn by contacts 
mounted on the shaft. Then the torque is always in the same direction. Small 
dc motors are made just this way. Larger motors, dc or ac, are often made by 
replacing the permanent magnet by an electromagnet, energized from the electrical 
power source. 

With the realization that electric currents make magnetic fields, people im¬ 
mediately suggested that, somehow or other, magnets might also make electric 
fields. Various experiments were tried. For example, two wires were placed parallel 
to each other and a current was passed through one of them in the hope of finding 
a current in the other. The thought was that the magnetic field might in some way 
drag the electrons along in the second wire, giving some such law as “likes prefer 
to move alike.” With the largest available current and the most sensitive gal¬ 
vanometer to detect any current, the result was negative. Large magnets next to 
wires also produced no observed effects. Finally, Faraday discovered in 1840 the 
essential feature that had been missed—that electric effects exist only when there 
is something changing. If one of a pair of wires has a changing current, a current 
is induced in the other, or if a magnet is moved near an electric circuit, there is a 
current. We say that currents are induced. This was the induction effect discovered 

16-1 

15-1 Motors and generators 

15-2 Transformers and inductances 

15-3 Forces on induced currents 

15-4 Electrical technology 

Fig. 16-1. Schematic outline of a 
simple electromagnetic motor. 



by Faraday. It transformed the rather dull subject of static fields into a very ex¬ 
citing dynamic subject with an enormous range of wonderful phenomena. This 
chapter is devoted to a qualitative description of some of them. As we will see, 
one can quickly get into fairly complicated situations that are hard to analyze 
quantitatively in all their details. But never mind, our main purpose in this chapter 
is first to acquaint you with the phenomena involved. We will take up the detailed 
analysis later. 

We can easily understand one feature of magnetic induction from what we 
already know, although it was not known in Faraday’s time. It comes from the 
v X B force on a moving charge that is proportional to its velocity in a magnetic 
field. Suppose that we have a wire which passes near a magnet, as shown in Fig. 
16-2, and that we connect the ends of the wire to a galvanometer. If we move the 
wire across the end of the magnet the galvanometer pointer moves. 

The magnet produces some vertical magnetic field, and when we push the 
wire across the field, the electrons in the wire feel a sideways force—at right angles 
to the field and to the motion. The force pushes the electrons along the wire. 
But why does this move the galvanometer, which is so far from the force? Because 
when the electrons which feel the magnetic force try to move, they push—by electric 
repulsion—the electrons a little farther down the wire; they, in turn, repel the 
electrons a little farther on, and so on for a long distance. An amazing thing. 

It was so amazing to Gauss and Weber—who first built a galvanometer—that 
they tried to see how far the forces in the wire would go. They strung a wire all the 
way across their city. Mr. Gauss, at one end, connected the wires to a battery 
(batteries were known before generators) and Mr. Weber watched the galvanometer 
move. They had a way of signaling long distances—it was the beginning of the 
telegraph! Of course, this has nothing directly to do with induction—it has to do 
with the way wires carry currents, whether the currents are pushed by induction 
or not. 

Now suppose in the setup of Fig. 16-2 we leave the wire alone and move the 
magnet. We still see an effect on the galvanometer. As Faraday discovered, moving 
the magnet under the wire—one way—has the same effect as moving the wire over 
the magnet—the other way. But when the magnet is moved, we no longer have 
any v X B force on the electrons in the wire. This is the new effect that Faraday 
found. Today, we might hope to understand it from a relativity argument. 

We already understand that the magnetic field of a magnet comes from its 
internal currents. So we expect to observe the same effect if instead of a magnet 
in Fig, 16-2 we use a coil of wire in which there is a current. If we move the wire 
past the coil there will be a current through the galvanometer, or also if we move 
the coil past the wire. But there is now a more exciting thing: If we change the 
magnetic field of the coil not by moving it, but by changing its current, there is 
again an effect in the galvanometer. For example, if we have a loop of wire near 
a coil, as shown in Fig. 16-3, and if we keep both of them stationary but switch 
off the current, there is a pulse of current through the galvanometer. When we 
switch the coil on again, the galvanometer kicks in the other direction. 

Whenever the galvanometer in a situation such as the one shown in Fig. 16-2, 
or in Fig. 16-3, has a current, there is a net push on the electrons in the wire in one 
direction along the wire. There may be pushes in different directions at different 
places, but there is more push in one direction than another. What counts is the 
push integrated around the complete circuit. We call this net integrated push the 
electromotive force (abbreviated emf) in the circuit. More precisely, the emf is 
defined as the tangential force per unit charge in the wire integrated over length, 
once around the complete circuit. Faraday’s complete discovery was that emf’s 
can be generated in a wire in three different ways: by moving the wire, by moving 
a magnet near the wire, or by changing a current in a nearby wire. 

Let’s consider the simple machine of Fig. 16-1 again, only now, instead of 
putting a current through the wire to make it turn, let’s turn the loop by an external 
force, for example by hand or by a waterwheel. When the coil rotates, its wires are 
moving in the magnetic field and we will find an emf in the circuit of the coil. 
The motor becomes a generator. 
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Fig. 16-2. Moving a wire through a magnetic field 

produces a current, as shown by the galvanometer. 

Fig. 16-3. A coil with current produces a 
current in a second coil if the first coil is moved 
or if its current is changed. 

The coil of the generator has an induced emf from its motion. The amount of 
the emf is given by a simple rule discovered by Faraday. (We will just state the 
rule now and wait until later to examine it in detail.) The rule is that when the mag¬ 
netic flux that passes through the loop (this flux is the normal component of B 
integrated over the area of the loop) is changing with time, the emf is equal to 
the rate of change of the flux. We will refer to this as “the flux rule.” You see that 
when the coil of Fig. 16-1 is rotated, the flux through it changes. At the start 
some flux goes through one way; then when the coil has rotated 180° the same 
flux goes through the other way. If we continuously rotate the coil the flux is 
first positive, then negative, then positive, and so on. The rate of change of the 
flux must alternate also. So there is an alternating emf in the coil. If we connect 
the two ends of the coil to outside wires through some sliding contacts—called 
dip-rings—(just so the wires won’t get twisted) we have an alternating-current 
generator. 

Or we can also arrange, by means of some sliding contacts, that after every 
one-half rotation, the connection between the coil ends and the outside wires is 
reversed, so that when the emf reverses, so do the connections. Then the pulses of 
emf will always push currents in the same direction through the external circuit. 
We have what is called a direct-current generator. 

The machine of Fig. 16-1 is either a motor or a generator. The reciprocity 
between motors and generators is nicely shown by using two identical dc “motors” 
of the permanent magnet kind, with their coils connected by two copper wires. 
When the shaft of one is turned mechanically, it becomes a generator and drives 
die other as a motor. If the shaft of the second is turned, it becomes the generator 
and drives the first as a motor. So here is an interesting example of a new kind of 
equivalence of nature: motor and generator are equivalent. The quantitative 
equivalence is, in fact, not completely accidental. It is related to the law of con¬ 
servation of energy. 

Another example of a device that can operate either to generate emf s or to 
ttspond to emfs is the receiver of a standard telephone—that is, an “earphone.” 
The original telephone of Bell consisted of two such “earphones” connected by 
two long wires. The basic principle is shown in Fig. 16-4. A permanent magnet 
produces a magnetic field in two “yokes” of soft iron and in a thin diaphragm that 
is moved by sound pressure. When the diaphragm moves, it changes the amount 
of magnetic field in the yokes. Therefore a coil of wire wound around one of the 
yokes will have the flux through it changed when a sound wave hits the diaphragm. 
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So there is an emf in the coil. If the ends of the coil are connected to a circuit, a 
current which is an electrical representation of the sound is set up. 

If the ends of the coil of Fig. 16-4 are connected by two wires to another 
identical gadget, varying currents will flow in the second coil. These currents will 
produce a varying magnetic field and will make a varying attraction on the iron 
diaphragm. The diaphragm will wiggle and make sound waves approximately 
similar to the ones that moved the original diaphragm. With a few bits of iron and 
copper the human voice is transmitted over wires! 

(The modern home telephone uses a receiver like the one described but uses 
an improved invention to get a more powerful transmitter. It is the “carbon- 
button microphone,” that uses sound pressure to vary the electric current from 
a battery.) 

16-2 Transformers and inductances 

Fig. 16-5. Two coils, wrapped 
around bundles of iron sheets, allow a 
generator to light a bulb with no direct 
connection. 

One of the most interesting features of Faraday’s discoveries is not that an 
emf exists in a moving coil—which we can understand in terms of the magnetic 
force qv X B—but that a changing current in one coil makes an emf in a second 
coil. And quite surprisingly the amount of emf induced in the second coil is given 
by the same “flux rule”: that the emf is equal to the rate of change of the magnetic 
flux through the coil. Suppose that we take two coils, each wound around separate 
bundles of iron sheets (these help to make stronger magnetic fields), as shown in 
Fig. 16-5. Now we connect one of the coils—coil (a)—to an alternating-current 
generator. The continually changing current produces a continuously varying 
magnetic field. This varying field generates an alternating emf in the second coil— 
coil (b). This emf can, for example, produce enough power to light an electric bulb. 

The emf alternates in coil (b) at a frequency which is, of course, the same as the 
frequency of the original generator. But the current in coil (b) can be larger or 
smaller than the current in coil (a). The current in coil (b) depends on the emf 
induced in it and on the resistance and inductance of the rest of its circuit. The 
emf can be less than that of the generator if, say, there is little flux change. Or the 
emf in coil (b) can be made much larger than that in the generator by winding coil 
(b) with many turns, since in a given magnetic field the flux through the coil is 
then greater. (Or if you prefer to look at it another way, the emf is the same in each 
turn, and since the total emf is the sum of the emf’s of the separate turns, many 
turns in series produce a large emf.) 

Such a combination of two coils—usually with an arrangement of iron sheets 
to guide the magnetic fields—is called a transformer. It can “transform” one emf 
(also called a “voltage”) to another. 

There are also induction effects in a single coil. For instance, in the setup in 
Fig. 16-5 there is a changing flux not only through coil (b), which lights the bulb, 
but also through coil (a). The varying current in coil (a) produces a varying 
magnetic field inside itself and the flux of this field is continually changing, so there 
is a self-induced, emf in coil (a). There is an emf acting on any current when it is 
building up a magnetic field—or, in general, when its field is changing in any way. 
The effect is called self-inductance. 

When we gave “the flux rule” that the emf is equal to the rate of change of the 
flux linkage, we didn’t specify the direction of the emf. There is a simple rule, 
called Lenz’s rule, for figuring out which way the emf goes: the emf tries to oppose 
any flux change. That is, the direction of an induced emf is always such that if a 
current were to flow in the direction of the emf, it would produce a flux of B that 
opposes the change in B that produces the emf. Lenz’s rule can be used to find 
the direction of the emf in the generator of Fig. 16-1, or in the transformer winding 
of Fig. 16-3. 

In particular, if there is a changing current in a single coil (or in any wire) 
there is a “back” emf in the circuit. This emf acts on the charges flowing in coil 
(a) of Fig. 16-5 to oppose the change in magnetic field, and so in the direction to 
oppose the change in current. It tries to keep the current constant; it is opposite to 
the current when the current is increasing, and it is in the direction of the current 
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Fig. 16-6. Circuit connections for an 
electromagnet. The lamp allows the 

passage of current when the switch is 

opened, preventing the appearance of 
excessive emf's. 

when it is decreasing. A current in a self-inductance has “inertia,” because the 
inductive effects try to keep the flow constant, just as mechanical inertia tries to 
keep the velocity of an object constant. 

Any large electromagnet will have a large self-inductance. Suppose that a 
battery is connected to the coil of a large electromagnet, as in Fig. 16-6, and that a 
strong magnetic field has been built up. (The current reaches a steady value deter¬ 
mined by the battery voltage and the resistance of the wire in the coil.) But now 
suppose that we try to disconnect the battery by opening the switch. If we really 
opened the circuit, the current would go to zero rapidly, and in doing so it would 
generate an enormous emf. In most cases this emf would be large enough to de¬ 
velop an arc across the opening contacts of the switch. The high voltage that ap¬ 
pears might also damage the insulation of the coil—or you, if you are the person 
who opens the switch! For these reasons, electromagnets are usually connected in 
a circuit like the one shown in Fig. 16-6. When the switch is opened, the current 
does not change rapidly but remains steady, flowing instead through the lamp, 
being driven by the emf from the self-inductance of the coil. 

16-3 Forces on induced currents 

You have probably seen the dramatic demonstration of Lenz’s rule made with 
the gadget shown in Fig. 16-7. It is an electromagnet, just like coil (a) of Fig. 
16-5. An aluminum ring is placed on the end of the magnet. When the coil is 
connected to an alternating-current generator by closing the switch, the ring flies 
into the air. The force comes, of course, from the induced currents in the ring. 
The fact that the ring flies away shows that the currents in it oppose the change of 
the field through it. When the magnet is making a north pole at its top, the induced 
current in the ring is making a downward-point north pole. The ring and the coil 
are repelled just like two magnets with like poles opposite. If a thin radial cut is 
made in the ring the force disappears, showing that it does indeed come from the 
currents in the ring. 
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Fig. 1 6-7. A conducting ring is strongly repelled 
by an electromagnet with a varying current. 

Fig. 16-8. An electromagnet near a perfectly 

conducting plate. 
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Fig. 16-9. A bar magnet i$ sus¬ 
pended above a superconducting bowl, 
by the repulsion of eddy currents. 

BATTERY 

Fig. 16-10. The braking of the pen¬ 

dulum shows the forces due to eddy cur¬ 

rents. 

Fig. 16-11. The eddy currents in the 
copper pendulum. 

If, instead of the ring, we place a disc of aluminum or copper across the end 
of the electromagnet of Fig. 16-7, it is also repelled; induced currents circulate in 
the material of the disc, and again produce a repulsion. 

An interesting effect, similar in origin, occurs with a sheet of a perfect con¬ 
ductor. In a “perfect conductor” there is no resistance whatever to the current. So 
if currents are generated in it, they can keep going forever. In fact, the slightest 
emf would generate an arbitrarily large current—which really means that there 
can be no emf’s at all. Any attempt to make a magnetic flux go through such a 
sheet generates currents that create opposite B fields—all with infinitesimal emPs, 
so with no flux entering. 

If we have a sheet of a perfect conductor and put an electromagnet next to it, 
when we turn on the current in the magnet, currents called eddy currents appear in 
the sheet, so that no magnetic flux enters. The field lines would look as shown in 
Fig. 16-8. The same thing happens, of course, if we bring a bar magnet near a 
perfect conductor. Since the eddy currents are creating opposing fields, the 
magnets are repelled from the conductor. This makes it possible to suspend a bar 
magnet in air above a sheet of perfect conductor shaped like a dish, as shown in 
Fig. 16-9. The magnet is suspended by the repulsion of the induced eddy currents 
in the perfect conductor. There are no perfect conductors at ordinary tempera¬ 
tures, but some materials become perfect conductors at low enough temperatures. 
For instance, below 3.8°K tin conducts perfectly. It is called a superconductor. 

If the conductor in Fig. 16-8 is not quite perfect there will be some resistance 
to flow of the eddy currents. The currents will tend to die out and the magnet will 
slowly settle down. The eddy currents in an imperfect conductor need an emf to 
keep them going, and to have an emf the flux must keep changing. The flux of 
the magnetic field gradually penetrates the conductor. 

In a normal conductor, there are not only repulsive forces from eddy currents, 
but there can also be sidewise forces. For instance, if we move a magnet sideways 
along a conducting surface the eddy currents produce a force of drag, because the 
induced currents are opposing the changing of the location of flux. Such forces are 
proportional to the velocity and are like a kind of viscous force. 

These effects show up nicely in the apparatus shown in Fig. 16-10. A square 
sheet of copper is suspended on the end of a rod to make a pendulum. The copper 
swings back and forth between the poles of an electromagnet. When the magnet 
is turned on, the pendulum motion is suddenly arrested. As the metal plate enters 
the gap of the magnet, there is a current induced in the plate which acts to oppose 
the change in flux through the plate. If the sheet were a perfect conductor, the 
currents would be so great that they would push the plate out again—it would 
bounce back. With a copper plate there is some resistance in the plate, so 
the currents at first bring the plate almost to a dead stop as it starts to enter the 
field. Then, as the currents die down, the plate slowly settles to rest in the magnetic 
field. 

The nature of the eddy currents in the copper pendulum is shown in Fig. 
16-11. The strength and geometry of the currents are quite sensitive to the shape 
of the plate. If, for instance, the copper plate is replaced by one which has several 
narrow slots cut in it, as shown in Fig. 16-12, the eddy-current effects are drastically 
reduced. The pendulum swings through the magnetic field with only a small 
retarding force. The reason is that the currents in each section of the copper have 
less flux to drive them, so the effects of the resistance of each loop are greater. 
The currents are smaller and the drag is less. The viscous character of the force 
is seen even more clearly if a sheet of copper is placed between the poles of the 
magnet of Fig. 16-10 and then released. It doesn’t fall; it just sinks slowly down¬ 
ward. The eddy currents exert a strong resistance to the motion—just like the 
viscous drag in honey. 

If, instead of dragging a conductor past a magnet, we try to rotate it in a 
magnetic field, there will be a resistive torque from the same effects. Alternatively, 
if we rotate a magnet—end over end—near a conducting plate or ring, the ring is 
dragged around; currents in the ring will create a torque that tends to rotate 
the ring with the magnet. 
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Fig. 16-12. Eddy-current effects are drasti- Fig. 16-13. Making a rotating magnetic field, 
caliy reduced by cutting slots in the plate. 

A field just like that of a rotating magnet can be made with an arrangement 
of coils such as is shown in Fig. 16-13. We take a torus of iron (that is, a ring of 
iron like a doughnut) and wind six coils on it. If we put a current, as shown in 
part (a), through windings (1) and (4), there will be a magnetic field in the direction 
shown in the figure. If we now switch the current to windings (2) and (5), the 
magnetic field will be in a new direction, as shown in part (b) of the figure. Con¬ 
tinuing the process, we get the sequence of fields shown in the rest of the figure. 
If the process is done smoothly, we have a “rotating” magnetic field. We can easily 
get the required sequence of currents by connecting the coils to a three-phase 
power line, which provides just such a sequence of currents. “Three-phase power” 
is made in a generator using the principle of Fig. 16-1, except that there are three 
loops fastened together on the same shaft in a symmetrical way—that is, with an 
angle of 120° from one loop to the next. When the coils are rotated as a unit, the 
emf is a maximum in one, then in the next, and so on in a regular sequence. There 
are many practical advantages of three-phase power. One of them is the possibility 
of making a rotating magnetic field. The torque produced on a conductor by such 
a rotating field is easily shown by standing a metal ring on an insulating table just 
above the torus, as shown in Fig. 16-14. The rotating field causes the ring to spin 
about a vertical axis. The basic elements seen here are quite the same as those at 
play in a large commercial three-phase induction motor. 

Another form of induction motor is shown in Fig. 16-15. The arrangement 
shown is not suitable for a practical high-efficiency motor but will illustrate the 
principle. The electromagnet M, consisting of a bundle of laminated iron sheets 
wound with a solenoidal coil, is powered with alternating current from a generator. 
The magnet produces a varying flux of B through the aluminum disc. If we have 
just these two components, as shown in part (a) of the figure, we do not yet have 
a motor. There are eddy currents in the disc, but they are symmetric and there is 
no torque. (There will be some heating of the disc due to the induced currents.) If 
we now cover only one-half of the magnet pole with an aluminum plate, as shown 
in part (b) of the figure, the disc begins to rotate, and we have a motor. The 
operation depends on two eddy-current effects. First, the eddy currents in the 
aluminum plate oppose the change of flux through it, so the magnetic field above 
the plate always lags the field above that half of the pole which is not covered. This 
so-called “shaded-pole” effect produces a field which in the “shaded” region varies 
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Fig. 16-14. The rotating field of 
Fig. 16-13 can be used to provide torque 
on a conducting ring. 



Fig. 16-15. A simple example of a shaded-pole induction motor. 

much like that in the “unshaded” region except that it is delayed a constant amount 
in time. The whole effect is as if there were a magnet only half as wide which is 
continually being moved from the unshaded region toward the shaded one. Then 
the varying fields interact with the eddy currents in the disc to produce the torque 
on it. 

16-4 Electrical technology 

When Faraday first made public his remarkable discovery that a changing 
magnetic flux produces an emf, he was asked (as anyone is asked when he dis¬ 
covers a new fact of nature), “What is the use of it?” All he had found was the 
oddity that a tiny current was produced when he moved a wire near a magnet. 
Of what possible “use” could that be? His answer was: “What is the use of a new¬ 
born baby?” 

Yet think of the tremendous practical applications his discovery has led to. 
What we have been describing are not just toys but examples chosen in most cases 
to represent the principle of some practical machine. For instance, the rotating ring 
in the turning field is an induction motor. There are, of course, some differences 
between it and a practical induction motor. The ring has a very small torque; it 
can be stopped with your hand. For a good motor, things have to be put together 
more intimately: there shouldn’t be so much “wasted” magnetic field out in the 
air. First, the field is concentrated by using iron. We have not discussed how iron 
does that, but iron can make the magnetic field tens of thousands of times stronger 
than copper coils alone could do. Second, the gaps between the pieces of iron are 
made small; to do that, some iron is even built into the rotating ring. Everything 
is arranged so as to get the greatest forces and the greatest efficiency—that is, 
conversion of electrical power to mechanical power—until the “ring” can no 
longer be held still by your hand. 

This problem of closing the gaps and making the thing work in the most 
practical way is engineering. It requires serious study of design problems, although 
there are no new basic principles from which the forces are obtained. But there 
is a long way to go from the basic principles to a practical and economic design. 
Yet it is just such careful engineering design that has made possible such a tre¬ 
mendous thing as Boulder Dam and all that goes with it. 

What is Boulder Dam? A huge river is stopped by a concrete wall. But what 
a wall it is! Shaped with a perfect curve that is very carefully worked out so that 
the least possible amount of concrete will hold back a whole river. It thickens at 
the bottom in that wonderful shape that the artists like but that the engineers can 
appreciate because they know that such thickening is related to the increase of 
pressure with the depth of the water. But we are getting away from electricity. 

Then the water of the river is diverted into a huge pipe. That’s a nice engineer¬ 
ing accomplishment in itself. The pipe feeds the water into a “waterwheel”—a 
huge turbine—and makes wheels turn. (Another engineering feat.) But why turn 
wheels? They are coupled to an exquisitely intricate mess of copper and iron, all 
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twisted and interwoven. With two parts—one that turns and one that doesn’t. 
All a complex intermixture of a few materials, mostly iron and copper but also 
some paper and shellac for insulation. A revolving monster thing. A generator. 
Somewhere out of the mess of copper and iron come a few special pieces of copper. 
The dam, the turbine, the iron, the copper, all put there to make something special 
happen to a few bars of copper—an emf. Then the copper bars go a little way and 
circle for several times around another piece of iron in a transformer; then their 
job is done. 

But around that same piece of iron curls another cable of copper which has 
no direct connection whatsoever to the bars from the generator; they have just 
been influenced because they passed near it—to get their emf. The transformer 
converts the power from the relatively low voltages required for the efficient design 
of the generator to the very high voltages that are best for efficient transmission of 
electrical energy over long cables. 

And everything must be enormously efficient—there can be no waste, no loss. 
Why? The power for a metropolis is going through. If a small fraction were lost— 
one or two percent—think of the energy left behind! If one percent of the power 
were left in the transformer, that energy would need to be taken out somehow. If 
it appeared as heat, it would quickly melt the whole thing. There is, of course, some 
small inefficiency, but all that is required are a few pumps which circulate some oil 
through a radiator to keep the transformer from heating up. 

Out of the Boulder Dam come a few dozen rods of copper—long, long, long 
rods of copper perhaps the thickness of your wrist that go for hundreds of miles in 
all directions. Small rods of copper carrying the power of a giant river. Then the 
rods are split to make more rods ... then to more transformers . .. sometimes to 
great generators which recreate the current in another form .. . sometimes to 
engines turning for big industrial purposes ... to more transformers . .. then 
more splitting and spreading. . . until finally the river is spread throughout the 
whole city—turning motors, making heat, making light, working gadgetry. The 
miracle of hot lights from cold water over 600 miles away—all done with specially 
arranged pieces of copper and iron. Large motors for rolling steel, or tiny motors 
for a dentist’s drill. Thousands of little wheels, turning in response to the turning 
of the big wheel at Boulder Dam. Stop the big wheel, and all the wheels stop; the 
lights go out. They really are connected. 

Yet there is more. The same phenomena that take the tremendous power of 
the river and spread it through the countryside, until a few drops of the river are 
running the dentist’s drill, come again into the building of extremely fine instru¬ 
ments ... for the detection of incredibly small amounts of current... for the 
transmission of voices, music, and pictures ... for computers ... for automatic 
machines of fantastic precision. 

All this is possible because of carefully designed arrangements of copper and 
iron—efficiently created magnetic fields . . . blocks of rotating iron six feet in 
diameter whirling with clearances of 1/16 of an inch... careful proportions of 
copper for the optimum efficiency . . . strange shapes all serving a purpose, like 
the curve of the dam. 

If some future archaeologist uncovers Boulder Dam, we may guess that he 
would admire the beauty of its curves. But also the explorers from some great 
future civilizations will look at the generators and transformers and say: “Notice 
that every iron piece has a beautifully efficient shape. Think of the thought that 
has gone into every piece of copper!” 

This is the power of engineering and the careful design of our electrical tech¬ 
nology. There has been created in the generator something which exists nowhere 
else in nature. It is true that there are forces of induction in other places. Certainly 
in some places around the sun and stars there are effects of electromagnetic induc¬ 
tion. Perhaps also (though it’s not certain) the magnetic field of the earth is main¬ 
tained by an analog of an electric generator that operates on circulating currents 
in the interior of the earth. But nowhere have there been pieces put together with 
moving parts to generate electrical power as is done in the generator—with great 
efficiency and regularity. 
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You may think that designing electric generators is no longer an interesting 
subject, that it is a dead subject because they are all designed. Almost perfect 
generators or motors can be taken from a shelf. Even if this were true, we can 
admire the wonderful accomplishment of a problem solved to near perfection. 
But there remain as many unfinished problems. Even generators and transformers 
are returning as problems. It is likely that the whole field of low temperatures and 
superconductors will soon be applied to the problem of electric power distribution. 
With a radically new factor in the problem, new optimum designs will have to be 
created. Power networks of the future may have little resemblance to those of 
today. 

You can see that there is an endless number of applications and problems that 
one could take up while studying the laws of induction. The study of the design of 
electrical machinery is a life work in itself. We cannot go very far in that direction, 
but we should be aware of the fact that when we have discovered the law of induc¬ 
tion, we have suddenly connected our theory to an enormous practical develop¬ 
ment. We must, however, leave that subject to the engineers and applied scientists 
who are interested in working out the details of particular applications. Physics 
only supplies the base—the basic principles that apply, no matter what. (We have 
not yet completed the base, because we have yet to consider in detail the properties 
of iron and of copper. Physics has something to say about these as we will see a 
little later.) 

Modern electrical technology began with Faraday’s discoveries. The useless 
baby developed into a prodigy and changed the face of the earth in ways its proud 
father could never have imagined. 
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17 

The Laws of Induction 

17-1 The physics of induction 

In the last chapter we described many phenomena which show that the effects 

of induction are quite complicated and interesting. Now we want to discuss the 

fundamental principles which govern these effects. We have already defined the emf 

in a conducting circuit as the total accumulated force on the charges throughout 

the length of the loop. More specifically, it is the tangential component of the force 

per unit charge, integrated along the wire once around the circuit. This quantity 

is equal, therefore, to the total work done on a single charge that travels once 

around the circuit. 

We have also given the “flux rule,” which says that the emf is equal to the rate 

at which the magnetic flux through such a conducting circuit is changing. Let’s 

see if we can understand why that might be. First, we’ll consider a case in which 

the flux changes because a circuit is moved m a steady field. 

In Fig. 17-1 we show a simple loop of wire whose dimensions can be changed. 

The loop has two parts, a fixed U-shaped part (a) and a movable crossbar (b) 

that can slide along the two legs of the U. There is always a complete circuit, but 

its area is variable. Suppose we now place the loop m a uniform magnetic field with 

the plane of the U perpendicular to the field. According to the rule, when the cross¬ 

bar is moved there should be in the loop an emf that is proportional to the rate of 

change of the flux through the loop. This emf will cause a current in the loop. 

We will assume that there is enough resistance in the wire that the currents are 

small. Then we can neglect any magnetic field from this current. 

The flux through the loop is wLB, so the “flux rule” would give for the emf— 

which we write as 8— 

8 = wB ~ = wBv, 
at 

where v is the speed of translation of the crossbar. 

Now we should be able to understand this result from the magnetic v X B 
forces on the charges in the moving crossbar. These charges will feel a force, 

tangential to the wire, equal to vB per unit charge. It is constant along the length 

w of the crossbar and zero elsewhere, so the integral is 

8 = wvB, 

which is the same result we got from the rate of change of the flux. 

The argument just given can be extended to any case where there is a fixed 

magnetic field and the wires are moved. One can prove, in general, that for any 

circuit whose parts move in a fixed magnetic field the emf is the time derivative 

of the flux, regardless of the shape of the circuit. 

On the other hand, what happens if the loop is stationary and the magnetic 

field is changed? We cannot deduce the answer to this question from the same 

argument. It was Faraday’s discovery—from experiment—that the “flux rule” 

is still correct no matter why the flux changes. The force on electric charges is 

given in complete generality by F = q(E + v X B); there are no new special 

“forces due to changing magnetic fields.” Any forces on charges at rest in a 

stationary wire come from the E term. Faraday’s observations led to the discovery 

that electric and magnetic fields are related by a new law: in a region where the 

magnetic field is changing with time, electric fields are generated. It is this electric 
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field which drives the electrons around the wire—and so is responsible for the emf 

in a stationary circuit when there is a changing magnetic flux. 

The general law for the electric field associated with a changing magnetic 

field is 

VXE=-™- (17.1) 

We will call this Faraday’s law. It was discovered by Faraday but was first written 

in differential form by Maxwell, as one of his equations. Let’s see how this equation 

gives the “flux rule” for circuits. 

Using Stokes’ theorem, this law can be written in integral form as 

f E • ds = / (V X E) • n da — — ^ ■ nda, (17.2) 
Jt Js Js ot 

where, as usual, F is any closed curve and S is any surface bounded by it. Here, 

remember, r is a mathematical curve fixed in space, and S is a fixed surface. Then 

the time derivative can be taken outside the integral and we have 

f E ■ ds = — ~ B nda 
Jr ot Js 

= — ^ (flux through 5). (17.3) 
at 

Applying this relation to a curve Y that follows a fixed circuit of conductor, we 

get the “flux rule” once again. The integral on the left is the emf, and that on the 

right is the negative rate of change of the flux linked by the circuit. So Eq. (17.1) 

applied to a fixed circuit is equivalent to the “flux rule.” 

So the “flux rule”—that the emf in a circuit is equal to the rate of change of 

the magnetic flux through the circuit—applies whether the flux changes because the 

field changes or because the circuit moves (or both). The two possibilities— 

“circuit moves” or “field changes”—are not distinguished in the statement of the 

rule. Yet in our explanation of the rule we have used two completely distinct laws 

for the two cases—v X B for “circuit moves” and V X E — — BB/Bt for “field 

changes.” 

We know of no other place in physics where such a simple and accurate 

general principle requires for its real understanding an analysis in terms of two 

different phenomena. Usually such a beautiful generalization is found to stem from 

a single deep underlying principle. Nevertheless, in this case there does not appear 

to be any such profound implication. We have to understand the “rule” as the 

combined effects of two quite separate phenomena. 

We must look at the “flux rule” in the following way. In general, the force per 

unit charge is F/q = E + v X B. In moving wires there is the force from the 

second term. Also, there is an E-field if there is somewhere a changing magnetic 

field. They are independent effects, but the emf around the loop of wire is always 

equal to the rate of change of magnetic flux through it. 

17-2 Exceptions to the “flux rule” 

We will now give some examples, due in part to Faraday, which show the 

importance of keeping clearly in mind the distinction between the two effects re¬ 

sponsible for induced emf’s. Our examples involve situations to which the “flux 

rule” cannot be applied—either because there is no wire at all or because the path 

taken by induced currents moves about within an extended volume of a conductor. 

We begin by making an important point: The part of the emf that comes from 

the E-field does not depend on the existence of a physical wire (as does the v X B 

part). The E-field can exist in free space, and its line integral around any imaginary 

line fixed in space is the rate of change of the flux of B through that line. (Note 

that this is quite unlike the E-field produced by static charges, for in that case the 

line integral of E around a closed loop is always zero.) 
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Now we will describe a situation in which the flux through a circuit does not 

change, but there is nevertheless an emf. Figure 17-2 shows a conducting disc 

which can be rotated on a fixed axis in the presence of a magnetic field. One 

contact is made to the shaft and another rubs on the outer periphery of the disc. 

A circuit is completed through a galvanometer. As the disc rotates, the “circuit,” 

in the sense of the place in space where the currents are, is always the same. But 

the part of the “circuit” in the disc is in material which is moving. Although the 

flux through the “circuit” is constant, there is still an emf, as can be observed by 

the deflection of the galvanometer. Clearly, here is a case where the v X B force in 

the moving disc gives rise to an emf which cannot be equated to a change of flux. 

Now we consider, as an opposite example, a somewhat unusual situation in 

which the flux through a “circuit” (again in the sense of the place where the current 

is) changes but where there is no emf. Imagine two metal plates with slightly curved 

edges, as shown m Fig. 17-3, placed in a uniform magnetic field perpendicular to 

their surfaces. Each plate is connected to one of the terminals of a galvanometer, 

as shown. The plates make contact at one point P, so there is a complete circuit 

If the plates are now rocked through a small angle, the point of contact will move 

to P'. If we imagine the “circuit” to be completed through the plates on the dotted 

line shown in the figure, the magnetic flux through this circuit changes by a large 

amount as the plates are rocked back and forth. Yet the rocking can be done with 

small motions, so that v X B is very small and there is practically no emf. The 

“flux rule” does not work in this case. It must be applied fo circuits m which the 

material of the circuit remains the same. When the material of the circuit is chang¬ 

ing, we must return to the basic laws. The correct physics is always given by the 

two basic laws 

F = q(E + v X B\ 

V X E - 
dB 

~dt 

GALVANOMETER 

Fig. 17-3. When the plates are 

rocked in a uniform magnetic field; there 

can be a large change in the flux 

linkage without the generation of an 

emf. 

17-3 Particle acceleration by an induced electric field; the betatron 

We have said that the electromotive force generated by a changing magnetic 

field can exist even without conductors; that is, there can be magnetic induction 

without wires. We may still imagine an electromotive force around an arbitrary 

mathematical curve in space. It is defined as the tangential component of E 

integrated around the curve. Faraday’s law says that this line integral is equal to 

the rate of change of the magnetic flux through the closed curve, Eq. (17.3). 

As an example of the effect of such an induced electric field, we want now to 

consider the motion of an electron in a changing magnetic field. We imagine a 

magnetic field which, everywhere on a plane, points in a vertical direction, as shown 

in Fig. 17-4. The magnetic field is produced by an electromagnet, but we will not 

worry about the details For our example we will imagine that the magnetic field 

is symmetric about some axis, i e., that the strength of the magnetic field will 

depend only on the distance from the axis. The magnetic field is also varying with 

time We now imagine an electron that is moving in this field on a path that is a 

circle of constant radius with its center at the axis of the field. (We will see later 
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Fig. 17-4. An electron accelerating in an axially 
symmetric, time-varying magnetic field. 

how this motion can be arranged.) Because of the changing magnetic field, there 
will be an electric field E tangential to the electron’s orbit which will drive it around 
the circle. Because of the symmetry, this electric field will have the same value 
everywhere on the circle. If the electron’s orbit has the radius r, the line integral 
of E around the orbit is equal to the rate of change of the magnetic flux through 
the circle. The line integral of E is just its magnitude times the circumference of 
the circle, 2irr. The magnetic flux must, in general, be obtained from an integral. 
For the moment, we let Z?av represent the average magnetic field in the interior of 
the circle; then the flux is this average magnetic field times the area of the circle. 
We will have 

2trrE = (Bav • irr2). 

Since we are assuming r is constant, E is proportional to the time derivative of 
the average field: 

E 
k dBav 
2~dT 

(17.4) 

The electron will feel the electric force qE and will be accelerated by it. Remember¬ 
ing that the relativistically correct equation of motion is that the rate of change of 
the momentum is proportional to the force, we have 

qE = 
dp 
dt 

(17.5) 

For the circular orbit we have assumed, the electric force on the electron is 
always in the direction of its motion, so its total momentum will be increasing at 
the rate given by Eq. (17.5). Combining Eqs. (17.5) and (17.4), we may relate the 
rate of change of momentum to the change of the average magnetic field: 

~ ^ • (17.6) 
dt 2 dt y / 

Integrating with respect to /, we find for the electron’s momentum 

P ~ Po ~2 ^^av’ (17.7) 

where p0 is the momentum with which the electrons start out, and ABlv is the sub¬ 
sequent change in Z?av. The operation of a betatron—a machine for accelerating 
electrons to high energies—is based on this idea. 

To see how the betatron operates in detail, we must now examine how the 
electron can be constrained to move on a circle. We have discussed in Chapter 11 
of Vol, I the principle involved. If we arrange that there is a magnetic field B at 
the orbit of the electron, there will be a transverse force qv X B which, for a suit- 
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ably chosen B, can cause the electron to keep moving on its assumed orbit. In the 

betatron this transverse force causes the electron to move in a circular orbit of 

constant radius. We can find out what the magnetic field at the orbit must be by 

using again the relativistic equation of motion, but this time, for the transverse 

component of the force. In the betatron (see Fig 17-4), B is at right angles to v, so 

the transverse force is qvB. Thus the force is equal to the rate of change of the trans¬ 

verse component pt of the momentum: 

When a particle is moving in a circle, the rate of change of its transverse momentum 

is equal to the magnitude of the total momentum times to, the angular velocity of 

rotation (following the arguments of Chapter 11, Vol. I): 

where, since the motion is circular, 

co 
v 

r 

(17.9) 

(17.10) 

Setting the magnetic force equal to the transverse acceleration, we have 

quBoTb* = p~r’ (17.11) 

where Borhlt is the field at the radius r. 

As the betatron operates, the momentum of the electron grows in proportion 

to 5;lv, according to Eq. (17.7), and if the electron is to continue to move in its 

proper circle, Eq. (17.11) must continue to hold as the momentum of the electron 

increases. The value of 2?orbit must increase in proportion to the momentum p. 

Comparing Eq. (17.11) with Eq. (17.7), which determinesp, we see that the follow¬ 

ing relation must hold between 5,lv, the average magnetic field inside the orbit 

at the radius r, and the magnetic field Borhlt at the orbit: 

ABav = 2 ABorbn- (17.12) 

The correct operation of a betatron requires that the average magnetic field inside 

the orbit increase at twice the rate of the magnetic field at the orbit itself. In these 

circumstances, as the energy of the particle is increased by the induced electric 

field the magnetic field at the orbit increases at just the rate required to keep the 

particle moving m a circle. 

The betatron is used to accelerate electrons to energies of tens of millions of 

volts, or even to hundreds of millions of volts. However, it becomes impractical for 

the acceleration of electrons to energies much higher than a few hundred million 

volts for several reasons. One of them is the practical difficulty of attaining the 

required high average value for the magnetic field inside the orbit. Another is that 

Eq. (17.6) is no longer correct at very high energies because it does not include the 

loss of energy from the particle due to its radiation of electromagnetic energy 

(the so-called synchrotron radiation discussed m Chapter 36, Vol. I). For these 

reasons, the acceleration of electrons to the highest energies—to many billions of 

electron volts—is accomplished by means of a different kind of machine, called a 

synchrotron. 

17-4 A paradox 

We would now like to describe for you an apparent paradox. A paradox is a 

situation which gives one answer when analyzed one way, and a different answer 

when analyzed another way, so that we are left in somewhat of a quandary as to 

actually what should happen. Of course, in physics there are never any real para¬ 

doxes because there is only one correct answer; at least we believe that nature will 
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Fig. 17-5. Will the disc rotate if the 

current / is stopped? 

act in only one way (and that is the right way, naturally). So in physics a paradox 

is only a confusion in our own understanding. Here is our paradox. 

Imagine that we construct a device like that shown in Fig. 17-5. There is a 

thin, circular plastic disc supported on a concentric shaft with excellent bearings, 

so that it is quite free to rotate. On the disc is a coil of wire in the form of a short 

solenoid concentric with the axis of rotation. This solenoid carries a steady current 

/ provided by a small battery, also mounted on the disc. Near the edge of the disc 

and spaced uniformly around its circumference are a number of small metal spheres 

insulated from each other and from the solenoid by the plastic material of the disc. 

Each of these small conducting spheres is charged with the same electrostatic 

charge Q. Everything is quite stationary, and the disc is at rest. Suppose now that 

by some accident—or by prearrangement—the current in the solenoid is inter¬ 

rupted, without, however, any intervention from the outside. So long as the current 

continued, there was a magnetic flux through the solenoid more or less parallel 

to the axis of the disc. When the current is interrupted, this flux must go to zero. 

There will, therefore, be an electric field induced which will circulate around in 

circles centered at the axis. The charged spheres on the perimeter of the disc will 

all experience an electric field tangential to the perimeter of the disc. This electric 

force is in the same sense for all the charges and so will result in a net torque on the 

disc. From these arguments we would expect that as the current in the solenoid 

disappears, the disc would begin to rotate. If we knew the moment of inertia of 

the disc, the current m the solenoid, and the charges on the small spheres, we could 

compute the resulting angular velocity. 

But we could also make a different argument. Using the principle of the con¬ 

servation of angular momentum, we could say that the angular momentum of the 

disc with all its equipment is initially zero, and so the angular momentum of the 

assembly should remain zero. There should be no rotation when the current is 

stopped. Which argument is correct9 Will the disc rotate or will it not9 We will 

leave this question for you to think about. 

We should warn you that the correct answer does not depend on any non- 

essential feature, such as the asymmetric position of a battery, for example. In 

fact, you can imagine an ideal situation such as the following' The solenoid is 

made of superconducting wire through which there is a current. After the disc has 

been carefully placed at rest, the temperature of the solenoid is allowed to rise slowly 

When the temperature of the wire reaches the transition temperature between 

superconductivity and normal conductivity, the current in the solenoid will be 

brought to zero by the resistance of the wire. The flux will, as before, fall to zero, 

and there will be an electric field around the axis. We should also warn you that the 

solution is not easy, nor is it a trick. When you figure it out, you will have dis¬ 

covered an important principle of electromagnetism. 

Fig. 17-6. A coil of wire rotating in a 

uniform magnetic field—the basic idea 

of the ac generator. 

17-5 Alternating-current generator 

In the remainder of this chapter we apply the principles of Section 17-1 to 

analyze a number of the phenomena discussed in Chapter 16. We first look in more 

detail at the alternating-current generator. Such a generator consists basically of a 

coil of wire rotating m a uniform magnetic field. The same result can also be 

achieved by a fixed coil in a magnetic field whose direction rotates in the manner 

described in the last chapter. We will consider only the former case. Suppose we 

have a circular coil of wire which can be turned on an axis along one of its diam¬ 

eters. Let this coil be located in a uniform magnetic field perpendicular to the axis 

of rotation, as m Fig. 17-6 We also imagine that the two ends of the coil are 

brought to external connections through some kind of sliding contacts. 

Due to the rotation of the coil, the magnetic flux through it will be changing. 

The circuit of the coil will therefore have an emf in it. Let S be the area of the coil 

and 6 the angle between the magnetic field and the normal to the plane of the coil.* 

* Now that we are using the letter A for the vector potential, we prefer to let S stand 
for a Surface area. 
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The flux through the coil is then 

BS cos 0. (17.13) 

If the coil is rotating at the uniform angular velocity ca, 0 varies with time as 

$ — cat. The emf £ in the coil is then 

£ = — ~ (flux) — (BS cos cat), 

or 

8 = BSca sin wf. (17.14) 

If we bring the wires from the generator to a point some distance from the 

rotating coil, where the magnetic field is zero, or at least is not varying with time, 

the curl of E in this region will be zero and we can define an electric potential. 

In fact, if there is no current being drawn from the generator, the potential differ¬ 

ence V between the two wires will be equal to the emf in the rotating coil. That is, 

V = BSca sin cat = V0 sin cat. 

The potential difference between the wires varies as sin cat. Such a varying potential 

difference is called an alternating voltage. 

Since there is an electric field between the wires, they must be electrically 

charged. It is clear that the emf of the generator has pushed some excess charges 

out to the wire until the electric field from them is strong enough to exactly counter¬ 

balance the induction force. Seen from outside the generator, the two wires appear 

as though they had been electrostatically charged to the potential difference V, 

and as though the charge was being changed with time to give an alternating po¬ 

tential difference. There is also another difference from an electrostatic situation. 

If we connect the generator to an external circuit that permits passage of a current, 

we find that the emf does not permit the wires to be discharged but continues to 

provide charge to the wires as current is drawn from them, attempting to keep the 

wires always at the same potential difference. If, in fact, the generator is connected 

in a circuit whose total resistance is R, the current through the circuit will be pro¬ 

portional to the emf of the generator and inversely proportional to R. Since the 

emf has a sinusoidal time variation, so also does the current. There is an alternating 

current 

/=* = ir“ 

The schematic diagram of such a circuit is shown in Fig. 17-7. 

We can also see that the emf determines how much energy is supplied by the 

generator. Each charge in the wire is receiving energy at the rate F ■ v, where F is 

the force on the charge and v is its velocity. Now let the number of moving charges 

per unit length of the wire be n\ then the power being delivered into any element 

ds of the wire is 

F • vn ds. 

For a wire, v is always along ds, so we can rewrite the power as 

nvF • ds. 

The total power being delivered to the complete circuit is the integral of this 

expression around the complete loop: 

Power = j> nvF ds. (17.15) 

Now remember that qnv is the current /, and that the emf is defined as the integral 

of F/q around the circuit. We get the result 

I 

A.C. 
Generator 

I=f- = lLsinwt 

Fig. 17-7. A circuit with an ac 

generator and a resistance. 

Power from a generator = £/. (17.16) 
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When there is a current in the coil of the generator, there will also be mechani¬ 

cal forces on it. In fact, we know that the torque on the coil is proportional to its 

magnetic moment, to the magnetic field strength B, and to the sine of the angle 

between. The magnetic moment is the current m the coil times its area. Therefore 

the torque is 

r-/S5sin0. (17.17) 

The rate at which mechanical work must be done to keep the coil rotating is the 

angular velocity co times the torque: 

dW 
= cot = uISB sin 6. (17.18) 

at 

Comparing this equation with Eq. (17.14), we see that the rate of mechanical work 

required to rotate the coil against the magnetic forces is just equal to £/, the rate 

at which electrical energy is delivered by the emf of the generator. All of the me¬ 

chanical energy used up in the generator appears as electrical energy in the circuit. 

As another example of the currents and forces due to an induced emf, let’s 

analyze what happens in the setup described in Section 12, and shown in Fig. 17-1. 

There are two parallel wires and a sliding crossbar located in a uniform magnetic 

field perpendicular to the plane of the parallel wires. Now let’s assume that the 

“bottom” of the U (the left side in the figure) is made of wires of high resistance, 

while the two side wires are made of a good conductor like copper—then we don't 

need to worry about the change of the circuit resistance as the crossbar is moved. 

As before, the emf in the circuit is 

£ = vBw. (17.19) 

The current in the circuit is proportional to this emf and inversely proportional 

to the resistance of the circuit: 

/=! = !£■ (17.20) 

Because of this current there will be a magnetic force on the crossbar that is 

proportional to its length, to the current in it, and to the magnetic field, such that 

F = BIw. (17.21) 

Taking / from Eq. (17.20), we have for the force 

F = —Jjr~ v- (17.22) 

We see that the force is proportional to the velocity of the crossbar. The direction 

of the force, as you can easily see, is opposite to its velocity. Such a “velocity- 

proportional” force, which is like the force of viscosity, is found whenever induced 

currents are produced by moving conductors in a magnetic field. The examples of 

eddy currents we gave in the last chapter also produced forces on the conductors 

proportional to the velocity of the conductor, even though such situations, in 

general, give a complicated distribution of currents which is difficult to analyze. 

It is often convenient in the design of mechanical systems to have damping 

forces which are proportional to the velocity. Eddy-current forces provide one of 

the most convenient ways of getting such a velocity-dependent force. An example 

of the application of such a force is found in the conventional domestic wattmeter. 

In the wattmeter there is a thin aluminum disc that rotates between the poles of a 

permanent magnet. This disc is driven by a small electric motor whose torque is 

proportional to the power being consumed in the electrical circuit of the house. 

Because of the eddy-current forces in the disc, there is a resistive force proportional 

to the velocity. In equilibrium, the velocity is therefore proportional to the rate of 

consumption of electrical energy. By means of a counter attached to the rotating 

disc, a record is kept of the number of revolutions it makes. This count is an indi¬ 

cation of the total energy consumption, i.e., the number of watthours used. 
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We may also point out that Eq. (17.22) shows that the force from induced 

currents—that is, any eddy-current force—is inversely proportional to the re¬ 

sistance. The force will be larger, the better the conductivity of the material. The 

reason, of course, is that an emf produces more current if the resistance is low, and 

the stronger currents represent greater mechanical forces. 

We can also see from our formulas how mechanical energy is converted into 

electrical energy. As before, the electrical energy supplied to the resistance of the 

circuit is the product 87. The rate at which work is done in moving the conducting 

crossbar is the force on the bar times its velocity. Using Eq. (17.21) for the force, 

the rate of doing work is 

dW _ v2B2w2 

dt R 

We see that this is indeed equal to the product 8/ we would get from Eqs, (17.19) 

and (17.20). Again the mechanical work appears as electrical energy. 

17-6 Mutual inductance 

We now want to consider a situation in which there are fixed coils of wire but 

changing magnetic fields. When we described the production of magnetic fields by 

currents, we considered only the case of steady currents. But so long as the currents 

are changed slowly, the magnetic field will at each instant be nearly the same as the 

magnetic field of a steady current. We will assume in the discussion of this section 

that the currents are always varying sufficiently slowly that this is true. 

In Fig. 17-8 is shown an arrangement of two coils which demonstrates the 

basic effects responsible for the operation of a transformer. Coil 1 consists of a 

conducting wire wound in the form of a long solenoid. Around this coil—and 

insulated from it—is wound coil 2, consisting of a few turns of wire. If now a 

current is passed through coil 1, we know that a magnetic field will appear inside it. 

This magnetic field also passes through coil 2. As the current in coil 1 is varied, 

the magnetic flux will also vary, and there will be an induced emf in coil 2. We will 

now calculate this induced emf. 

We have seen in Section 13-5 that the magnetic field inside a long solenoid is 

uniform and has the magnitude 

1 
€qC2 

Nih -Z- 5 (17.23) 

Fig, 17-8. A current in coil 1 pro¬ 

duces a magnetic field through coil 2. 

where Ni is the number of turns in coil 1, /i is the current through it, and / is its 

length. Let's say that the cross-sectional area of coil 1 is S; then the flux of B is 

its magnitude times S. If coil 2 has N2 turns, this flux links the coil N2 times. 

Therefore the emf in coil 2 is given by 

fi2 = ~n-2S~- (17.24) 

The only quantity in Eq. (17.23) which varies with time is Ilt The emf is therefore 

given by 

NlN2S dh 

e0c2/ dt 
(17.25) 

We see that the emf in coil 2 is proportional to the rate of change of the current 

in coil 1. The constant of proportionality, which is basically a geometric factor of 

the two coils, is called the mutual inductance, and is usually designated 3E2 Equa¬ 

tion (17.25) is then written 

82 = 9Tlai § ■ (17.26) 

Suppose now that we were to pass a current through coil 2 and ask about 

the emf in coil 1. We would compute the magnetic field, which is everywhere 
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proportional to the current /2. The flux linkage through coil 1 would depend on 

the geometry, but would be proportional to the current /2. The emf in coil 1 

would, therefore, again be proportional to dl2/dt\ We can write 

Si = 91112 W' (17-27) 

The computation of 9Tl12 would be more difficult than the computation we have 

just done for 3TC21. We will not carry through that computation now, because we 

will show later in this chapter that 3TCi2 is necessarily equal to 9TC21. 

Since for any coil its field is proportional to its current, the same kind of 

result would be obtained for any two coils of wire. The equations (17.26) and 

(17.27) would have the same form; only the constants 2m21 and 3Hi2 would be 

different. Their values would depend on the shapes of the coils and their relative 

positions. 

Fig. 17-9. Any two coils have a 

mutual inductance 3Tt proportional to the 

integral of dsi • ds2/ri2- 

Suppose that we wish to find the mutual inductance between any two arbitrary 

coils—for example, those shown in Fig. 17-9. We know that the general expression 

for the emf in coil 1 can be written as 

Si B • n da, 

where B is the magnetic field and the integral is to be taken over a surface bounded 

by circuit 1. We have seen in Section 14-1 that such a surface integral of B can be 

related to a line integral of the vector potential. In particular, 

B n da ds i, 

where A represents the vector potential and ds i is an element of circuit 1. The line 

integral is to be taken around circuit 1. The emf in coil 1 can therefore be written as 

Si = - ~ f A ■ (17.28) 

Now let’s assume that the vector potential at circuit 1 comes from currents 

in circuit 2. Then it can be written as a line integral around circuit 2: 

A = 1 <f *2*2, 
4tT€qC2 /(2) r 12 

(17.29) 

where /2 is the current in circuit 2, and r12 is the distance from the element of the 

circuit ds2 to the point on circuit 1 at which we are evaluating the vector potential. 

(See Fig. 17-9.) Combining Eqs. (17.28) and (17.29), we can express the emf in 

circuit 1 as a double line integral: 

Si = 
_J_dI 1 I2ds2 

47re0c2 di J(1) 7(2) r12 

In this equation the integrals are all taken with respect to stationary circuits. The 

only variable quantity is the current /2, which does not depend on the variables of 
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integration. We may therefore take it out of the integrals, 

be written as 

Si 9^12 
dh 
dt 9 

The emf can then 

where the coefficient 9ffl12 is 

9TCi2 = 1 I <f ds* • dsi 
4tre0c2 Ja) J(2) r12 

(17.30) 

We see from this integral that am,2 2 depends only on the circuit geometry. It depends 

on a kind of average separation of the two circuits, with the average weighted most 

for parallel segments of the two coils. Our equation can be used for calculating 

the mutual inductance of any two circuits of arbitrary shape. Also, it shows that 

the integral for aftl12 is identical to the integral for 2flX21. We have therefore shown 

that the two coefficients are identical. For a system with only two coils, the co¬ 

efficients 3Tli2 and £flZ2i are often represented by the symbol 3TC without subscripts, 

called simply the mutual inductance: 

aoiis - m2i = 9TC. 

17-7 Self-inductance 

In discussing the induced electromotive forces in the two coils of Figs. 17-8 

or 17-9, we have considered only the case in which there was a current in one coil 

or the other. If there are currents in the two coils simultaneously, the magnetic 

flux linking either coil will be the sum of the two fluxes which would exist separately, 

because the law of superposition applies for magnetic fields. The emf in either 

coil will therefore be proportional not only to the change of the current in the 

other coil, but also to the change in the current of the coil itself. Thus the total 

emf in coil 2 should be written* 

S2 — 91X2i + 9TC22 * (17.31) 

Similarly, the emf in coil 1 will depend not only on the changing current m coil 2, 

but also on the changing current in itself: 

Si = 9TCi2 + 9TCn • (17.32) 

The coefficients mz22 and 9TCn are always negative numbers. It is usual to write 

SJTCn = -£i, 91X22 = -£2, (17.33) 

where £i and £2 are called the self-inductances of the two coils. 

The self-induced emf will, of course, exist even if we have only one coil. 

Any coil by itself will have a self-inductance £. The emf will be proportional to the 

rate of change of the current in it. For a single coil, it is usual to adopt the con¬ 

vention that the emf and the current are considered positive if they are in the same 

direction. With this convention, we may write for the emf of a single coil 

(17.34) 

The negative sign indicates that the emf opposes the change in current—it is often 

called a “back emf.” 

Since any coil has a self-inductance which opposes the change m current, the 

current in the coil has a kind of inertia. In fact, if we wish to change the current in 

* The sign of 3HT12 and 9TC2i in Eqs. (17.31) and (17.32) depends on the arbitrary choices 

for the sense of a positive current in the two coils. 
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I 

(b) 

Fig. 17-10 (a) A circuit with a 

voltage source and an inductance, (b) An 

analogous mechanical system. 

a coil we must overcome this inertia by connecting the coil to some external voltage 

source such as a battery or a generator, as shown in the schematic diagram of Fig. 

17-10(a). In such a circuit, the current I depends on the voltage according to 

the relation 

(17.35) 

This equation has the same form as Newton’s law of motion for a particle in 

one dimension. We can therefore study it by the principle that “the same equations 

have the same solutions.” Thus, if we make the externally applied voltage V corre¬ 

spond to an externally applied force F, and the current / in a coil correspond to the 

velocity v of a particle, the inductance £ of the coil corresponds to the mass m of the 

particle.* See Fig. 17—10(b). We can make the following table of corresponding 

quantities. 

Particle 

F (force) 

v (velocity) 

x (displacement) 

mv (momentum) 

|mv2 (kinetic energy) 

Coil 

V (potential difference) 

/ (current) 

q (charge) 

dl 
V = £ — 

dt 

£/ 

^£/2 (magnetic energy) 

17-8 Inductance and magnetic energy 

Continuing with the analogy of the preceding section, we would expect that 

corresponding to the mechanical momentum p — mv, whose rate of change is 

the applied force, there should be an analogous quantity equal to £/, whose rate of 

change is T>. We have no right, of course, to say that £/is the real momentum of the 

circuit; in fact, it isn’t. The whole circuit may be standing still and have no mo¬ 

mentum. It is only that £/ is analogous to the momentum mv in the sense of satisfy¬ 

ing corresponding equations. In the same way, to the kinetic energy \mv2, there 

corresponds an analogous quantity j£/2. But there we have a surprise. This 

j£/2 is really the energy in the electrical case also. This is because the rate of doing 

work on the inductance is VI, and in the mechanical system it is Fv, the corre¬ 

sponding quantity. Therefore, in the case of the energy, the quantities not only 

correspond mathematically, but also have the same physical meaning as well. 

We may see this in more detail as follows. As we found in Eq. (17.16), the 

rate of electrical work by induced forces is the product of the electromotive force 

and the current: 

Replacing 8 by its expression in terms of the current from Eq. (17.34), we have 

dJ= -vd4 dt dt 
(17.36) 

Integrating this equation, we find that the energy required from an external source 

to overcome the emf in the self-inductance while building up the current! (which 

must equal the energy stored, U) is 

-W = U = ^£/2 (17.37) 

Therefore the energy stored in an inductance is j£/2. 

* This is, incidentally, not the only way a correspondence can be set up between me¬ 
chanical and elecirical quantities. 

t We are neglecting any energy loss to heat from the current in the resistance of the coil. 
Such losses require additional energy from the source but do not change the energy which 
goes into the inductance. 
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Applying the same arguments to a pair of coils such as those in Figs. 17-8 or 

17-9, we can show that the total electrical energy of the system is given by 

U = ijEx/f + JjBj/1 + Srtt/i/2- (17.38) 

For, starting with / = 0 in both coils, we could first turn on the current lx in 

coil 1, with 12 = 0. The work done is just £<£i/f. But now, on turning up /2, 

we not only do the work \£2I\ against the emf in circuit 2, but also an additional 

amount Wl/i/2, which is the integral of the emf [^l{dl2/dt)] in circuit 1 times the 

now constant current Ix in that circuit. 

Suppose we now wish to find the force between any two coils carrying the 

currents Ix and /2. We might at first expect that we could use the principle of 

virtual work, by taking the change in the energy of Eq. (17.38). We must remember, 

of course, that as we change the relative positions of the coils the only quantity 

which varies is the mutual inductance 211. We might then write the equation of 

virtual work as 

— FAx = A U = IXI2 A3TC (wrong). 

But this equation is wrong because, as we have seen earlier, it includes only the 

change in the energy of the two coils and not the change in the energy of the sources 

which are maintaining the currents Ix and I2 at their constant values. We can now 

understand that these sources must supply energy against the induced emf’s in the 

coils as they are moved. If we wish to apply the principle of virtual work correctly, 

we must also include these energies. As we have seen, however, we may take a 

short cut and use the principle of virtual work by remembering that the total 

energy is the negative of what we have called Umvc}l9 the “mechanical energy.’’ We 

can therefore write for the force 

-FAx = AUnwch = —AU. 

The force between two coils is then given by 

(17.39) 

F Ax = IXI2 A3TC. 

Equation (17.38) for the energy of a system of two coils can be used to show 

that an interesting inequality exists between mutual inductance 9TC and the self¬ 

inductances £i and £2 of the two coils. It is clear that the energy of two coils 

must be positive. If we begin with zero currents in the coils and increase these 

currents to some values, we have been adding energy to the system. If not, the 

currents would spontaneously increase with release of energy to the rest of the 

world—an unlikely thing to happen! Now our energy equation, Eq. (17.38), can 

equally well be written in the following form: 

+ 
anx 

(17.40) 

That is just an algebraic transformation. This quantity must always be positive 

for any values of Ix and /2. In particular, it must be positive if /2 should happen to 

have the special value 

/2=-g/, 07.41) 

But with this current for /2, the first term m Eq. (17.40) is zero. If the energy is to 

be positive, the last term in (17.40) must be greater than zero. We have the require¬ 

ment that 

£i£2 > m2. 

We have thus proved the general result that the magnitude of the mutual inductance 

311 of any two coils is necessarily less than or equal to the geometric mean of the 

two self-inductances. (2MZ itself may be positive or negative, depending on the sign 
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conventions for the currents /1 and /2.) 

|31X| < V£i«C2. (17.42) 

The relation between 2HZ and the self-inductances is usually written as 

9TC - ky/£ i£2"- (17.43) 

The constant /c is called the coefficient of coupling. If most of the flux from one 

coil links the other coil, the coefficient of coupling is near one; we say the coils are 

“tightly coupled.” If the coils are far apart or otherwise arranged so that there is 

very little mutual flux linkage, the coefficient of coupling is near zero and the 

mutual inductance is very small. 

For calculating the mutual inductance of two coils, we have given in Eq. 

(17.30) a formula which is a double line integral around the two circuits. We 

might think that the same formula could be used to get the self-inductance of a 

single coil by carrying out both line integrals around the same coil. This, however, 

will not work, because in integrating around the two coils, the denominator r12 of 

the integrand will go to zero when the two line elements are at the same point. 

The self-mductance obtained from this formula is infinite. The reason is that this 

formula is an approximation that is valid only when the cross sections of the wires 

of the two circuits are small compared with the distance from one circuit to the 

other. Clearly, this approximation doesn’t hold for a single coil. It is, in fact, true 

that the inductance of a single coil tends logarithmically to infinity as the diameter 

of its wire is made smaller and smaller. 

We must, then, look for a different way of calculating the self-inductance of a 

single coil. It is necessary to take into account the distribution of the currents 

within the wires because the size of the wire is an important parameter. We should 

therefore ask not what is the inductance of a “circuit,” but what is the inductance 

of a distribution of conductors. Perhaps the easiest way to find this inductance is 

to make use of the magnetic energy. We found earlier, m Section 15-3, an ex¬ 

pression for the magnetic energy of a distribution of stationary currents: 

V = ijj-AdV. (17.44) 

If we know the distribution of current density j, we can compute the vector po¬ 

tential A and then evaluate the integral of Eq. (17.44) to get the energy. This 

energy is equal to the magnetic energy of the self-inductance, j£/2. Equating 

the two gives us a formula for the inductance: 

£ = ~fj- A dV. (17.45) 

We expect, of course, that the inductance is a number depending only on the 

geometry of the circuit and not on the current / m the circuit. The formula of Eq. 

(17.45) will indeed give such a result, because the integral in this equation is pro¬ 

portional to the square of the current—the current appears once through j and 

again through the vector potential A. The integral divided by 12 will depend on the 

geometry of the circuit but not on the current /. 

Equation (17.44) for the energy of a current distribution can be put in a quite 

different form which is sometimes more convenient for calculation. Also, as we 

will see later, it is a form that is important because it is more generally valid. In 

the energy equation, Eq. (17.44), both A and j can be related to B, so we can hope 

to express the energy in terms of the magnetic field—just as we were able to relate 

the electrostatic energy to the electric field. We begin by replacing j by e 2V X B. 

We cannot replace A so easily, since B = V X A cannot be reversed to give A in 

terms of B. Anyway, we can write 

J(V x B) A dV. (17.46) 
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The interesting thing is that—with some restrictions—this integral can be 

written as 

u = fB ' (v x A) dv' (17.47) 

To see this, we write out in detail a typical term. Suppose that we take the term 

(V X B)ZAZ which occurs in the integral of Eq. (17.46). Writing out the com¬ 

ponents, we get 

f(^-d~§)A*dxdydz- 

(There are, of course, two more integrals of the same kind.) We now integrate the 

first term with respect to x—integrating by parts. That is, we can say 

J A2 = ByAz ~ fdx' 
Now suppose that our system—meaning the sources and fields—is finite, so that 

as we go to large distances all fields go to zero. Then if the integrals are carried out 

over all space, evaluating the term ByAz at the limits will give zero. We have left 

only the term with By(dAz/dx), which is evidently one part of By(V X A)y and, 

therefore, of B • (V X A). If you work out the other five terms, you will see that 

Eq. (17.47) is indeed equivalent to Eq. (17.46). 

But now we can replace (V X A) by B, to get 

U = j B ■ B dV. (17.48) 

We have expressed the energy of a magnetostatic situation in terms of the magnetic 

field only. The expression corresponds closely to the formula we found for the 

electrostatic energy: 

U = y J E ■ E dV. (17.49) 

One reason for emphasizing these two energy formulas is that sometimes they 

are more convenient to use. More important, it turns out that for dynamic fields 

(when E and B are changing with time) the two expressions (17.48) and (17.49) 

remain true, whereas the other formulas we have given for electric or magnetic 

energies are no longer correct—they hold only for static fields. 

If we know the magnetic field B of a single coil, we can find the self-inductance 

by equating the energy expression (17.48) to %£l2. Let’s see how this works by 

finding the self-inductance of a long solenoid. We have seen earlier that the mag¬ 

netic field inside a solenoid is uniform and B outside is zero. The magnitude of the 

field inside is B = nl/e0c2, where n is the number of turns per unit length in the 

winding and / is the current. If the radius of the coil is r and its length is L (we 

take L very long, so that we can neglect end effects, i.e., L r), the volume inside 

is irr2L. The magnetic energy is therefore 

^=¥S2-(Vol) = S^ 
which is equal to j£/2. Or, 

£ = ^4 L• (17*5°) 
60C2 
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The Maxwell Equations 

18-1 Maxwell’s equations 

In this chapter we come back to the complete set of the four Maxwell equations 
that we took as our starting point in Chapter 1. Until now, we have been studying 
Maxwell’s equations in bits and pieces; it is time to add one final piece, and to put 
them all together. We will then have the complete and correct story for electro¬ 
magnetic fields that may be changing with time in any way. Anything said in this 
chapter that contradicts something said earlier is true and what was said earlier is 
false—because what was said earlier applied to such special situations as, for 
instance, steady currents or fixed charges. Although we have been very careful to 
point out the restrictions whenever we wrote an equation, it is easy to forget all of 
the qualifications and to learn too well the wrong equations. Now we are ready 
to give the whole truth, with no qualifications (or almost none). 

The complete Maxwell equations are written in Table 18-1, in words as well 
as in mathematical symbols. The fact that the words are equivalent to the equations 
should by this time be familiar—you should be able to translate back and forth 
from one form to the other. 

The first equation—that the divergence of E is the charge density over e0—is 
true in general. In dynamic as well as in static fields, Gauss’ law is always valid. 
The flux of E through any closed surface is proportional to the charge inside. 
The third equation is the corresponding general law for magnetic fields. Since 
there are no magnetic charges, the flux of B through any closed surface is always 
zero. The second equation, that the curl of E is —dB/dt, is Faraday’s law and was 
discussed in the last two chapters. It also is generally true. The last equation has 
something new. We have seen before only the part of it which holds for steady 
currents. In that case we said that the curl of B is j/e0c2, but the correct general 
equation has a new part that was discovered by Maxwell. 

Until Maxwell’s work, the known laws of electricity and magnetism were 
those we have studied in Chapters 3 through 17. In particular, the equation for 
the magnetic field of steady currents was known only as 

VXB=^- (18.1) 

Maxwell began by considering these known laws and expressing them as differ¬ 
ential equations, as we have done here. (Although the V notation was not yet 
invented, it is mainly due to Maxwell that the importance of the combinations of 
derivatives, which we today call the curl and the divergence, first became apparent.) 
He then noticed that there was something strange about Eq. (18.1). If one takes the 
divergence of this equation, the left-hand side will be zero, because the divergence 
of a curl is always zero. So this equation requires that the divergence of j also be 
zero. But if the divergence of j is zero, then the total flux of current out of any 
closed surface is also zero. 

The flux of current from a closed surface is the decrease of the charge inside 
the surface. This certainly cannot in general be zero because we know that the 
charges can be moved from one place to another. The equation 

<i8-2> 

has, in fact, been almost our definition of j. This equation expresses the very funda- 
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Table 18-1 Classical Physics 

Maxwell's equations 

I. V • E = -5. 
co 

(Flux of E through a closed surface) = (Charge inside)/c0 

H. (Line integral of E around a loop) - —7 (Flux of B through the loop) 
dt 

o
 II eq 

>
 (Flux of B through a closed surface) = 0 

IV. c\ X B = -J- + ^ 
eo ot 

2 
c (Integralof B around a loop) = (Current through the loop)/€o 

q 
+ (Flux of E through the loop) 

ot 

Conservation of charge 

Vj = 
dt 

(Flux of current through a closed surface) = — 7- (Charge inside) 
ot 

Force law 

F - q(E + v X B) 

Law of motion 

4 (/>) = T, where 
dt 

Gravitation 
mim2 

F = —— er 
r2 

p = -—- (Newton's law. with Einstein's modification^ 
Vl — v2/c2 

mental law that electric charge is conserved—any flow of charge must come from 
some supply. Maxwell appreciated this difficulty and proposed that it could be 
avoided by adding the term dE/dt to the right-hand side of Eq. (18.1); he then got 
the fourth equation in Table 18-1: 

IV. c2V X B = j- + ^ • 
€o dt 

It was not yet customary in Maxwell’s time to think in terms of abstract fields. 
Maxwell discussed his ideas in terms of a model in which the vacuum was like an 
elastic solid. He also tried to explain the meaning of his new equation in terms of 
the mechanical model. There was much reluctance to accept his theory, first be¬ 
cause of the model, and second because there was at first no experimental justi¬ 
fication. Today, we understand better that what counts are the equations themselves 
and not the model used to get them. We may only question whether the equations 
are true or false. This is answered by doing experiments, and untold numbers of 
experiments have confirmed Maxwell’s equations. If we take away the scaffolding 
he used to build it, we find that Maxwell’s beautiful edifice stands on its own. He 
brought together all of the laws of electricity and magnetism and made one complete 
and beautiful theory. 

Let us show that the extra term is just what is required to straighten out the 
difficulty Maxwell discovered. Taking the divergence of his equation (IV in Table 
18-1), we must have that the divergence of the right-hand side is zero: 

vT+v~ = 0. (18.3) 
€q ot 
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In the second term, the order of the derivatives with respect to coordinates and 
time can be reversed, so the equation can be rewritten as 

▼ j + e° Ft v 'E = °- (18.4) 

But the first of Maxwell’s equations says that the divergence of E is p/eQ. Inserting 
this equality in Eq. (18.4), we get back Eq. (18.2), which we know is true. Con¬ 
versely, if we accept Maxwell's equations—and we do because no one has ever 
found an experiment that disagrees with them—we must conclude that charge is 
always conserved. 

The laws of physics have no answer to the question: “What happens if a 
charge is suddenly created at this point—what electromagnetic effects are pro¬ 
duced?” No answer can be given because our equations say it doesn’t happen. 
If it were to happen, we would need new laws, but we cannot say what they would 
be. We have not had the chance to observe how a world without charge con¬ 
servation behaves. According to our equations, if you suddenly place a charge at 
some point, you had to carry it there from somewhere else. In that case, we can 
say what would happen. 

When we added a new term to the equation for the curl of E, we found that a 
whole new class of phenomena was described. We shall see that Maxwell’s little 
addition to the equation for V X B also has far-reaching consequences. We can 
touch on only a few of them in this chapter. 

18-2 How the new term works 

As our first example we consider what happens with a spherically symmetric 
radial distribution of current. Suppose we imagine a little sphere with radioactive 
material on it. This radioactive material is squirting out some charged particles. 
(Or we could imagine a large block of jello with a small hole in the center into 
which some charge had been injected with a hypodermic needle and from which 
the charge is slowly leaking out.) In either case we would have a current that is 
everywhere radially outward. We will assume that it has the same magnitude in 
all directions. 

Let the total charge inside any radius r be Q(r), If the radial current density 
at the same radius is j{r), then Eq. (18.2) requires that Q decreases at the rate 

= (18-5) 

We now ask about the magnetic field produced by the currents in this situation. 
Suppose we draw some loop V on a sphere of radius r, as shown in Fig. 18-1. 
There is some current through this loop, so we might expect to find a magnetic 
field circulating in the direction shown. 

But we are already in difficulty. How can the B have any particular direction 
on the sphere? A different choice of V would allow us to conclude that its direction 
is exactly opposite to that shown. So how can there be any circulation of B around 
the currents? 

We are saved by Maxwell’s equation. The circulation of B depends not only 
on the total current through V but also on the rate of change with time of the 
electric flux through it. It must be that these two parts just cancel. Let’s see if that 
works out. 

The electric field at the radius r must be Q(r)/4ire0r2—so long as the charge 
is symmetrically distributed, as we assume. It is radial, and its rate of change is then 

Fig. 18-1. What is the magnetic 
field of a spherically symmetric current? 

BE = 1 dQ 

dt 47reQr2 dt 
(18.6) 

Comparing this with Eq. (18.5), we see that at any radius 

BE  _j_ 

St «o 
(18.7) 
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loop r, 

Fig. 18-2. The magnetic field near a charging capacitor. 

In Eq. IV the two source terms cancel and the curl of B is always zero. There is 
no magnetic field in our example. 

As our second example, we consider the magnetic field of a wire used to 
charge a parallel-plate condenser (see Fig. 18-2). If the charge Q on the plates is 
changing with time (but not too fast), the current in the wires is equal to dQ/dt. 
We would expect that this current will produce a magnetic field that encircles the 
wire. Surely, the current close to the wire must produce the normal magnetic 
field—it cannot depend on where the current is going. 

Suppose we take a loop r x which is a circle with radius r, as shown in part (a) 
of the figure. The line integral of the magnetic field should be equal to the current 
I divided by e0c2. We have 

2jrrB = ’ (18l8) 

This is what we would get for a steady current, but it is also correct with Maxwell’s 
addition, because if we consider the plane surface S inside the circle, there are no 
electric fields on it (assuming the wire to be a very good conductor). The surface 
integral of dE/dt is zero. 

Suppose, however, that we now slowly move the curve r downward. We get 
always the same result until we draw even with the plates of the condenser. Then 
the current / goes to zero. Does the magnetic field disappear? That would be 
quite strange. Let’s see what Maxwell’s equation says for the curve r2, which is a 
circle of radius r whose plane passes between the condenser plates [Fig. 18-2(b)]. 
The line integral of B around r2 is 2irrB. This must equal the time derivative of 
the flux of E through the plane circular surface S2. This flux of E, we know from 
Gauss’ law, must be equal to l/e0 times the charge Q on one of the condenser plates. 
We have , v 

(189> 
That is very convenient. It is the same result we found in Eq. (18.8). Inte¬ 

grating over the changing electric field gives the same magnetic field as does inte¬ 
grating over the current in the wire. Of course, that is just what Maxwell’s equation 
says. It is easy to see that this must always be so by applying our same arguments 
to the two surfaces Si and SJ that are bounded by the same circle Tx in Fig. 
18-2(b). Through Si there is the current /, but no electric flux. Through S[ there 
is no current, but an electric flux changing at the rate 7/e0. The same B is obtained 
if we use Eq. IV with either surface. 

From our discussion so far of Maxwell’s new term, you may have the im¬ 
pression that it doesn’t add much—that it just fixes up the equations to agree with 
what we already expect. It is true that if we just consider Eq, IV by itself, nothing 
particularly new comes out. The words “by itself are, however, all-important. 
Maxwell’s small change in Eq. IV, when combined with the other equations, does 
indeed produce much that is new and important. Before we take up these matters, 
however, we want to speak more about Table 18-1. 
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18-3 All of classical physics 

In Table 18-1 we have all that was known of fundamental classical physics, 
that is, the physics that was known by 1905. Here it all is, in one table. With these 
equations we can understand the complete realm of classical physics. 

First we have the Maxwell equations—written in both the expanded form and 
the short mathematical form. Then there is the conservation of charge, which is 
even written in parentheses, because the moment we have the complete Maxwell 
equations, we can deduce from them the conservation of charge. So the table is 
even a little redundant. Next, we have written the force law, because having all 
the electric and magnetic fields doesn’t tell us anything until we know what they 
do to charges. Knowing E and B, however, we can find the force on an object with 
the charge q moving with velocity v. Finally, having the force doesn’t tell us any¬ 
thing until we know what happens when a force pushes on something; we need the 
law of motion, which is that the force is equal to the rate of change of the mo¬ 
mentum. (Remember? We had that in Volume I.) We even include relativity 
effects by writing the momentum as p — m0v/\J 1 — v%/c2. 

If we really want to be complete, we should add one more law—Newton’s 
law of gravitation—so we put that at the end. 

Therefore in one small table we have all the fundamental laws of classical 
physics—even with room to write them out in words and with some redundancy. 
This is a great moment. We have climbed a great peak. We are on the top of 
K-2—we are nearly ready for Mount Everest, which is quantum mechanics. We 
have climbed the peak of a “Great Divide,” and now we can go down the other 
side. 

We have mainly been trying to learn how to understand the equations. Now 
that we have the whole thing put together, we are going to study what the equations 
mean—what new things they say that we haven’t already seen. We’ve been working 
hard to get up to this point. It has been a great effort, but now we are going to have 
nice coasting downhill as we see all the consequences of our accomplishment. 

18-4 A travelling field 

Now for the new consequences. They come from putting together all of 
Maxwell’s equations. First, let’s see what would happen in a circumstance which 
we pick to be particularly simple. By assuming that all the quantities vary only in 
one coordinate, we will have a one-dimensional problem. The situation is shown 
in Fig. 18-3. We have a sheet of charge located on the yz-plane. The sheet is first 
at rest, then instantaneously given a velocity u in the y-direction, and kept moving 
with this constant velocity. You might worry about having such an “infinite” 
acceleration, but it doesn’t really matter; just imagine that the velocity is brought to 
u very quickly. So we have suddenly a surface current J (J is the current per unit 

Fig. 18-3. An infinite sheet of charge 
is suddenly set into motion parallel to 

itself. There are magnetic and electric 
fields that propagate out from the sheet 
at a constant speed. 
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Fig. 18-4. (a) The magnitude of B 
(or £) as a function of x at the time t after 
the charge sheet is set in motion, (b) The 
fields for a charge sheet set in motion, 
toward negative y at t = T. (c) The sum 
of (a) and (b). 

width in the z-direction). To keep the problem simple, we suppose that there is 
also a stationary sheet of charge of opposite sign superposed on the yz-plane, so 
that there are no electrostatic effects. Also, although in the figure we show only 
what is happening in a finite region, we imagine that the sheet extends to infinity 
in *=y and ±z. In other words, we have a situation where there is no current, and 
then suddenly there is a uniform sheet of current. What will happen? 

Well, when there is a sheet of current in the plus ^-direction, there is, as we 
know, a magnetic field generated which will be in the minus z-direction for x > 0 
and in the opposite direction for x < 0. We could find the magnitude of B by 
using the fact that the line integral of the magnetic field will be equal to the current 
over e0c2. We would get that B = J/2eQc2 (since the current I in a strip of width 
w is Jw and the line integral of B is 2Bw). 

This gives us the field next to the sheet—for small x—but since we are im¬ 
agining an infinite sheet, we would expect the same argument to give the magnetic 
field farther out for larger values of x. However, that would mean that the moment 
we turn on the current, the magnetic field is suddenly changed from zero to a 
finite value everywhere. But wait! If the magnetic field is suddenly changed, it 
will produce tremendous electrical effects. (If it changes in any way, there are 
electrical effects.) So because we moved the sheet of charge, we make a changing 
magnetic field, and therefore electric fields must be generated. If there are electric 
fields generated, they had to start from zero and change to something else. There 
will be some dE/dt that will make a contribution, together with the current'/, to the 
production of the magnetic field. So through the various equations there is a big 
intermixing, and we have to try to solve for all the fields at once. 

By looking at the Maxwell equations alone, it is not easy to see directly how 
to get the solution. So we will first show you what the answer is and then verify 
that it does indeed satisfy the equations. The answer is the following: The field B 
that we computed is, in fact, generated right next to the current sheet (for small x). 
It must be so, because if we make a tiny loop around the sheet, there is no room 
for any electric flux to go through it. But the field B out farther—for larger x—is, 
at first, zero. It stays zero for awhile, and then suddenly turns on. In short, we 
turn on the current and the magnetic field immediately next to it turns on to a 
constant value B; then the turning on of B spreads out from the source region. 
After a certain time, there is a uniform magnetic field everywhere out to some 
value x, and then zero beyond. Because of the symmetry, it spreads in both the 
plus and minus x-directions. 

The f-field does the same thing. Before t — 0 (when we turn on the current), 
the field is zero everywhere. Then after the time t, both E and B are uniform out 
to the distance x = vt, and zero beyond. The fields make their way forward like 
a tidal wave, with a front moving at a uniform velocity which turns out to be c, 
but for a while we will just call it v. A graph of the magnitude of E or B versus x, 
as they appear at the time t, is shown in Fig. 18-4(a). Looking again at Fig. 18-3, 
at the time t, the region between x — ±vt is “filled” with the fields, but they have 
not yet reached beyond. We emphasize again that we are assuming that the current 
sheet and, therefore the fields E and B, extend infinitely far in both the y- and z-di- 
rections. (We cannot draw an infinite sheet, so we have shown only what happens 
in a finite area.) 

We want now to analyze quantitatively what is happening. To do that, we 
want to look at two cross-sectional views, a top view looking down along the y-axis, 
as shown in Fig. 18-5, and a side view looking back along the z-axis, as shown in 
Fig. 18-6. Suppose we start with the side view. We see the charged sheet moving 
up; the magnetic field points into the page for +*, and out of the page for — x, 
and the electric field is downward everywhere—out to x = ± vt. 

Let’s see if these fields are consistent with Maxwell’s equations. Let’s first 
draw one of those loops that we use to calculate a line integral, say the rectangle 
r2 shown in Fig. 18-6. You notice that one side of the rectangle is in the region 
where there are fields, but one side is in the region the fields have still not reached. 
There is some magnetic flux through this loop. If it is changing, there should be 
an emf around it. If the wavefront is moving, we will have a changing magnetic 
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Fig. 18-5. Top view of Fig. 18-3. Fig. 18-6. Side view of Fig. 18-3. 

flux, because the area in which B exists is progressively increasing at the velocity v. 
The flux inside r2 is B times the part of the area inside r2 which has a magnetic 
field. The rate of change of the flux, since the magnitude of B is constant, is the 
magnitude times the rate of change of the area. The rate of change of the area is 
easy. If the width of the rectangle r? is L, the area in which B exists changes by 
Lv At in the time At, (See Fig. 18-6.) The rate of change of flux is then BLv. 
According to Faraday’s law, this should equal the line integral of E around T 2, 
which is just EL. We have the equation 

E = vB. (18.10) 

So if the ratio of E to B is v, the fields we have assumed will satisfy Faraday’s 
equation. 

But that is not the only equation; we have the other equation relating Eand B: 

cHxB =+- + -.f- (18.11) 
60 O* 

To apply this equation, we look at the top view in Fig. 18-5. We have seen that 
this equation will give us the value of B next to the current sheet. Also, for any 
loop drawn outside the sheet but behind the wavefront, there is no curl of B nor 
any j or changing E, so the equation is correct there. Now let’s look at what hap¬ 
pens for the curve that intersects the wavefront, as shown in Fig. 18-5. Here 
there are no currents, so Eq. (18.11) can be written—in integral form—as 

i B-ds - A 
dt / E‘ nda. (18.12) 

inside Ti 

The line integral of B is just B times L. The rate of change of the flux of E is due 
only to the advancing wavefront. The area inside Tu where E is not zero, is in¬ 
creasing at the rate vL. The right-hand side of Eq. (18.12) is then vLE. That equa- 

tion becomes C*B = Ev. (18.13) 

We have a solution in which we have a constant B and a constant E behind 
the front, both at right angles to the direction in which the front is moving and at 
right angles to each other. Maxwell’s equations specify the ratio of E to B. From 
Eqs. (18.10) and (18.13), 

c2 
E = vB, and E = — B. 

v 

But one moment! We have found two different conditions on the ratio E/B. Can 
such a field as we describe really exist? There is, of course, only one velocity v for 
which both of these equations can hold, namely v = c. The wavefront must 
travel with the velocity c. We have an example in which the electrical influence 
from a current propagates at a certain finite velocity c. 
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Now let’s ask what happens if we suddenly stop the motion of the charged 
sheet after it has been on for a short time T. We can see what will happen by the 
principle of superposition. We had a current that was zero and then was suddenly 
turned on. We know the solution for that case. Now we are going to add another 
set of fields. We take another charged sheet and suddenly start it moving, in the 
opposite direction with the same speed, only at the time T after we started the first 
current. The total current of the two added together is first zero, then on for a 
time T, then off again—because the two currents cancel. We have a square 
“pulse” of current. 

The new negative current produces the same fields as the positive one, only 
with all the signs reversed and, of course, delayed in time by T. A wavefront again 
travels out at the velocity c. At the time t it has reached the distance x = 
±c(t-T), as shown in Fig. 18-4(b). So we have two “blocks” of field marching 
out at the speed c, as in parts (a) and (b) of Fig. 18-4. The combined fields are as 
shown in part (c) of the figure. The fields are zero for x > ct, they are constant 
(with the values we found above) between x = c(t — T) and x = ct, and again 
zero for x < c(t — T). 

In short, we have a little piece of field—a block of thickness cT—which has 
left the current sheet and is travelling through space all by itself. The fields have 
“taken off”; they are propagating freely through space, no longer connected in any 
way with the source. The caterpillar has turned into a butterfly! 

How can this bundle of electric and magnetic fields maintain itself? The an¬ 
swer is: by the combined effects of the Faraday law, v X E = —dB/dt, and the 
new term of Maxwell, c2V X B = dE/dt. They cannot help maintaining them¬ 
selves. Suppose the magnetic field were to disappear. There would be a changing 
magnetic field which would produce an electric field. If this electric field tries to 
go away, the changing electric field would create a magnetic field back again. So 
by a perpetual interplay—by the swishing back and forth from one field to the 
other—they must go on forever. It is impossible for them to disappear* They 
maintain themselves in a kind of a dance—one making the other, the second making 
the first—propagating onward through space. 

18-5 The speed of light 

We have a wave which leaves the material source and goes outward at the 
velocity c, which is the speed of light. But let’s go back a moment. From a his¬ 
torical point of view, lit wasn’t known that the coefficient c in Maxwell’s equations 
was also the speed of light propagation. There was just a constant in the equations. 
We have called it c from the beginning, because we knew what it would turn out 
to be. We didn’t think it would be sensible to make you learn the formulas with a 
different constant and then go back to substitute c wherever it belonged. From the 
point of view of electricity and magnetism, however, we just start out with two 
constants, €0 and c2, that appear in the equations of electrostatics and magneto¬ 
statics: 

V ■ E = (18.14) 
€0 

and 

V X B = -4 • (18.15) 
€0C2 

If we take any arbitrary definition of a unit of charge, we can determine experi¬ 
mentally the constant e0 required in Eq. (18.14)—say by measuring the force 
between two unit charges at rest, using Coulomb’s law. We must also determine 
experimentally the constant e0c2 that appears in Eq. (18.15), which we can do, say, 
by measuring the force between two unit currents. (A unit current means one unit 
of charge per second.) The ratio of these two experimental constants is c2—just 
another “electromagnetic constant.” 

* Well, not quite. They can be “absorbed” if they get to a region where there are charges. 
By which we mean that other fields can be produced somewhere which superpose on these 
fields and “cancel” them by destructive interference (see Chapter 31, Vol. I). 

18-8 



Notice now that this constant c2 is the same no matter what we choose for 
our unit of charge. If we put twice as much “charge”—say twice as many proton 
charges—in our “unit” of charge, e0 would need to be one-fourth as large. When 
we pass two of these “unit” currents through two wires, there will be twice as much 
“charge” per second in each wire, so the force between two wires is four times 
larger. The constant €0c2 must be reduced by one-fourth. But the ratio 60c2/c0 
is unchanged. 

So just by experiments with charges and currents we find a number c2 which 
turns out to be the square of the velocity of propagation of electromagnetic in¬ 
fluences. From static measurements—by measuring the forces between two unit 
charges and between two unit currents—we find that c = 3.00 X 108 meters/sec. 
When Maxwell first made this calculation with his equations, he said that bundles 
of electric and magnetic fields should be propagated at this speed. He also re¬ 
marked on the mysterious coincidence that this was the same as the speed of light. 
“We can scarcely avoid the inference,” said Maxwell, “that light consists in the 
transverse undulations of the same medium which is the cause of electric and 
magnetic phenomena.” 

Maxwell had made one of the great unifications of physics. Before his time, 
there was light, and there was electricity and magnetism. The latter two had been 
unified by the experimental work of Faraday, Oersted, and Ampere. Then, all 
of a sudden, light was no longer “something else,” but was only electricity and 
magnetism in this new form—little pieces of electric and magnetic fields which 
propagate through space on their own. 

We have called your attention to some characteristics of this special solution, 
which turn out to be true, however, for any electromagnetic wave: that the mag¬ 
netic field is perpendicular to the direction of motion of the wavefront; that the 
electric field is likewise perpendicular to the direction of motion of the wavefront; 
and that the two vectors E and B are perpendicular to each other. Furthermore, 
the magnitude of the electric field E is equal to c times the magnitude of the 
magnetic field B. These three facts—that the two fields are transverse to the direc¬ 
tion of propagation, that B is perpendicular to E, and that E = cB—are generally 
true for any electromagnetic wave. Our special case is a good one—it shows all 
the main features of electromagnetic waves. 

18-6 Solving Maxwell’s equations; the potentials and the wave equation 

Now we would like to do something mathematical; we want to write Maxwell's 
equations in a simpler form. You may consider that we are complicating them, 
but if you will be patient a little bit, they will suddenly come out simpler. Although 
by this time you are thoroughly used to each of the Maxwell equations, there are 
many pieces that must all be put together. That's what we want to do. 

We begin with V • B = 0—the simplest of the equations. We know that it 
implies that B is the curl of something. So, if we write 

B = V X A, (18.16) 

we have already solved one of Maxwell’s equations. (Incidentally, you appreciate 
that it remains true that another vector Ar would be just as good if A* = A + 
—where \p is any scalar field—because the curl of V\p is zero, and B is still the same. 
We have talked about that before.) 

We take next the Faraday law, V X E = ~dB/dt, because it doesn’t involve 
any currents or charges. If we write B as V X A and differentiate with respect to 
it we can write Faraday's law in the form 

*xE=-mVXA- 
Since we can differentiate either with respect to time or to space first, we can also 
write this equation as 

(18.17) vx(£ + lr) = a 
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We see that E + dA/dt is a vector whose curl is equal to zero. Therefore that vec¬ 
tor is the gradient of something. When we worked on electrostatics, we had 
V X E = 0, and then we decided that E itself was the gradient of something. 
We took it to be the gradient of —<f> (the minus for technical convenience). We 
do the same thing for E + dA/dt; we set 

(18.18) 

We use the same symbol <f> so that, in the electrostatic case where nothing changes 
with time and the dA/dt term disappears, E will be our old — V<f>. So Faraday’s 
equation can be put in the form 

E=-V4>-~- (18.19) 

We have solved two of Maxwell’s equations already, and we have found that 
to describe the electromagnetic fields E and B, we need four potential functions: 
a scalar potential <j> and a vector potential A, which is, of course, three functions. 

Now that A determines part of E, as well as B, what happens when we change 
A to Af = A + In general, E would change if we didn't take some special 
precaution. We can, however, still allow A to be changed in this way without 
affecting the fields E and B—that is, without changing the physics—if we always 
change A and <f> together by the rules 

A9 = A + V*, (18.20) 

Then neither B nor E, obtained from Eq. (18.19), is changed. 
Previously, we chose to make V • A = 0, to make the equations of statics 

somewhat simpler. We are not going to do that now; we are going to make a 
different choice. But we’ll wait a bit before saying what the choice is, because 
later it will be clear why the choice is made. 

Now we return to the two remaining Maxwell equations which will give us 
relations between the potentials and the sources p and / Once we can determine A 
and 4> from the currents and charges, we can always get E and B from Eqs. (18.16) 
and (18.19), so we will have another form of Maxwell’s equations. 

We begin by substituting Eq. (18.19) into V • E — p/e0; we get 

which we can write also as 

(18.21) 
at €o 

This is one equation relating <f> and A to the sources. 
Our final equation will be the most complicated. We start by rewriting the 

fourth Maxwell equation as 

c*V X B - 
dE 
dt 

and then substitute for B and E in terms of the potentials, using Eqs. (18.16) 
and (18.19): 

The first term can be rewritten using the algebraic identity: V X (V X A) = 
V(V * A) — V2A; we get 

-«V.< + c»y(v 

It’s not very simple! 
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Fortunately, we can now make use of our freedom to choose arbitrarily the 
divergence of A, What we are going to do is to use our choice to fix things so that 
the equations for A and for 0 are separated but have the same form. We can do 
this by taking* 

1 
2 dt 

(18.23) 

When we do that, the two middle terms in A and 0 in Eq. (18.22) cancel, and that 
equation becomes much simpler: 

\A - 
d2A 
dt2 

J 
e0c2 

(18.24) 

And our equation for 0—Eq. (18.21)—takes on the same form: 

d20 
€0 

(18.25) 

What a beautiful set of equations! They are beautiful, first, because they are 
nicely separated—with the charge density, goes 0; with the current, goes A. Further¬ 
more, although the left side looks a little funny—a Laplacian together with a 
(d/dt)2—when we unfold it we see 

a20 . a20 . a20 l a20 ^ 
dx2 + dy2 + dz2 c2 dt2 ~ €0 

(18.26) 

It has a nice symmetry in x, y, z, t—the — 1/c2 is necessary because, of course, 
time and space are different; they have different units. 

Maxwell’s equations have led us to a new kind of equation for the potentials 
0 and A but to the same mathematical form for all four functions 0, Ax, Ayi and 
Az. Once we learn how to solve these equations, we can get B and E from 
V X A and — V0 — dA/dt. We have another form of the electromagnetic laws 
exactly equivalent to Maxwell’s equations, and in many situations they are much 
simpler to handle. 

We have, in fact, already solved an equation much like Eq. (18.26). When 
we studied sound in Chapter 47 of Vol. I, we had an equation of the form 

d2<f> _ 1 d2<t> 
dx2 c2 dt2 

and we saw that it described the propagation of waves in the x-direction at the 
speed c. Equation (18.26) is the corresponding wave equation for three dimensions. 
So in regions where there are no longer any charges and currents, the solution of 
these equations is not that 0 and A are zero. (Although that is indeed one possible 
solution.) There are solutions in which there is some set of <j> and A which are 
changing in time but always moving out at the speed c. The fields travel onward 
through free space, as in our example at the beginning of the chapter. 

With Maxwell’s new term in Eq. IV, we have been able to write the field equa¬ 
tions in terms of A and 0 in a form that is simple and that makes immediately 
apparent that there are electromagnetic waves. For many practical purposes, it 
will still be convenient to use the original equations in terms of E and B. But 
they are on the other side of the mountain we have already climbed. Now we are 
ready to cross over to the other side of the peak. Things will look different—we are 
ready for some new and beautiful views. 

* Choosing the V * A is called “choosing a gauge/* Changing A by adding V0 is called 
a “gauge transformation.” Equation (18.23) is called “the Lorentz gauge.” 
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The Principle of Least Action 

A special lecture—almost verbatim* 

“When I was in high school, my physics teacher—whose name was Mr. Bader 
—called me down one day after physics class and said, ‘You look bored; I want to 
tell you something interesting.’ Then he told me something which I found ab¬ 
solutely fascinating, and have, since then, always found fascinating. Every time 
the subject comes up, I work on it. In fact, when I began to prepare this lecture 
I found myself making more analyses on the thing. Instead of worrying about the 
lecture, I got involved in a new problem. The subject is this—the principle of 
least action. 

“Mr. Bader told me the following: Suppose you have a particle (in a gravita¬ 
tional field, for instance) which starts somewhere and moves to some other point 
by free motion—you throw it, and it goes up and comes down, 

It goes from the original place to the final place in a certain amount of time. Now, 
you try a different motion. Suppose that to get from here to there, it went like this 

» 
but got there in just the same amount of time. Then he said this: If you calculate 
the kinetic energy at every moment on the path, take away the potential energy, 
and integrate it over the time during the whole path, you’ll find that the number 
you’ll get is bigger than that for the actual motion. 

* Later chapters do not depend on the material of this special lecture—which is in¬ 
tended to be for “entertainment.” 
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“In other words, the laws of Newton could be stated not in the form F = ma 
but in the form: the average kinetic energy less the average potential energy is as 
little as possible for the path of an object going from one point to another. 

“Let me illustrate a little bit better what it means. If you take the case of the 
gravitational field, then if the particle has the path x(t) (let’s just take one dimension 
for a moment; we take a trajectory that goes up and down and not sideways), 
where x is the height above the ground, the kinetic energy is \m (dx/dt)2, and the 
potential energy at any time is mgx. Now I take the kinetic energy minus the 
potential energy at every moment along the path and integrate that with respect 
to time from the initial time to the final time. Let’s suppose that at the original 
time ti we started at some height and at the end of the time t2 we are definitely 
ending at some other place. 

“Then the integral is 

L, i}" (i)2 -"**]* 
The actual motion is some kind of a curve—it’s a parabola if we plot against the 
time—and gives a certain value for the integral. But we could imagine some other 
motion that went very high and came up and down in some peculiar way. 

.■■■ » 

We can calculate the kinetic energy minus the potential energy and integrate for 
such a path... or for any other path we want. The miracle is that the true path is 
the one for which that integral is least. 

“Let's try it out. First, suppose we take the case of a free particle for which 
there is no potential energy at all. Then the rule says that in going from one point 
to another in a given amount of time, the kinetic energy integral is least, so it must 
go at a uniform speed. (We know that’s the right answer—to go at a uniform speed.) 
Why is that? Because if the particle were to go any other way, the velocities would 
be sometimes higher and sometimes lower than the average. The average velocity 
is the same for every case because it has to get from ‘here’ to ‘there’ in a given 
amount of time. 

“As an example, say your job is to start from home and get to school in a given 
length of time with the car. You can do it several ways: You can accelerate like 
mad at the beginning and slow down with the brakes near the end, or you can go 
at a uniform speed, or you can go backwards for a while and then go forward, 
and so on. The thing is that the average speed has got to be, of course, the total 
distance that you have gone over the time. But if you do anything but go at a uni¬ 
form speed, then sometimes you are going too fast and sometimes you are going 
too slow. Now the mean square of something that deviates around an average, as 
you know, is always greater than the square of the mean; so the kinetic energy 
integral would always be higher if you wobbled your velocity than if you went at a 
uniform velocity. So we see that the integral is a minimum if the velocity is a 
constant (when there are no forces). The correct path is like this. 

“Now, an object thrown up in a gravitational field does rise faster first and 
then slow down. That is because there is also the potential energy, and we must 
have the least difference of kinetic and potential energy on the average. Because 
the potential energy rises as we go up in space, we will get a lower difference if we 
can get as soon as possible up to where there is a high potential energy. Then we 
can take that potential away from the kinetic energy and get a lower average. So 
it is better to take a path which goes up and gets a lot of negative stuff from the 
potential energy. 

“On the other hand, you can’t go up too fast, or too far, because you will then 
have too much kinetic energy involved—you have to go very fast to get way 
up and come down again in the fixed amount of time available. So you don’t want 
to go too far up, but you want to go up some. So it turns out that the solution is 
some kind of balance between trying to get more potential energy with the least 
amount of extra kinetic energy—trying to get the difference, kinetic minus the 
potential, as small as possible. 

19-2 



“That is all my teacher told me, because he was a very good teacher and knew 
when to stop talking. But I don’t know when to stop talking. So instead of leaving 
it as an interesting remark, I am going to horrify and disgust you with the complexi¬ 
ties of life by proving that it is so. The kind of mathematical problem we will 
have is very difficult and a new kind. We have a certain quantity which is called 
the action, S. It is the kinetic energy, minus the potential energy, integrated over 
time. 

Action = 5 = f‘2 (KE - PE) dt. 
Jtx 

Remember that the PE and KE are both functions of time. For each different 
possible path you get a different number for this action. Our mathematical problem 
is to find out for what curve that number is the least. 

“You say—Oh, that’s just the ordinary calculus of maxima and minima. 
You calculate the action and just differentiate to find the minimum. 

“But watch out. Ordinarily we just have a function of some variable, and we 
have to find the value of that variable where the function is least or most. For 
instance, we have a rod which has been heated in the middle and the heat is spread 
around. For each point on the rod we have a temperature, and we must find the 
point at which that temperature is largest. But now for each path in space we have 
a number—quite a different thing—and we have to find the path in space for which 
the number is the minimum. That is a completely different branch of mathematics. 
It is not the ordinary calculus. In fact, it is called the calculus of variations. 

“There are many problems in this kind of mathematics. For example, the 
circle is usually defined as the locus of all points at a constant distance from a 
fixed point, but another way of defining a circle is this: a circle is that curve of 
given length which encloses the biggest area. Any other curve encloses less area for 
a given perimeter than the circle does. So if we give the problem: find that curve 
which encloses the greatest area for a given perimeter, we would have a problem 
of the calculus of variations—a different kind of calculus than you’re used to. 

“So we make the calculation for the path of an object. Here is the way we 
are going to do it. The idea is that we imagine that there is a true path and that 
any other curve we draw is a false path, so that if we calculate the action for the 
false path we will get a value that is bigger than if we calculate the action for the 
true path. 

“Problem: Find the true path. Where is it? One way, of course, is to calculate 
the action for millions and millions of paths and look at which one is lowest. 
When you find the lowest one, that’s the true path. 

“That’s a possible way. But we can do it better than that. When we have a 
quantity which has a minimum—for instance, in an ordinary function like the 
temperature—one of the properties of the minimum is that if we go away from the 
minimum in the first order, the deviation of the function from its minimum value 
is only second order. At any place else on the curve, if we move a small distance 
the value of the function changes also in the first order. But at a minimum, a tiny 
motion away makes, in the first approximation, no difference. 

“That is what we are going to use to calculate the true path. If we have the 
true path, a curve which differs only a little bit from it will, in the first approxima¬ 
tion, make no difference in the action. Any difference will be in the second 
approximation, if we really have a minimum. 

“That is easy to prove. If there is a change in the first order when I deviate 
the curve a certain way, there is a change in the action that is proportional to the 
deviation. The change presumably makes the action greater; otherwise we haven’t 
got a minimum. But then if the change is proportional to the deviation, reversing 
the sign of the deviation will make the action less. We would get the action to 
increase one way and to decrease the other way. The only way that it could really 
be a minimum is that in the first approximation it doesn’t make any change, that 
the changes are proportional to the square of the deviations from the true path. 
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“So we work it this way: We call x(f) (with an underline) the true path—the 

one we are trying to find. We take some trial path *(/) that differs from the true 
path by a small amount which we will call ??(;) (eta of /). 

“Now the idea is that if we calculate the action S for the path x(f), then the 
difference between that S and the action that we calculated for the path x(0—to 

simplify the writing we can call it S—the difference of S and S must be zero in 

the first-order approximation of small 17. It can differ in the second order, but 
in the first order the difference must be zero. 

“And that must be true for any 77 at all. Well, not quite. The method doesn’t 
mean anything unless you consider paths which all begin and end at the same two 
points—each path begins at a certain point at ti and ends at a certain other point 
at *2» and those points and times are kept fixed. So the deviations in our 17 have to 
be zero at each end, rj(ti) — 0 arid 77(^2) = 0. With that condition, we have speci¬ 
fied our mathematical problem. 

“If you didn’t know any calculus, you might do the same kind of thing to 
find the minimum of an ordinary function f(x). You could discuss what happens 
if you take f(x) and add a small amount h to x and argue that the correction to f(x) 
in the first order in h must be zero at the minimum. You would substitute x + h 
for x and expand out to the first order in h ... just as we are going to do with 77. 

“The idea is then that we substitute x(t) = x(t) + tj(/) in the formula for 
the action: 

where I call the potential energy V(x). The derivative dx/dt is, of course, the 
derivative of x(t) plus the derivative of 77(f), so for the action I get this expression: 

“Now I must write this out in more detail. For the squared term I get 

But wait. I’m not worrying about higher than the first order, so I will take all the 
terms which involve 172 and higher powers and put them in a little box called 
‘second and higher order.' From this term I get only second order, but there will 
be more from something else. So the kinetic energy part is 

J (jf) + m itt lit (second and hiSher order)- 

“Now we need the potential V at x + 17. I consider 77 small, so I can write 

V(x) as a Taylor series. It is approximately V(x); in the next approximation 

(from the ordinary nature of derivatives) the correction is 77 times the rate of change 
of V with respect to x, and so on: 

VQc + v) = V(x) + vV(x) + £ V"(x) + ■■■ 

I have written V' for the derivative of V with respect to x in order to save writing. 
The term in rj2 and the ones beyond fall into the ‘second and higher order’ category 
and we don’t have to worry about them. Putting it all together, 

v^ + m§w 
— yV'(x) + (second and higher order) dt. 
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Now if we look carefully at the thing, we see that the first two terms which I have 
arranged here correspond to the action 5 that I would have calculated with the 

true path x. The thing I want to concentrate on is the change in 5—the difference 

between the 5 and the 5 that we would get for the right path. This difference we 

will write as 55, called the variation in 5. Leaving out the ‘second and higher 
order’ terms, I have for 55 

“Now the problem is this: Here is a certain integral. I don’t know what the 
x is yet, but I do know that no matter what tj is, this integral must be zero. Well, 

you think, the only way that that can happen is that what multiplies 77 must be 
zero. But what about the first term with drj/dtl Well, after all, if tj can be anything 
at all, its derivative is anything also, so you conclude that the coefficient of dy/dt 
must also be zero. That isn’t quite right. It isn’t quite right because there is a 
connection between ij and its derivative; they are not absolutely independent, 
because 17(f) must be zero at both tx and /2- 

“The method of solving all problems in the calculus of variations always uses 
the same general principle. You make the shift in the thing you want to vary 
(as we did by adding 77); you look at the first-order terms; then you always arrange 
things in such a form that you get an integral of the form ‘some kind of stuff times 
the shift (77)/ but with no other derivatives (no dy/dt). It must be rearranged so it 
is always ‘something’ times 77. You will see the great value of that in a minute. 
(There are formulas that tell you how to do this in some cases without actually 
calculating, but they are not general enough to be worth bothering about; the best 
way is to calculate it out this way.) 

“How can I rearrange the term in di\/dt to make it have an 77? I can do that 
by integrating by parts. It turns out that the whole trick of the calculus of variations 
consists of writing down the variation of 5 and then integrating by parts so that 
the derivatives of 77 disappear. It is always the same in every problem in which 
derivatives appear. 

“You remember the general principle for integrating by parts. If you have 
any function / times dij/dt integrated with respect to /, you write down the derivative 

of 17/: 

d * /.v df . . dif 
Jt(vf)= nTt + fTt- 

The integral you want is over the last term, so 

ff^d,= 
“In our formula for 55, the function /is m times dx/dt; therefore, I have the 

following formula for 55. 

SS = m 4= v(0 CHS)***- 
The first term must be evaluated at the two limits f 1 and t2. Then I must have the 
integral from the rest of the integration by parts. The last term is brought down 
without change. 

“Now comes something which always happens—the integrated part disappears. 
(In fact, if the integrated part does not disappear, you restate the principle, adding 
conditions to make sure it does!) We have already said that 77 must be zero at both 
ends of the path, because the principle is that the action is a minimum provided 
that the varied curve begins and ends at the chosen points. The condition is that 
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ri(t i) = 0, and rj(t2) = 0. So the integrated term is zero. We collect the other 
terms together and obtain this: 

AS-/ [-mSf “ *"(£)]*«*. 

The variation in S is now the way we wanted it—there is the stuff in brackets, say 
F, all multiplied by 77(f) and integrated from ti to f2. 

“We have that an integral of something or other times 77(f) is always zero: 

Jf(0 v(t) dt = o. 

I have some function of t; I multiply it by 77(f); and I integrate it from one end to 
the other. And no matter what the 77 is, I get zero. That means that the function 
F(t) is zero. That’s obvious, but anyway I’ll show you one kind of proof. 

“Suppose that for r)(t) I took something which was zero for all t except right 
near one particular value. It stays zero until it gets to this t, 

then it blips up for a moment and blips right back down. When we do the integral 
of this rj times any function F, the only place that you get anything other than zero 
was where 17(f) was blipping, and then you get the value of F at that place times the 
integral over the blip. The integral over the blip alone isn’t zero, but when multi¬ 
plied by F it has to be; so the function F has to be zero where the blip was. But 
the blip was anywhere I wanted to put it, so F must be zero everywhere. 

“We see that if our integral is zero for any 77, then the coefficient of r\ must be 
zero. The action integral will be a minimum for the path that satisfies this compli¬ 
cated differential equation: 

It’s not really so complicated; you have seen it before. It is just F — ma. The first 
term is the mass times acceleration, and the second is the derivative of the potential 
energy, which is the force. 

“So, for a conservative system at least, we have demonstrated that the principle 
of least action gives the right answer; it says that the path that has the minimum 
action is the one satisfying Newton’s law. 

“One remark: I did not prove it was a minimum—maybe it’s a maximum. In 
fact, it doesn’t really have to be a minimum. It is quite analogous to what we found 
for the ‘principle of least time’ which we discussed in optics. There also, we said 
at first it was ‘least* time. It turned out, however, that there were situations in which 
it wasn’t the least time. The fundamental principle was that for any first-order 
variation away from the optical path, the change in time was zero; it is the same 
story. What we really mean by ‘least’ is that the first-order change in the value 
of 5, when you change the path, is zero. It is not necessarily a ‘minimum.’ 

“Next, I remark on some generalizations. In the first place, the thing can be 
done in three dimensions. Instead of just x, I would have x, y, and z as functions 
of f; the action is more complicated. For three-dimensional motion, you have to 
use the complete kinetic energy—(m/2) times the whole velocity squared. That is, 

Also, the potential energy is a function of x, y, and z. And what about the path? 
The path is some general curve in space, which is not so easily drawn, but the idea 
is the same. And what about the 77? Well, 77 can have three components. You 
could shift the paths in x, or in y, or in z—or you could shift in all three directions 
simultaneously. So 77 would be a vector. This doesn’t really complicate things too 
much, though. Since only the first-order variation has to be zero, we can do the 
calculation by three successive shifts. We can shift 77 only in the x-direction and 

19-6 



say that coefficient must be zero. We get one equation. Then we shift it in the 
y-direction and get another. And in the z-direction and get another. Or, of course, 
in any order that you want. Anyway, you get three equations. And, of course, 
Newton’s law is really three equations in the three dimensions—one for each com¬ 
ponent. I think that you can practically see that it is bound to work, but we will 
leave you to show for yourself that it will work for three dimensions. Incidentally, 
you could use any coordinate system you want, polar or otherwise, and get Newton’s 
laws appropriate to that system right off by seeing what happens if you have the 
shift ij in radius, or in angle, etc. 

“Similarly, the method can be generalized to any number of particles. If you 
have, say, two particles with a force between them, so that there is a mutual 
potential energy, then you just add the kinetic energy of both particles and take 
the potential energy of the mutual interaction. And what do you vary? You 
vary the paths of both particles. Then, for two particles moving in three dimensions, 
there are six equations. You can vary the position of particle 1 in the x-direction, 
in the ^-direction, and in the z-direction, and similarly for particle 2; so there are 
six equations. And that’s as it should be. There are the three equations that deter¬ 
mine the acceleration of particle 1 in terms of the force on it and three for the ac¬ 
celeration of particle 2, from the force on it. You follow the same game through, 
and you get Newton's law in three dimensions for any number of particles. 

“I have been saying that we get Newton’s law. That is not quite true, because 
Newton’s law includes nonconservative forces like friction. Newton said that ma 
is equal to any F. But the principle of least action only works for conservative 
systems—where all forces can be gotten from a potential function. You know, 
however, that on a microscopic level—on the deepest level of physics—there are 
no nonconservative forces. Nonconservative forces, like friction, appear only be¬ 
cause we neglect microscopic complications—there are just too many particles to 
analyze. But the fundamental laws can be put in the form of a principle of least 
action. 

“Let me generalize still further. Suppose we ask what happens if the particle 
moves relativistically. We did not get the right relativistic equation of motion; 
F = ma is only right nonrelativistically. The question is: Is there a corresponding 
principle of least action for the relativistic case? There is. The formula in the case 
of relativity is the following: 

S = —m0c2 [h VI — v2/c2 dt — q [h y, z, /) — v * A(x, y, z, 0] dt. 
Jtx Jtx 

The first part of the action integral is the rest mass m0 times c2 times the integral 
of a function of velocity, yT — v2/c2. Then instead of just the potential energy, 
we have an integral over the scalar potential <f> and over v times the vector potential 
A. Of course, we are then including only electromagnetic forces. All electric and 
magnetic fields are given in terms of 0 and A. This action function gives the com¬ 
plete theory of relativistic motion of a single particle in an electromagnetic field. 

“Of course, wherever I have written v, you understand that before you try to 
figure anything out, you must substitute dx/dt for vx and so on for the other com¬ 
ponents. Also, you put the point along the path at time t, x(i),y(t), z(t) where I wrote 
simply x, y, z. Properly, it is only after you have made those replacements for the 
v’s that you have the formula for the action for a relativistic particle. I will leave 
to the more ingenious of you the problem to demonstrate that this action formula 
does, in fact, give the correct equations of motion for relativity. May I suggest 
you do it first without the A, that is, for no magnetic field? Then you should get 
the components of the equation of motion, dp/dt = —q where, you remember, 

p = mv/V 1 — W/c2. 
“It is much more difficult to include also the case with a vector potential. 

The variations get much more complicated. But in the end, the force term does 
come out equal to q(E + v X B), as it should. But I will leave that for you to 
play with. 

“I would like to emphasize that in the general case, for instance in the rela¬ 
tivistic formula, the action integrand no longer has the form of the kinetic energy 
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minus the potential energy. That’s only true in the nonrelativistic approximation. 
For example, the term m0c2\/l- — v2/c2 is not what we have called the kinetic 
energy. The question of what the action should be for any particular case must 
be determined by some kind of trial and error. It is just the same problem as deter¬ 
mining what are the laws of motion in the first place. You just have to fiddle around 
with the equations that you know and see if you can get them into the form of the 
principle of least action. 

“One other point on terminology. The function that is integrated over time 
to get the action S' is called the Lagrangian, <£, which is a function only of the 
velocities and positions of particles. So the principle of least action is also written 

S = [‘2 £(Xi, Vi) dt, 
Jti 

where by Xi and vt are meant all the components of the positions and velocities. 
So if you hear someone talking about the ‘Lagrangian,’ you know they are talking 
about the function that is used to find S. For relativistic motion in an electro¬ 
magnetic field 

£ = — mi}c2x/\ — vVc2 — q(<t> + v ■ A). 

“Also, I should say that S is not really called the ‘action’ by the most precise 
and pedantic people. It is called ‘Hamilton’s first principal function.’ Now I hate 
to give a lecture on ‘the-principle-of-least-Hamilton’s-first-principal-fimction.’ 
So I call it ‘the action.’ Also, more and more people are calling it the action. You 
see, historically something else which is not quite as useful was called the action, 
but I think it’s more sensible to change to a newer definition. So now you too 
will call the new function the action, and pretty soon everybody will call it by that 
simple name. 

“Now I want to say some things on this subject which are similar to the dis¬ 
cussions I gave about the principle of least time. There is quite a difference in the 
characteristic of a law which says a certain integral from one place to another is a 
minimum—which tells something about the whole path—and of a law which says 
that as you go along, there is a force that makes it accelerate. The second way tells 
how you inch your way along the path, and the other is a grand statement about the 
whole path. In the case of light, we talked about the connection of these two. 
Now, I would like to explain why it is true that there are differential laws when 
there is a least action principle of this kind. The reason is the following: Consider 
the actual path in space and time. As before, let’s take only one dimension, so 
we can plot the graph of x as a function of /. Along the true path, S is a minimum. 
Let’s suppose that we have the true path and that it goes through some point a 
in space and time, and also through another nearby point b. 

Now if the entire integral from ti to t2 is a minimum, it is also necessary that the 
integral along the little section from a to b is also a minimum. It can’t be that the 
part from a to b is a little bit more. Otherwise you could just fiddle with just that 
piece of the path and make the whole integral a little lower. 

“So every subsection of the path must also be a minimum. And this is true 
no matter how short the subsection. Therefore, the principle that the whole path 
gives a minimum can be stated also by saying that an infinitesimal section of path 
also has a curve such that it has a minimum action. Now if we take a short enough 
section of path—between two points a and b very close together—how the potential 
varies from one place to another far away is not the important thing, because you 
are staying almost in the same place over the whole little piece of the path. The 
only thing that you have to discuss is the first-order change in the potential. The 
answer can only depend on the derivative of the potential and not on the potential 
everywhere. So the statement about the gross property of the whole path becomes 
a statement of what happens for a short section of the path—a differential statement. 
And this differential statement only involves the derivatives of the potential, that 
is, the force at a point. That’s the qualitative explanation of the relation between 
the gross law and the differential law. 
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"In the case of light we also discussed the question: How does the particle 
find the right path? From the differential point of view, it is easy to understand. 
Every moment it gets an acceleration and knows only what to do at that instant. 
But all your instincts on cause and effect go haywire when you say that the particle 
decides to take the path that is going to give~the minimum action. Does it ‘smell’ 
the neighboring paths to find out whether or not they have more action? In the 
case of light, when we put blocks in the way so that the photons could not test all 
the paths, we found that they couldn’t figure out which way to go, and we had the 
phenomenon of diffraction. 

“Is the same thing true in mechanics? Is it true that the particle doesn’t just 
‘take the right path’ but that it looks at all the other possible trajectories? And if 
by having things in the way, we don’t let it look, that we will get an analog of 
diffraction? The miracle of it all is, of course, that it does just that. That’s what 
the laws of quantum mechanics say. So our principle of least action is incom¬ 
pletely stated. It isn’t that a particle takes the path of least action but that it 
smells all the paths in the neighborhood and chooses the one that has the least 
action by a method analogous to the one by which light chose the shortest time. 
You remember that the way light chose the shortest time was this: If it went on a 
path that took a different amount of time, it would arrive at a different phase. And 
the total amplitude at some point is the sum of contributions of amplitude for all 
the different ways the light can arrive. All the paths that give wildly different 
phases don’t add up to anything. But if you can find a whole sequence of paths 
which have phases almost all the same, then the little contributions will add up and 
you get a reasonable total amplitude to arrive. The important path becomes the 
one for which there are many nearby paths which give the same phase. 

“It is just exactly the same thing for quantum mechanics. The complete 
quantum mechanics (for the nonrelativistic case and neglecting electron spin) 
works as follows: The probability that a particle starting at point 1 at the time 11 

will arrive at point 2 at the time t2 is the square of a probability amplitude. The 
total amplitude can be written as the sum of the amplitudes for each possible path— 
for each way of arrival. For every x(t) that we could have—for every possible 
imaginary trajectory—we have to calculate an amplitude. Then we add them all 
together. What do we take for the amplitude for each path? Our action integral 
tells us what the amplitude for a single path ought to be. The amplitude is pro¬ 
portional to some constant times eiS^n9 where S is the action for that path. That 
is, if we represent the phase of the amplitude by a complex number, the phase angle 
is S/h. The action S has dimensions of energy times time, and Planck’s constant h 
has the same dimensions. It is the constant that determines when quantum me¬ 
chanics is important. 

“Here is how it works: Suppose that for all paths, S is very large compared to 
h. One path contributes a certain amplitude. For a nearby path, the phase is quite 
different, because with an enormous Seven a small change in Smeans a completely 
different phase—because h is so tiny. So nearby paths will normally cancel their 
effects out in taking the sum—except for one region, and that is when a path and 
a nearby path all give the same phase in the first approximation (more precisely, 
the same action within h). Only those paths will be the important ones. So in the 
limiting case in which Planck’s constant h goes to zero, the correct quantum- 
mechanical laws.can be summarized by simply saying: ‘Forget about all these 
probability amplitudes. The particle does go on a special path, namely, that one for 
which S does not vary in the first approximation.’ That’s the relation between the 
principle of least action and quantum mechanics. The fact that quantum mechanics 
can be formulated in this way was discovered in 1942 by a student of that same 
teacher, Bader, I spoke of at the beginning of this lecture. [Quantum mechanics 
was originally formulated by giving a differential equation for the amplitude 
(Schrodinger) and also by some other matrix mathematics (Heisenberg).] 

“Now I want to talk about other minimum principles in physics. There are 
many very interesting ones. I will not try to list them all now but will only describe 
one more. Later on, when we come to a physical phenomenon which has a nice 
minimum principle, I will tell about it then. I want now to show that we can de- 
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scribe electrostatics, not by giving a differential equation for the field, but by saying 
that a certain integral is a maximum or a minimum. First, let's take the case where 
the charge density is known everywhere, and the problem is to find the potential 0 

everywhere in space. You know that the answer should be 

V2* = -p/e o- 

But another way of stating the same thing is this: Calculate the integral £/*, where 

U* = § fivtfdv- Jp4>dV, 

which is a volume integral to be taken over all space. This thing is a minimum 
for the correct potential distribution <f>(x, y, z). 

“We can show that the two statements about electrostatics are equivalent. 
Let's suppose that we pick any function 4>. We want to show that when we take 
for 4> the correct potential <£, plus a small deviation /, then in the first order, the 

change in U* is zero. So we write 

4> = + /• 

The <i> is what we are looking for, but we are making a variation of it to find what 

it has to be so that the variation of U* is zero to first order. For the first part of 
U*, we need 

(V*)2 = (V*)2 + 2 V<£ • V/ + (V/)2. 

The only first-order term that will vary is 

2 

In the second term of the quantity f/*, the integrand is 

(*t> = p$ + pf, 

whose variable part is pf. So, keeping only the variable parts, we need the integral 

AC/* = J(«0V£ Vf-pf) dV. 

“Now, following the old general rule, we have to get the darn thing all clear 
of derivatives of /. Let's look at what the derivatives are. The dot product is 

B± Bf d|d/ 

dx dx dy By Bz Bz * 

which we have to integrate with respect to x, to y, and to z. Now here is the trick: 
to get rid of Bf/Bx we integrate by parts with respect to x. That will carry the 
derivative over onto the <£. It’s the same general idea we used to get rid of derivatives 

with respect to t. We use the equality 

/ df d _ r^_ 
Bx Bx™ ~ J Bx / 

* j 

The integrated term is zero, since we have to make/ zero at infinity. (That corre¬ 
sponds to making 17 zero at rx and So our principle should be more accurately 
stated: U* is less for the true <j> than for any other <f>(x, y, z) having the same values 
at infinity.) Then we do4he same thing for y and z. So our integral AU* is 

(—<0V2<£ - p)fdV. 
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In order for this variation to be zero for any /, no matter what, the coefficient of 
/ must be zero and, therefore, 

V2*-p/60. 

We get back our old equation. So our ‘minimum* proposition is correct. 
“We can generalize our proposition if we do our algebra in a little different 

way. Let’s go back and do our integration by parts without taking components. 
We start by looking at the following equality: 

V • (/V0) = V/- V</> + fv% 

If I differentiate out the left-hand side, I can show that it is just equal to the right- 
hand side. Now we can use this equation to integrate by parts. In our integral AU*, 
we replace —* VfbyfV2# — V * (/V<£), which gets integrated over volume. 

The divergence term integrated over volume can be replaced by a surface integral: 

f ? - (fV4>)dV = ffr£-nda. 

Since we are integrating over all space, the surface over which we are integrating is 
at infinity. There,/is zero and we get the same answer as before. 

“Only now we see how to solve a problem when we don't know where all the 
charges are. Suppose that we have conductors with charges spread out on them in 
some way. We can still use our minimum principle if the potentials of all the 
conductors are fixed. We carry out the integral for U* only in the space outside 
of all conductors. Then, since we can’t vary <f> on the conductor, / is zero on all 
those surfaces, and the surface integral 

JfX±-nda 

is still zero. The remaining volume integral 

Alf - f (-«oV20 - p±)fdV 

is only to be carried out in the spaces between conductors. Of course, we get 
Poisson’s equation again, 

V24>-P/to- 

So we have shown that our original integral U* is also a minimum if we evaluate 
it over the space outside of conductors all at fixed potentials (that is, such that any 
trial 4>(x, y, z) must equal the given potential of the conductors when x, y, z is a 
point on the surface of a conductor). 

“There is an interesting case when the only charges are on conductors. Then 

if = ^ fivtfdv. 

Our minimum principle says that in the case where there are conductors set at 
certain given potentials, the potential between them adjusts itself so that integral 
U* is least. What is this integral? The term V<f> is the electric field, so the integral 
is the electrostatic energy. The true field is the one, of all those coming from the 
gradient of a potential, with the minimum total energy. 

“I would like to use this result to calculate something particular to show you 
that these things are really quite practical. Suppose I take two conductors in the 
form of a cylindrical condenser. 

The inside conductor has the potential K, and the outside is at the potential zero. 
Let the radius of the inside conductor be a and that of the outside, h. Now we can 
suppose any distribution of potential between the two. If we use the correct <£, 

and calculate e0/2f (V<£)2 dV, it should be the energy of the system, \CV2. 
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So we can also calculate C by our principle. But if we use a wrong distribution of 
potential and try to calculate the capacity C by this method, we will get a capacity 
that is too big, since V is specified. Any assumed potential <f> that is not the exactly 
correct one will give a fake C that is larger than the correct value. But if my false 
4> is any rough approximation, the C will be a good approximation, because the 
error in C is second order in the error in <t>. 

“Suppose I don’t know the capacity of a cylindrical condenser. I can use this 
principle to find it. I just guess at the potential function 4> until I get the lowest C. 
Suppose, for instance, I pick a potential that corresponds to a constant field. (You 
know, of course, that the field isn’t really constant here; it varies as 1/r.) A field 
which is constant means a potential which goes linearly with distance. To fit the 
conditions at the two conductors, it must be 

This function is K at r = a, zero at r = b, and in between has a constant slope 
equal to — V/(b — a). So what one does to find the integral U* is multiply the 
square of this gradient by e0/2 and integrate over all volume. Let’s do this cal¬ 
culation for a cylinder of unit length. A volume element at the radius r is 27rr dr. 
Doing the integral, I find that my first try at the capacity gives 

3 CK2(first try) = § £ 2*r dr. 

The integral is easy; it is just 

So I have a formula for the capacity which is not the true one but is an approximate 
job: 

C   b a 
27T€0 2 (b — a) 

It is, naturally, different from the correct answer C = 2ire0/hi(b/a)s but it’s not 
too bad. Let’s compare it with the right answer for several values of b/a. I have 
computed out the answers in this table: 

b 

a 
Ctrue 

2?T€0 

C (first approx.) 

2t€q 

2 1.4423 1.500 
4 0.721 0.833 

10 0.434 0.612 
100 0.267 0.51 

1.5 2.4662 2.50 
1.1 10.492070 10.500000 

Even when b/a is as big as 2—which gives a pretty big variation in the field com¬ 
pared with a linearly varying field—I get a pretty fair approximation. The answer 
is, of course, a little too high, as expected. The thing gets much worse if you have 
a tiny wire inside a big cylinder. Then the field has enormous variations and if you 
represent it by a constant, you’re not doing very well. With b/a — 100, we’re off 
by nearly a factor of two. Things are much better for small b/a. To take the op¬ 
posite extreme, when the conductors are not very far apart—say b/a = 1.1—then 
the constant field is a pretty good approximation, and we get the correct value for 
C to within a tenth of a percent. 

“Now I would like to tell you how to improve such a calculation. (Of course, 
you know the right answer for the cylinder, but the method is the same for some 
other odd shapes, where you may not know the right answer.) The next step is to 
try a better approximation to the unknown true <t>. For example, we might try a 
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constant plus an exponential 4>, etc. But how do you know when you have a better 
approximation unless you know the true <f>l Answer: You calculate C; the lowest 
Cis the value nearest the truth. Let us try this idea out. Suppose that the potential 
is not linear but say quadratic in r—that the electric field is not constant but linear. 
The most general quadratic form that fits <f> = 0 at r = b and <f> = V at r = a is 

where a is any constant number. This formula is a little more complicated. It 
involves a quadratic term in the potential as well as a linear term. It is very easy 
to get the field out of it. The field is just 

E « 
d<f> 
dr 

aV 
b — a 

+ 2(1 + a) 0r - a)V 
<P - a)2 * 

Now we have to square this and integrate over volume. But wait a moment. What 
should I take for a? I can take a parabola for the </>; but what parabola? Here’s 
what I do: Calculate the capacity with an arbitrary a. What I get is 

C 

2xe0 
+ 

It looks a little complicated, but it comes out of integrating the square of the field. 
Now I can pick my a. I know that the truth lies lower than anything that I am 
going to calculate, so whatever I put in for a is going to give me an answer too big. 
But if I keep playing with a and get the lowest possible value I can, that lowest 
value is nearer to the truth than any other value. So what I do next is to pick the 
a that gives the minimum value for C. Working it out by ordinary calculus, I get 
that the minimum C occurs for a = —2b/(b + a). Substituting that value into 
the formula, I obtain for the minimum capacity 

C _ b2 + 4ab + a2 
2tt€0 3(62 - a2) 

“I’ve worked out what this formula gives for C for various values of b/a. I 
call these numbers C(quadratic). Here is a table that compares C(quadratic) 
with the true C 

b 

a 
Ctrue 

2tt€o 

C (quadratic) 

2ire o 

2 1.4423 1.444 
4 0.721 0.733 

10 0.434 0.475 
100 0.267 0.346 

1.5 2.4662 2.4667 
1.1 10.492070 10.492065 

“For example, when the ratio of the radii is 2 to 1,1 have 1.444, which is a 
very good approximation to the true answer, 1.4423. Even for larger b/af it stays 
pretty good—it is much, much better than the first approximation. It is even fairly 
good—only off by 10 percent—when b/a is 10 to 1. But when it gets to be 100 to 1— 
well, things begin to go wild. I get that C is 0.346 instead of 0.267. On the other 
hand, for a ratio of radii of 1.5, the answer is excellent; and for a b/a of 1.1, the 
answer comes out 10.492065 instead of 10.492070. Where the answer should be 
good, it is very, very good. 

“I have given these examples, first, to show the theoretical value of the princi¬ 
ples of minimum action and minimum principles in general and, second, to show 
their practical utility—not just to calculate a capacity when we already know the 
answer. For any other shape, you can guess an approximate field with some 
unknown parameters like a and adjust them to get a minimum. You will get ex¬ 
cellent numerical results for otherwise intractable problems.” 
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A note added after the lecture 

“I should like to add something that I didn’t have time for in the lecture. 
(I always seem to prepare more than I have time to tell about.) As I mentioned 
earlier, I got interested in a problem while working on this lecture. I want to tell 
you what that problem is. Among the minimum principles that I could mention, 
1 noticed that most of them sprang in one way or another from the least action 
principle of mechanics and electrodynamics. But there is also a class that does not. 
As an example, if currents are made to go through a piece of material obeying 
Ohm's law, the currents distribute themselves inside the piece so that the rate at 
which heat is generated is as little as possible. Also we can say (if things are kept 
isothermal) that the rate at which energy is generated is a minimum. Now, this 
principle also holds, according to classical theory, in determining even the dis¬ 
tribution of velocities of the electrons inside a metal which is carrying a current. 
The distribution of velocities is not exactly the equilibrium distribution [Chapter 
40, Vol. I; Eq. (40.6)] because they are drifting sideways The new distribution 
can be found from the principle that it is the distribution for a given current for 
which the entropy developed per second by collisions is as small as possible. The 
true description of the electrons’ behavior ought to be by quantum mechanics, 
however. The question is: Does the same principle of minimum entropy generation 
also hold when the situation is described quantum-mechanically? I haven’t found 
out yet. 

“The question is interesting academically, of course. Such principles are 
fascinating, and it is always worth while to try to see how general they are. But 
also from a more practical point of view, I want to know. I, with some colleagues, 
have published a paper in which we calculated by quantum mechanics approxi¬ 
mately the electrical resistance felt by an electron moving through an ionic crystal 
like NaCl. [Feynman, Hellworth, Iddings, and Platzman, “Mobility of Slow 
Electrons in a Polar Crystal,” Phys Rev. 127, 1004 (1962).] But if a minimum 
principle existed, we could use it to make the results much more accurate, just as 
the minimum principle for the capacity of a condenser permitted us to get such 
accuracy for that capacity even though we had only a rough knowledge of the elec¬ 
tric field.” 
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Solutions of UMaxwelVs Equations in 
Free Space 

20-1 Waves in free space; plane waves 

In Chapter 18 we had reached the point where we had the Maxwell equations 
in complete form. All there is to know about the classical theory of the electric 
and magnetic fields can be found in the four equations: 

I. V • E = 
€0 

III. V • B = 0 

II. V x E = 
dB 

dt 

IV. c2V X B = L + HE 
Cq dt 

(20.1) 

When we put all these equations together, a remarkable new phenomenon occurs: 
fields generated by moving charges can leave the sources and travel alone through 
space. We considered a special example m which an infinite current sheet is 
suddenly turned on. After the current has been on for the time r, there are uniform 
electric and magnetic fields extending out the distance ct from the source. Suppose 
that the current sheet lies in the >'z-plane with a surface current density J going 
toward positive y. The electric field will have only a ^-component, and the mag¬ 
netic field, only a z-component. The magnitude of the field components is given by 

for positive values of x less than ct. For larger x the fields are zero. There are, 
of course, similar fields extending the same distance from the current sheet in the 
negative x-direction. In Fig. 20-1 we show a graph of the magnitude of the fields 
as a function of x at the instant t. As time goes on, the “wavefront” at ct moves 
outward in x at the constant velocity c. 

Now consider the following sequence of events. We turn on a current of unit 
strength for a while, then suddenly increase the current strength to three units, 
and hold it constant at this value. What do the fields look like then? We can see 
what the fields will look like in the following way. First, we imagine a current of 
unit strength that is turned on at t = 0 and left constant forever. The fields for 
positive x are then given by the graph in part (a) of Fig. 20-2. Next, we ask what 
would happen if we turn on a steady current of two units at the time t\. 

The fields in this case will be twice as high as before, but will extend out in 
x only the distance c(t — fj), as shown in part (b) of the figure. When we add 
these two solutions, using the principle of superposition, we find that the sum of 
the two sources is a current of one unit for the time from zero to tx and a current 
of three units for times greater than t\. At the time t the fields will vary with x 
as shown in part (c) of Fig. 20-2. 

Now let’s take a more complicated problem. Consider a current which is 
turned on to one unit for a while, then turned up to three units, and later turned 
off to zero. What are the fields for such a current? We can find the solution in 
the same way—by adding the solutions of three separate problems. First, we find 
the fields for a step current of unit strength. (We have solved that problem already.) 
Next, we find the fields produced by a step current of two units. Finally, we solve 
for the fields of a step current of minus three units. When we add the three solutions, 
we will have a current which is one unit strong from t = 0 to some later time, 
say ti, then three units strong until a still later time t2, and then turned off—that 
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Fig. 20-1. The electric and mag¬ 

netic field as a function of x at the time t 
after the current sheet is turned on. 

Fig. 20-2. The electric field of a 

current sheet, (a) One unit of current 

turned on at t = 0; (b) Two units of 

current turned on at t — tlf* (c) Super¬ 

position of (a) and (b). 



Fig. 20-3. If the current source strength varies as shown in (a), then at the 

time f shown by the arrow the electric field as a function of x is as shown in (b). 

is, to zero. A graph of the current as a function of time is shown in Fig. 20-3(a). 
When we add the three solutions for the electric field, we find that its variation 
with x, at a given instant /, is as shown in Fig. 20-3 (b). The field is an exact 
representation of the current. The field distribution in space is a nice graph of 
the current variation with time—only drawn backwards. As time goes on the whole 
picture moves outward at the speed c, so there is a little blob of field, travelling 
toward positive x, which contains a completely detailed memory of the history of 
all the current variations. If we were to stand miles away, we could tell from the 
variation of the electric or magnetic field exactly how the current had varied 
at the source. 

You will also notice that long after all activity at the source has completely 
stopped and all charges and currents are zero, the block of field continues to travel 
through space. We have a distribution of electric and magnetic fields that exist 
independently of any charges or currents. That is the new effect that comes from 
the complete set of Maxwell’s equations. If we want, we can give a complete 
mathematical representation of the analysis we have just done by writing that the 
electric field at a given place and a given time is proportional to the current at the 
source, only not at the same time, but at the earlier time t — x/c. We can write 

Ey(t) = 

J(t — x/c) 
2e0c 

(20.3) 

We have, believe it or not, already derived this same equation from another 
point of view in Vol. I, when we were dealing with the theory of the index of re¬ 
fraction. Then, we had to figure out what fields were produced by a thin layer of 
oscillating dipoles in a sheet of dielectric material with the dipoles set in motion 
by the electric field of an incoming electromagnetic wave. Our problem was to 
calculate the combined fields of the original wave and the waves radiated by the 
oscillating dipoles. How could we have calculated the fields generated by moving 
charges when we didn’t have Maxwell’s equations? At that time we took as our 
starting point (without any derivation) a formula for the radiation fields produced 
at large distances from an accelerating point charge. If you will look in Chapter 
31 of Vol. I, you will see that Eq. (31.10) there is just the same as the Eq. (20.3) 
that we have just written down. Although our earlier derivation was correct only 
at large distances from the source, we see now that the same result continues to 
be correct even right up to the source. 

We want now to look in a general way at the behavior of electric and magnetic 
fields in empty space far away from the sources, i.e., from the currents and charges. 
Very near the sources—near enough so that during the delay in transmission, the 
source has not had time to change much—the fields are very much the same as we 
have found in what we called the electrostatic or magnetostatic cases. If we go out 
to distances large enough so that the delays become important, however, the 
nature of the fields can be radically different from the solutions we have found. 
In a sense, the fields begin to take on a character of their own when they have 
gone a long way from all the sources. So we can begin by discussing the behavior 
of the fields in a region where there are no currents or charges. 
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Suppose we ask: What kind of fields can there be in regions where p and j are 
both zero? In Chapter 18 we saw that the physics of Maxwell’s equations 
could also be expressed in terms of differential equations for the scalar and vector 
potentials: 

1 d2tj> _ 

' C2 dt2 
- iL, 

Co 
(20.4) 

1 d2A 

c2 dt2 

_j_. 
€0C2 

(20.5) 

If p and j are zero, these equations take on the simpler form 

V2* - I d2<t> 

dt2 
- 0, (20.6) 

v2a - 
C2 dt2 

= 0. (20.7) 

Thus in free space the scalar potential <f> and each component of the vector potential 
A all satisfy the same mathematical equation. Suppose we let ^ (psi) stand for 
any one of the four quantities Ax> Ay, Az; then we want to investigate the general 
solutions of the following equation: 

= a (2a8) 

This equation is called the three-dimensional wave equation—three-dimensional, 
because the function ^ may depend in general on x, y, and 2, and we need to worry 
about variations in all three coordinates. This is made clear if we write out ex¬ 
plicitly the three terms of the Laplacian operator: 

dx2 dy2 ~1' dz2 c2 dt2 
(20.9) 

In free space, the electric fields E and B also satisfy the wave equation. For 
example, since B — V X A, we can get a differential equation for B by taking 
the curl of Eq. (20.7). Since the Laplacian is a scalar operator, the order of the 
Laplacian and curl operations can be interchanged: 

V x (V2A) = V2(V X A) ~ V2B. 

Similarly, the order of the operations curl and d/dt can be interchanged: 

X 4 
d2A 

dt2 

1 n 2 

= 7*17*(v x * = 
l d2B 

c2 dt2 

Using these results, we get the following differential equation for B: 

V2B 
d2B 1 

c2 dt2 
-4^*0. (20.10) 

So each component of the magnetic field B satisfies the three-dimensional wave 
equation. Similarly, using the fact that E = — V<f> — dA/dt, it follows that the 
electric field E in free space also satisfies the three-dimensional wave equation: 

^-^0=0. (20.11) 

All of our electromagnetic fields satisfy the same wave equation, Eq. (20.8). 
We might well ask: What is the most general solution to this equation? However, 
rather than tackling that difficult question right away, we will look first at what 
can be said in general about those solutions in which nothing varies in y and 2. 
(Always do an easy case first so that you can see what is going to happen, and 
then you can go to the more complicated cases.) Let’s suppose that the magnitudes 
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of the fields depend only upon x—that there are no variations of the fields with 
y and z. We are, of course, considering plane waves again. We should expect to 
get results something like those in the previous section. In fact, we will find 
precisely the same answers. You may ask: “Why do it all over again?” It is im¬ 
portant to do it again, first, because we did not show that the waves we found were 
the most general solutions for plane waves, and second, because we found the fields 
only from a very particular kind of current source. We would like to ask now: 
What is the most general kind of one-dimensional wave there can be in free space? 
We cannot find that by seeing what happens for this or that particular source, but 
must work with greater generality. Also we are going to work this time with differ¬ 
ential equations instead of with integral forms. Although we will get the same re¬ 
sults, it is a way of practicing back and forth to show that it doesn’t make any 
difference which way you go. You should know how to do things every which 
way, because when you get a hard problem, you will often find that only one of 
the various ways is tractable. 

We could consider directly the solution of the wave equation for some elec¬ 
tromagnetic quantity. Instead, we want to start right from the beginning with 
Maxwell’s equations in free space so that you can see their close relationship to 
the electromagnetic waves. So we start with the equations in (20.1), setting the 
charges and currents equal to zero. They become 

I. V E = 0 

II. V X E = 

III. V • B = 0 

SB 

dt 

IV. c2v 

(20.12) 

We write the first equation out in components: 

V E 
dE* , SEy dEz = 
fix ^ Ay dz 

(20.13) 

We are assuming that there are no variations with y and z, so the last two terms are 
zero. This equation then tells us that 

(20.14) 

Its solution is that Ex> the component of the electric field in the x-direction. is a 
constant in space. If you look at IV in (20.12), supposing no 5-variation m y and 
z either, you can see that Ex is also constant in time. Such a field could be the 
steady dc field from some charged condenser plates a long distance away. We are 
not interested now m such an uninteresting static field; we are at the moment 
interested only in dynamically varying fields. For dynamic fields, Ex = 0. 

We have then the important result that for the propagation of plane waves 
in any direction, the electric field must be at right angles to the direction of propaga¬ 

tion. It can, of course, still vary in a complicated way with the coordinate x. 
The transverse 5-field can always be resolved into two components, say the 

y-component and the z-component. So let’s first work out a case in which the elec¬ 
tric field has only one transverse component. We’ll take first an electric field that 
is always in the y-direction, with zero z-component. Evidently, if we solve this 
problem we can also solve for the case where the electric field is always in the 
z-direction. The general solution can always be expressed as the superposition of 
two such fields. 

How easy our equations now get. The only component of the electric field 
that is not zero is Ey, and all derivatives—except those with respect to x—are zero 
The rest of Maxwell’s equations then become quite simple. 
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Let’s look next at the second of Maxwell’s equations [II of Eq. (20.12)]. 
Writing out the components of the curl E, we have 

(V X E)x 
dEz _ dEy _ Q 

dy dz ~ ' 

(y x e)v 
dE* 
dz 

dEa 
dx 

0, 

(v X El 
dEy _ dEz __ dEy 

dx dy dx 

The x-component of V X £ is zero because the derivatives with respect to y and 
z are zero. The ^-component is also zero; the first term is zero because the derivative 
with respect to z is zero, and the second term is zero because Ez is zero. The only 
components of the curl of E that is not zero is the z-component, which is equal to 
dEy/dx. Setting the three components of V X E equal to the corresponding 
components of —dB/dt, we can conclude the following: 

dBx r\ dBy p. 

et 3 dt 

dBz __ _ dEy 

~df ~ ~ dx~ ’ 

(20.15) 

(20.16) 

Since the x-component of the magnetic field and the y-component of the magnetic 
field both have zero time derivatives, these two components are just constant fields 
and correspond to the magnetostatic solutions we found earlier. Somebody may 
have left some permanent magnets near where the waves are propagating. We will 
ignore these constant fields and set Bx and By equal to zero. 

Incidentally, we would already have concluded that the x-component of B 
should be zero for a different reason. Since the divergence of B is zero (from the 
third Maxwell equation), applying the same arguments we used above for the 
electric field, we would conclude that the longitudinal component of the magnetic 
field can have no variation with x. Since we are ignoring such uniform fields in 
our wave solutions, we would have set Bx equal to zero. In plane electromagnetic 
waves the £-field, as well as the E-field, must be directed at right angles to the 
direction of propagation. 

Equation (20.16) gives us the additional proposition that if the electric field 
has only a ^-component, the magnetic field will have only a z-component. So 
E and B are at right angles to each other. This is exactly what happened in the 
special wave we have already considered. 

We are now ready to use the last of Maxwell’s equations for free space [IV 
of Eq. (20.12)]. Writing out the components, we have 

c2(V X *)* = c2 ^ 

c2(V X B\ = c2 ^ 

;>ex 
dt ’ 

dt 

c\v X Bl 
dEz 

dt 

(20.17) 

Of the six derivatives of the components of B, only the term dBJdx is not equal 
to zero. So the three equations give us simply 

—c 
2 dBz 

dx 
dEy 

dt 
(20.18) 

The result of all our work is that only one component each of the electric and 
magnetic fields is not zero, and that these components must satisfy Eqs. (20.16) 
and (20.18). The two equations can be combined into one if we differentiate the 
first with respect to x and the second with respect to /; the left-hand sides of the 
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Fig, 20~4. The function f(x — ct) 
represents a constant "shape” that travels 

toward positive x with the speed c. 

two equations will then be the same (except for the factor c2). 
Ey satisfies the equation 

d Ey_L ^ Ey __ q 
dx2 c2 a/2 

So we find that 

(20.19) 

We have seen the same differential equation before, when we studied the propaga¬ 
tion of sound. It is the wave equation for one-dimensional waves. 

You should note that in the process of our derivation we have found something 
more than is contained in Eq. (20 11). Maxwell’s equations have given us the 
further information that electromagnetic waves have field components only at 
right angles to the direction of the wave propagation. 

Let’s review what we know about the solutions of the one-dimensional wave 
equation. If any quantity $ satisfies the one-dimensional wave equation 

_ ±«V = o 
dx2 c2 dt2 

then one possible solution is a function \j/{x, /) of the form 

*(*, 0 = Ax - ct). 

(20.20) 

(20.21) 

that is, some function of the single variable (x — ct). The function f(x — ct) 

represents a “rigid” pattern in x which travels toward positive x at the speed c 

(see Fig. 20-4). For example, if the function /has a maximum when its argument 
is zero, then for t — 0 the maximum of ^ will occur at x = 0. At some later time, 
say t = 10, ^ will have its maximum at * = 10c. As time goes on, the maximum 
moves toward positive x at the speed c. 

Sometimes it is more convenient to say that a solution of the one-dimensional 
wave equation is a function of (t — x/c). However, this is saying the same thing, 
because any function of (/ — x/c) is also a function of ix — ct): 

F(t - x/c) = F 
X — ct „ . 
—-— = f(x - ct). 

Let’s show that f(x — ct) is indeed a solution of the wave equation. Since 
it is a function of only one variable—the variable (x — ct)—we will let/' represent 
the derivative of/with respect to its variable and/" represent the second derivative 
of/. Differentiating Eq. (20.21) with respect to x, we have 

i - ™ - ">• 

since the derivative of (x — ct) with respect to x is 
\f/ with respect to x is clearly 

y - ?•<■* -c,)- 

i. The second derivative of 

(20.22) 

Taking derivatives of ^ with respect to t, we find 

= fix - ct)i-c), 

2 

if = +c2f"(x - ct) (20.23) 

We see that ^ does indeed satisfy the one-dimensional wave equation. 
You may be wondering: “If I have the wave equation, how do I know that 

I should take f(x — ct) as a solution? I don’t like this backward method. Isn’t 
there some forward way to find the solution?” Well, one good forward way is 
to know the solution. It is possible to “cook up” an apparently forward mathe¬ 
matical argument, expecially because we know what the solution is supposed to 
be, but with an equation as simple as this we don’t have to play games. Soon 
you will get so that when you see Eq. (20.20), you nearly simultaneously see 
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$ = f(x — ct) as a solution. (Just as now when you see the integral of x2 dx, you 
know right away that the answer is x3/3.) 

Actually you should also see a little more. Not only is any function of (x — ct) 

a solution, but any function of (x + ct) is also a solution. Since the wave equation 
contains only c2, changing the sign of c makes no difference. In fact, the most 

general solution of the one-dimensional wave equation is the sum of two arbitrary 
functions, one of (x — ct) and the other of (x + ct): 

$ = /O “ ct) + g(x + ct). (20.24) 

The first term represents a wave travelling toward positive x, and the second term 
an arbitrary wave travelling toward negative x. The general solution is the super¬ 
position of two such waves both existing at the same time. 

We will leave the following amusing question for you to think about. Take a function 
$ of the following form: 

^ = cos kx cos kct. 

This equation isn’t in the form of a function of (x — ct) or of (x + ct). Yet you can 
easily show that this function is a solution of the wave equation by direct substitution into 
Eq. (20.20). How can we then say that the general solution is of the form of Eq. (20.24)? 

Applying our conclusions about the solution of the wave equation to the 
y-component of the electric field, Ey, we conclude that Ev can vary with x in any 
arbitrary fashion. However, the fields which do exist can always be considered as 
the sum of two patterns. One wave is sailing through space in one direction with 
speed c, with an associated magnetic field perpendicular to the electric field; 
another wave is travelling in the opposite direction with the same speed. Such 
waves correspond to the electromagnetic waves that we know about—light, radio¬ 
waves, infrared radiation, ultraviolet radiation, x-rays, and so on. We have already 
discussed the radiation of light in great detail in Vol. I. Since everything we learned 
there applies to any electromagnetic wave, we don’t need to consider in great detail 
here the behavior of these waves. 

We should perhaps make a few further remarks on the question of the polariza¬ 
tion of the electromagnetic waves. In our solution we chose to consider the special 
case in which the electric field has only a y-component. There is clearly another 
solution for waves travelling in the plus or minus x-direction, with an electric 
field which has only a z-component. Since Maxwell’s equations are linear, the 
general solution for one-dimensional waves propagating in the x-direction is the 
sum of waves of Ey and waves of Ez. This general solution is summarized in the 
following equations: 

E — (0, Ey, Ez) 

Ey = f{x - ct) + g(x + ct) 

Ez = F(x — ct) + G(x + ct) 
(20.25) 

B = (0, By, Bz) 

cBz — fix— ct) —gix 4- ct) 

cBy = —Fix — ct) + Gix + ct). 

Such electromagnetic waves have an £*-vector whose direction is not constant but 
which gyrates around in some arbitrary way in the yz-plane. At every point 
the magnetic field is always perpendicular to the electric field and to the direction 
of propagation. 
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If there are only waves travelling in one direction, say the positive x-direction, 
there is a simple rule which tells the relative orientation of the electric and mag¬ 
netic fields. The rule is that the cross product E X B—which is, of course, a 
vector at right angles to both E and B—points in the direction in which the wave is 
travelling. If E is rotated into B by a right-hand screw, the screw points in the 
direction of the wave velocity. (We shall see later that the vector E X B has a 
special physical significance: it is a vector which describes the flow of energy in an 
electromagnetic field.) 

20-2 Three-dimensional waves 

We want now to turn to the subject of three-dimensional waves. We have 
already seen that the vector E satisfies the wave equation. It is also easy to arrive 
at the same conclusion by arguing directly from Maxwell’s equations. Suppose we 
start with the equation 

v X E = - 
dt 

and take the curl of both sides: 

V X (V X E) = — ~ (V X B). (20.26) 
Of 

You will remember that the curl of the curl of any vector can be written as the sum 
of two terms, one involving the divergence and the other the Laplacian, 

V X (V X E) = V(V * E) - V2E. 

In free space, however, the divergence of E is zero, so only the Laplacian term 
remains. Also, from the fourth of Maxwell’s equations in free space [Eq. (20.12)] 
the time derivative of c2 V X B is the second derivative of E with respect to t: 

d^E 
~dt2 ' 

Equation (20.26) then becomes 

V2E = 
J_ d^E 
c2 dt- 

which is the three-dimensional wave equation. Written out in all its glory, this 
equation is, of course, 

^ _ 1 
dx2 dy2 dz2 c2 dt2 

(20.27) 

How shall we find the general wave solution7 The answer is that all the solu¬ 
tions of the three-dimensional wave equation can be represented as a superposition 
of the one-dimensional solutions we have already found. We obtained the equation 
for waves which move in the x-direction by supposing that the field did not depend 
on y and z. Obviously, there are other solutions in which the fields do not depend 
on x and z, representing waves going in the y-direction. Then there are solutions 
which do not depend on x and y, representing waves travelling in the z-direction. 
Or in general, since we have written our equations in vector form, the three- 
dimensional wave equation can have solutions which are plane waves moving in 
any direction at all. Again, since the equations are linear, we may have simultane¬ 
ously as many plane waves as we wish, travelling m as many different directions. 
Thus the most general solution of the three-dimensional wave equation is a 
superposition of all sorts of plane waves moving in all sorts of directions. 

Try to imagine what the electric and magnetic fields look like at present in 
the space in this lecture room. First of all, there is a steady magnetic field; it comes 
from the currents in the interior of the earth—that is, the earth’s steady magnetic 
field. Then there are some irregular, nearly static electric fields produced perhaps 
by electric charges generated by friction as various people move about in their 
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chairs and rub their coat sleeves against the chair arms. Then there are other 
magnetic fields produced by oscillating currents in the electrical wiring—fields 
which vary at a frequency of 60 cycles per second, in synchronism with the genera¬ 
tor at Boulder Dam. But more interesting are the electric and magnetic fields vary¬ 
ing at much higher frequencies. For instance, as light travels from window to 
floor and wall to wall, there are little wiggles of the electric and magnetic fields 
moving along at 186,000 miles per second. Then there are also infrared waves 
travelling from the warm foreheads to the cold blackboard. And we have forgotten 
the ultraviolet light, the x-rays, and the radiowaves travelling through the room. 

Flying across the room are electromagnetic waves which carry music of a jazz 
band. There are waves modulated by a series of impulses representing pictures of 
events going on in other parts of the world, or of imaginary aspirins dissolving in 
imaginary stomachs. To demonstrate the reality of these waves it is only necessary 
to turn on electronic equipment that converts these waves into pictures and sounds. 

If we go into further detail to analyze even the smallest wiggles, there are 
tiny electromagnetic waves that have come into the room from enormous distances. 
There are now tiny oscillations of the electric field, whose crests are separated by 
a distance of one foot, that have come from millions of miles away, transmitted 
to the earth from the Mariner II space craft which has just passed Venus. Its 
signals carry summaries of information it has picked up about the planets (infor¬ 
mation obtained from electromagnetic waves that travelled from the planet to 
the space craft). 

There are very tiny wiggles of the electric and magnetic fields that are waves 
which originated billions of light years away—from galaxies in the remotest corners 
of the universe. That this is true has been found by “filling the room with wires”— 
by building antennas as large as this room. Such radiowaves have been detected 
from places in space beyond the range of the greatest optical telescopes. Even they, 
the optical telescopes, are simply gatherers of electromagnetic waves. What we 
call the stars are only inferences, inferences drawn from the only physical reality 
we have yet gotten from them—from a careful study of the unendingly complex 
undulations of the electric and magnetic fields reaching us on earth. 

There is, of course, more: the fields produced by lightning miles away, the 
fields of the charged cosmic ray particles as they zip through the room, and more, 
and more. What a complicated thing is the electric field in the space around you! 
Yet it always satisfies the three-dimensional wave equation. 

20-3 Scientific imagination 

I have asked you to imagine these electric and magnetic fields. What do you 
do? Do you know how? How do / imagine the electric and magnetic field? What 
do / actually see? What are the demands of scientific imagination? Is it any 
different from trying to imagine that the room is full of invisible angels? No, it is 
not like imagining invisible angels. It requires a much higher degree of imagination 
to understand the electromagnetic field than to understand invisible angels. Why? 
Because to make invisible angels understandable, all I have to do is to alter their 
properties a little bit—I make them slightly visible, and then I can see the shapes 
of their wings, and bodies, and halos. Once I succeed in imagining a visible angel, 
the abstraction required—which is to take almost invisible angels and imagine 
them completely invisible—is relatively easy. So you say, “Professor, please give 
me an approximate description of the electromagnetic waves, even though it may 
be slightly inaccurate, so that I too can see them as well as I can see almost invisible 
angels. Then I will modify the picture to the necessary abstraction.” 

I’m sorry I can’t do that for you. I don’t know how. I have no picture of this 
electromagnetic field that is in any sense accurate. I have known about the electro¬ 
magnetic field a long time—I was in the same position 25 years ago that you are 
now, and I have had 25 years more of experience thinking about these wiggling 
waves. When I start describing the magnetic field moving through space, I speak 
of the E- and B fields and wave my arms and you may imagine that I can see them. 
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I’ll tell you what I see. I see some kind of vague shadowy, wiggling lines—here 
and there is an E and B written on them somehow, and perhaps some of the lines 
have arrows on them—an arrow here or there which disappears when I look too 
closely at it. When I talk about the fields swishing through space, I have a terrible 
confusion between the symbols I use to describe the objects and the objects them¬ 
selves. I cannot really make a picture that is even nearly like the true waves. So 
if you have some difficulty in making such a picture, you should not be worried 
that your difficulty is unusual. 

Our science makes terrific demands on the imagination. The degree of 
imagination that is required is much more extreme than that required for some of 
the ancient ideas. The modern ideas are much harder to imagine. We use a lot 
of tools, though. We use mathematical equations and rules, and make a lot of 
pictures. What I realize now is that when I talk about the electromagnetic field in 
space, I see some kind of a superposition of all of the diagrams which Tve ever 
seen drawn about them. I don’t see little bundles of field lines running about be¬ 
cause it worries me that if I ran at a different speed the bundles would disappear. 
I don’t even always see the electric and magnetic fields because sometimes I think 
I should have made a picture with the vector potential and the scalar potential, 
for those were perhaps the more physically significant things that were wiggling. 

Perhaps the only hope, you say, is to take a mathematical view. Now what is 
a mathematical view? From a mathematical view, there is an electric field vector 
and a magnetic field vector at every point in space; that is, there are six numbers 
associated with every point. Can you imagine six numbers associated with each 
point in space? That’s too hard. Can you imagine even one number associated 
with every point? I cannot! I can imagine such a thing as the temperature at every 
point in space. That seems to be understandable. There is a hotness and coldness 
that varies from place to place. But I honestly do not understand the idea of a 
number at every point. 

So perhaps we should put the question: Can we represent the electric field by 
something more like a temperature, say like the displacement of a piece of jello? 
Suppose that we were to begin by imagining that the world was filled with thin 
jello and that the fields represented some distortion—say a stretching or twisting— 
of the jello. Then we could visualize the field. After we “see” what it is like we 
could abstract the jello away. For many years that’s what people tried to do. 
Maxwell, Ampere, Faraday, and others tried to understand electromagnetism 
this way. (Sometimes they called the abstract jello “ether.”) But it turned out that 
the attempt to imagine the electromagnetic field in that way was really standing in 
the way of progress. We are unfortunately limited to abstractions, to using in¬ 
struments to detect the field, to using mathematical symbols to describe the field, 
etc. But nevertheless, in some sense the fields are real, because after we are all 
finished fiddling around with mathematical equations—with or without making 
pictures and drawings or trying to visualize the thing—we can still make the instru¬ 
ments detect the signals from Mariner II and find out about galaxies a billion miles 
away, and so on. 

The whole question of imagination in science is often misunderstood by people 
in other disciplines. They try to test our imagination in the following way. They 
say, “Here is a picture of some people in a situation. What do you imagine will 
happen next?” When we say, “I can’t imagine,” they may think we have a weak 
imagination. They overlook the fact that whatever we are allowed to imagine in 
science must be consistent with everything else we know; that the electric fields and 
the waves we talk about are not just some happy thoughts which we are free to 
make as we wish, but ideas which must be consistent with all the laws of physics 
we know. We can’t allow ourselves to seriously imagine things which are obviously 
in contradiction to the known laws of nature. And so our kind of imagination is 
quite a difficult game. One has to have the imagination to think of something that 
has never been seen before, never been heard of before. At the same time the 
thoughts are restricted in a strait jacket, so to speak, limited by the conditions that 
come from our knowledge of the way nature really is. The problem of creating 
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something which is new, but which is consistent with everything which has been 
seen before, is one of extreme difficulty. 

While I’m on this subject I want to talk about whether it will ever be possible 
to imagine beauty that we can't see It is an interesting question. When we look 
at a rainbow, it looks beautiful to us. Everybody says, “Ooh, a rainbow/’ (You 
see how scientific I am. I am afraid to say something is beautiful unless I have an 
experimental way of defining it.) But how would we describe a rainbow if we were 
blind? We are blind when we measure the infrared reflection coefficient of sodium 
chloride, or when we talk about the frequency of the waves that are coming from 
some galaxy that we can‘t see—we make a diagram,'twe make a plot. For instance, 
for the rainbow, such a plot would be the intensity of radiation vs. wavelength 
measured with a spectrophotometer for each direction m the sky. Generally, such 
measurements would give a curve that was rather flat. Then some day, someone 
would discover that for certain conditions of the weather, and at certain angles in 
the sky, the spectrum of intensity as a function of wavelength would behave 
strangely; it would have a bump. As the angle of the instrument was varied only a 
little bit, the maximum of the bump would move from one wavelength to another. 
Then one day the physical review of the blind men might publish a technical article 
with the title “The Intensity of Radiation as a Function of Angle under Certain 
Conditions of the Weather.” In this article there might appear a graph such as 
the one in Fig. 20-5 The author would perhaps remark that at the larger angles 
there was more radiation at long wavelengths, whereas for the smaller angles the 
maximum m the radiation came at shorter wavelengths. (From our point of view, 
we would say that the light at 40° is predominantly green and the light at 42° is 
predominantly red.) 

Fig. 20-5. The intensity of electro¬ 

magnetic waves as a function of wave¬ 

length for three angles (measured from 

the direction opposite the sunk observed 

only with certain meteorological con¬ 

ditions. 

Now do we find the graph of Fig. 20-5 beautiful? It contains much more de¬ 
tail than we apprehend when we look at a rainbow, because our eyes cannot see 
the exact details in the shape of a spectrum. The eye, however, finds the rainbow 
beautiful. Do we have enough imagination to see in the spectral curves the same 
beauty we see when we look directly at the rainbow? I don't know. 

But suppose I have a graph of the reflection coefficient of a sodium chloride 
crystal as a function of wavelength in the infrared, and also as a function of angle. 
I would have a representation of how it would look to my eyes if they could see 
m the infrared—perhaps some glowing, shiny “green,” mixed with reflections from 
the surface in a “metallic red.” That would be a beautiful thing, but I don’t know 
whether I can ever look at a graph of the reflection coefficient of NaCl measured 
with some instrument and say that it has the same beauty. 

On the other hand, even if we cannot see beauty in particular measured results, 
we can already claim to see a certain beauty in the equations which describe general 
physical laws. For example, in the wave equation (20.9), there’s something nice 
about the regularity of the appearance of the x, the y, the z, and the t. And this 
nice symmetry in appearance of the x. y, z, and t suggests to the mind still a greater 
beauty which has to do with the four dimensions, the possibility that space has 
four-dimensional symmetry, the possibility of analyzing that and the developments 
of the special theory of relativity. So there is plenty of intellectual beauty asso¬ 
ciated with the equations. 
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20-4 Spherical waves 

We have seen that there are solutions of the wave equation which corre¬ 
spond to plane waves, and that any electromagnetic wave can be described as a 
superposition of many plane waves. In certain special cases, however, it is more 
convenient to describe the wave field in a different mathematical form. We would 
like to discuss now the theory of spherical waves—waves which correspond to 
spherical surfaces that are spreading out from some center. When you drop a 
stone into a lake, the ripples spread out in circular waves on the surface—they are 
two-dimensional waves. A spherical wave is a similar thing except that it spreads 
out in three dimensions. 

Before we start describing spherical waves, we need a little mathematics. 
Suppose we have a function that depends only on the radial distance r from a 
certain origin—in other words, a function that is spherically symmetric. Let’s 
call the function \p(r), where by r we mean 

r \/x2 y2 + z2, 

the radial distance from the origin. In order to find out what functions \p(r) satisfy 
the wave equation, we will need an expression for the Laplacian of \p. So we want 
to find the sum of the second derivatives of \p with respect to x, y, and z. We will 
use the notation that \p'(r) represents the derivative of \p with respect to r and \p"(r) 

represents the second derivative of \p with respect to r. 
First, we find the derivatives with respect to x. The first derivative is 

<¥Cr) 
dx 

The second derivative of \p with respect to x is 

aV 
= 

\dx/ 
+ V 

d2r 
dx2 T \dx/ ' dx2 

We can evaluate the partial derivatives of r with respect to x from 

dr 

dx 

x 
— 5 

r dx2 r V r2) 

So the second derivative of \p with respect to x is 

*-gr + i( 
Likewise, 

dy2 

aV 
dz2 

(20.28) 

(20.29) 

(20.30) 

The Laplacian is the sum of these three derivatives. Remembering that 
x2 + y2 + z2 = r2, we get 

vV(0 = r(r) + -rY(r). (20.31) 

It is often more convenient to write this equation in the following form: 

^ = 7 &2 (n/,)‘ (20'32) 

If you carry out the differentiation indicated in Eq. (20.32), you will see that the 
right-hand side is the same as in Eq. (20.31). 

If we wibh to consider spherically symmetric fields which can propagate as 
spherical waves, our field quantity must be a function of both r and t. Suppose 
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we ask, then, what functions yp(r, t) are solutions of the three-dimensional wave 
equation 

vVO-. 0 - ~ ~ Hr, 0 = 0. (20.33) 

Since yp(r, t) depends only on the spatial coordinates through r, we can use the equa¬ 
tion for the Laplacian we found above, Eq. (20.32). To be precise, however, since 
yp is also a function of t, we should write the derivatives with respect to r as partial 
derivatives. Then the wave equation becomes 

1 d , M Id, 

We must now solve this equation, which appears to be much more complicated 
than the plane wave case. But notice that if we multiply this equation by r, we get 

dr2 W) - 
JL <r_ 
C2 di2 

0V0 = 0. (20.34) 

This equation tells us that the function np satisfies the one-dimensional wave equa¬ 
tion in the variable r. Using the general principle which we have emphasized so 
often, that the same equations always have the same solutions, we know that if 
ryp is a function only of (r — ct) then it will be a solution of Eq. (20.34). So we 
know that spherical waves must have the form 

'Mr, 0 = fir - ct). 

Or, as we have seen before, we can equally well say that ryp can have the form 

rp = fit - r/c). 

Dividing by r, we find that the field quantity yp (whatever it may be) has the follow¬ 
ing form: 

= Kt_-r/c) 

r 
(20.35) 

Such a function represents a general spherical wave travelling outward from the 
origin at the speed c. If we forget about the r in the denominator for a moment, 
the amplitude of the wave as a function of the distance from the origin at a given 
time has a certain shape that travels outward at the speed c. The factor r in the 
denominator, however, says that the amplitude of the wave decreases in proportion 
to 1/r as the wave propagates. In other words, unlike a plane wave in which the 
amplitude remains constant as the wave runs along, in a spherical wave the ampli¬ 
tude steadily decreases, as shown in Fig. 20-6. This effect is easy to understand 
from a simple physical argument. 

Fig. 20-6. A spherical wave \p ~ f{f — r/c)/r. (a) \p as a function of r for t — h and the 

same wave for the later time *2- (b) yp as a function of f for r = and the same wave seen at r2. 
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We know that the energy density in a wave depends on the square of the wave 
amplitude. As the wave spreads, its energy is spread over larger and larger areas 
proportional to the radial distance squared. If the total energy is conserved, the 
energy density must fall as l/>2, and the amplitude of the wave must decrease as 
l/r. So Eq. (20.35) is the “reasonable” form for a spherical wave. 

We have disregarded the second possible solution to the one-dimensional 
wave equation: 

rf = g(i + r/c\ 
or 

, = g(t + r/c) 

This also represents a spherical wave, but one which travels inward from large r 
toward the origin. 

We are now going to make a special assumption. We say, without any demon¬ 
stration whatever, that the waves generated by a source are only the waves which 
go outward. Since we know that waves are caused by the motion of charges, we 
want to think that the waves proceed outward from the charges. It would be 
rather strange to imagine that before charges were set in motion, a spherical wave 
started out from infinity and arrived at the charges just at the time they began to 
move. That is a possible solution, but experience shows that when charges are 
accelerated the waves travel outward from the charges. Although Maxwell’s 
equations would allow either possibility, we will put in an additional fact—based 
on experience—that only the outgoing wave solution makes “physical sense.” 

We should remark, however, that there is an interesting consequence to this 
additional assumption: we are removing the symmetry with respect to time that 
exists in Maxwell’s equations. The original equations for E and B, and also the 
wave equations we derived from them, have the property that if we change the sign 
of t, the equation is unchanged. These equations say that for every solution 
corresponding to a wave going in one direction there is an equally valid solution 
for a wave travelling in the opposite direction. Our statement that we will consider 
only the outgoing spherical waves is an important additional assumption. (A 
formulation of electrodynamics in which this additional assumption is avoided has 
been carefully studied. Surprisingly, in many circumstances it does not lead to 
physically absurd conclusions, but it would take us too far astray to discuss these 
ideas just now. We will talk about them a little more in Chapter 28.) 

We must mention another important point. In our solution for an outgoing 
wave, Eq. (20.35), the function \j/ is infinite at the origin. That is somewhat peculiar. 
We would like to have a wave solution which is smooth everywhere. Our solution 
must represent physically a situation in which there is some source at the origin. 
In other words, we have inadvertently made a mistake. We have not solved the 
free wave equation (20.33) everywhere; we have solved Eq. (20.33) with zero on 
the right everywhere, except at the origin. Our mistake crept in because some of 
the steps in our derivation are not “legal” when r ~ 0. 

Let’s show that it is easy to make the same kind of mistake in an electrostatic 
problem. Suppose we want a solution of the equation for an electrostatic potential 
m free space, V2<f> = 0. The Laplacian is equal to zero, because we are assuming 
that there are no charges anywhere. But what about a spherically symmetric 
solution to this equation—that is, some function <f> that depends only on r. Using 
the formula of Eq. (20.32) for the Laplacian, we have 

\<P_ 
r dr 2 to) = 0. 

Multiplying this equation by /*, we have an equation which is readily integrated: 

dr2 
to) = 0. 

If we integrate once with respect to rf we find that the first derivative of r<f> is a 
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constant, which we may call a: 

Jr ™ = fl- 

Integrating again, we find that nj> is of the form 

r<f) = ar + b, 

where b is another constant of integration. So we have found that the following <f> 

is a solution for the electrostatic potential in free space: 

Something is evidently wrong. In the region where there are no electric 
charges, we know the solution for the electrostatic potential: the potential is 
everywhere a constant. That corresponds to the first term in our solution. But we 
also have the second term, which says that there is a contribution to the potential 
that varies as one over the distance from the origin. We know, however, that such 
a potential corresponds to a point charge at the origin. So, although we thought 
we were solving for the potential in free space, our solution also gives the field 
for a point source at the origin. Do you see the similarity between what happened 
now and what happened when we solved for a spherically symmetric solution to 
the wave equation? If there were really no charges or currents at the origin, there 
would not be spherical outgoing waves. The spherical waves must, of course, be 
produced by sources at the origin. In the next chapter we will investigate the con¬ 
nection between the outgoing electromagnetic waves and the currents and voltages 
which produce them. 
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Solutions of MaxwelVs Equations with, 
Currents and Charges 

21-1 Light and electromagnetic waves 

We saw in the last chapter that among their solutions, Maxwell’s equations 

have waves of electricity and magnetism. These waves correspond to the phe¬ 

nomena of radio, light, x-rays, and so on, depending on the wavelength. We have 

already studied light in great detail in Vol. I. In this chapter we want to tie together 

the two subjects—we want to show that Maxwell’s equations can indeed form the 

base for our earlier treatment of the phenomena of light. 

When we studied light, we began by writing down an equation for the electric 

field produced by a charge which moves in any arbitrary way. That equation was 

E 
9 W , ^ d fer\ 

47re0 [r'2 c dt \r'2f + 
1 d‘ 

dt2 
eT> (21 1) 

cB = er> X E. 

[See Eq. (28.3), Vol. I.] 

If a charge moves in an arbitrary way, the electric field we would find now at 

some point depends only on the position and motion of the charge not now, but 

at an earlier time—at an instant which is earlier by the time it would take light, 

going at the speed c, to travel the distance r' from the charge to the field point. 

In other words, if we want the electric field at point (1) at the time t, we must cal¬ 

culate the location (2') of the charge and its motion at the time (t — rf/c), where 

rf is the distance to the point (l) from the position of the charge (2') at the time 

(t — rf/c). The prime is to remind you that rf is the so-called “retarded distance” 

from the point (2') to the point (1), and not the actual distance between point (2), the 

position of the charge at the time t, and the field point (1) (see Fig. 21—1). Note 

that we are using a different convention now for the direction of the unit vector 

er. In Chapters 28 and 36 of Vol. I it was convenient to take r (and hence er) 

pointing toward the source. Now we are following the definition we took for Cou¬ 

lomb’s law, in which r is directed from the charge, at (2), toward the field point at (1). 

The only difference, of course, is that our new r (and er) are the negatives of the 

old ones. 

We have also seen that if the velocity v of a charge is always much less than 

c, and if we consider only points at large distances from the charge, so that only the 

last term of Eq. (21.1) is important, the fields can also be written as 

E = 
q [acceleration of the charge at (t — rf /c) 

and 
47re0c V [projected at right angles to r 

(21. V) 

cB = X E. 

Let’s look at what the complete equation, Eq. (21.1), says in a little more 

detail. The vector er’ is the unit vector to point (1) from the retarded position (2'). 

The first term, then, is what we would expect for the Coulomb field of the charge 

at its retarded position—we may call this “the retarded Coulomb field.” The 

electric field depends inversely on the square of the distance and is directed away 

from the retarded position of the charge (that is, in the direction of er ). 

But that is only the first term. The other terms tell us that the laws of electricity 

do not say that all the fields are the same as the static ones, but just retarded (which 

is what people sometimes like to say). To the “retarded Coulomb field” we must 
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add the other two terms. The second term says that there is a “correction” to the 

retarded Coulomb field which is the rate of change of the retarded Coulomb field 

multiplied by r'/c, the retardation delay. In a way of speaking, this term tends to 

compensate for the retardation in the first term. The first two terms correspond to 

computing the “retarded Coulomb field” and then extrapolating it toward the 

future by the amount rf/c, that is, right up to the time The extrapolation is linear, 

as if we were to assume that the “retarded Coulomb field” would continue to change 

at the rate computed for the charge at the point (2/). If the field is changing slowly, 

the effect of the retardation is almost completely removed by the correction term, 

and the two terms together give us an electric field that is the “instantaneous Cou¬ 

lomb field”—that is, the Coulomb field of the charge at the point (2)—to a very 

good approximation. 

Finally, there is a third term in Eq. (21.1) which is the second derivative of the 

unit vector er>. For our study of the phenomena of light, we made use of the fact 

that far away from the charge the first two terms went inversely as the square of 

the distance and, for large distances, became very weak in comparison to the last 

term, which decreases as 1 fr. So we concentrated entirely on the last term, and we 

showed that it is (again, for large distances) proportional to the component of the 

acceleration of the charge at right angles to the line of sight. (Also, for most of our 

work in Vol. I, we took the case m which the charges were moving nonrelativistic- 

ally. We considered the relativistic effects in only one chapter, Chapter 36.) 

Now we should try to connect the two things together. We have the Maxwell 

equations, and we have Eq. (21.1) for the field of a point charge. We should cer¬ 

tainly ask whether they are equivalent. If we can deduce Eq. (21.1) from Maxwell’s 

equations, we will really understand the connection between light and electro¬ 

magnetism. To make this connection is the main purpose of this chapter. 

It turns out that we won’t quite make it—that the mathematical details get^ 

too complicated for us to carry through in all their gory details. But we will come 

close enough so that you should easily see how the connection could be made. 

The missing pieces will only be in the mathematical details Some of you may 

find the mathematics in this chapter rather complicated, and you may not wish to 

follow the argument very closely. We think it is important, however, to make the 

connection between what you have learned earlier and what you are learning now, 

or at least to indicate how such a connection can be made. You will notice, if 

you look over the earlier chapters, that whenever we have taken a statement as a 

starting point for a discussion, we have carefully explained whether it is a new 

“assumption” that is a “basic law,” or whether it can ultimately be deduced from 

some other laws. We owe it to you in the spirit of these lectures to make the con¬ 

nection between light and Maxwell’s equations. If it gets difficult in places, well, 

that’s life—there is no other way. 

21-2 Spherical waves from a point source 

In Chapter 18 we found that Maxwell’s equations could be solved by letting 

(21.2) 

(21.3) 
and 

it ^ dA E — - Vd> — —— 

v dt 

B V X A, 

where </> and A must then be solutions of the equations 

and 

y2 ,_1 _ P 
c- dt2 e0 

V2A 
1 dU 

c2 dt2 

and must also satisfy the condition that 

J 
€{)C 

v A = 
c- dt 

(21.4) 

(21.5) 

(21.6) 
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Now we will find the solution of Eqs. (21.4) and (21.5). To do that we have 

to find the solution ^ of the equation 

vV 
l ay 

C2 dt2 
— s, (21.7) 

where v, which we call the source, is known. Of course, v corresponds to p/e0 and 

^ to <p for Eq (21.4), or s is Jj/e^c2 if ^ is Ax, etc , but we want to solve Eq (21 7) 

as a mathematical problem no matter what $ and s are physically. 

In places where p and j are zero—in what we have called “free” space—the 

potentials <f> and A, and the fields E and B, all satisfy the three-dimensional wave 

equation without sources, whose mathematical form is 

va*-^0 = °- (21-8> 

In Chapter 20 we saw that solutions of this equation can represent waves of various 

kinds: plane waves in the ^-direction, ^ = /(/ — x/c); plane waves in the y- or 

z-direction, or in any other direction; or spherical waves of the form 

= fU ~rr/C) - (21.9) 

(The solutions can be written m still other ways, for example cylindrical waves 

that spread out from an axis.) 

We also remarked that, physically, Eq. (21.9) does not represent a wave in 

free space—that there must be charges at the origin to get the outgoing wave started. 

In other words, Eq. (21.9) is a solution of Eq. (21.8) everywhere except right near 

r = 0, where it must be a solution of the complete equation (21.7), including some 

sources. Let’s see how that works. What kind of a source s in Eq. (21.7) would 

give rise to a wave like Eq. (21.9)? 

Suppose we have the spherical wave of Eq. (21.9) and look at what is happen¬ 

ing for very small r. Then the retardation — r/c in/(/ — r/c) can be neglected— 

provided / is a smooth function—and \p becomes 

t ^ (r —> 0). (21.10) 

So \p is just like a Coulomb field for a charge at the origin that varies with time. 

That is, if we had a little lump of charge, limited to a very small region near the 

origin, with a density p, we know that 

, 2/4x60 
<t> = - 5 

where Q = Jp dV. Now we know that such a 0 satisfies the equation 

V20 £ , 
Co 

Following the same mathematics, we would say that the ^ of Eq. (21.10) 

satisfies 

VV = (r —» 0), (21.11) 

where .v is related to/ by 

with 

The only difference is that in the general case, s, and therefore 5, can be a function 

of time. 

Now the important thing is that if ^ satisfies Eq. (21.11) for small r, it also 

satisfies Eq. (21.7). As we go very close to the origin, the 1 jr dependence of ^ 
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causes the space derivatives to become very large. But the time derivatives keep 

their same values [They are just the time derivatives of j (?)•] So as r goes to zero, 

the term <92ip/dt2 in Eq. (21.7) can be neglected in comparison with V2^, and Eq. 

(21.7) becomes equivalent to Eq. (21.11). 

To summarize, then, if the source function .v(/) of Eq. (21 7) is localized at 

the origin and has the total strength 

S(t) = /,(/) dV, 

the solution of Eq. (21.7) is 

y3 z, t) 
1_ S(t ~ r/c) 

47r r 

(21.12) 

(21.13) 

The only effect of the term 02\{//dt2 in Eq. (21.7) is to introduce the retardation 

{t — r/c) in the Coulomb-like potential. 

21-3 The general solution of Maxwell’s equations 

We have found the solution of Eq. (21.7) for a “point” source. The next 

question is: What is the solution for a spread-out source9 That’s easy; we can 

think of any source s(x, y, z, /) as made up of the sum of many “point” sources, 

one for each volume element dV, and each with the source stiength s(x. y, z, t) dV. 
Since Eq (21.7) is linear, the resultant field is the superposition of the fields from 

all of such source elements. 

Using the results of the preceding section [Eq. (21.13)] we know that the 

field d\j/ at the point (xi,yi, z{)—or (l) for short—at the time /, from a source 

element s dV at the point (a 2,y2, z2)—or (2) for short—is given by 

dHh t) 
*(2, t - r12'c) dV2 

47JT12 

where r 12 is the distance from (2) to (1). Adding the contributions from all the 

pieces of the source means, of course, doing an integral over all regions where 

s ^ 0; so we have 

*0,0 
s(2, / - r12fc) Jr/ 
--ay 2 

4717*12 
(21.14) 

That is, the field at (1) at the time t is the sum of all the spherical waves which 

leave the source elements at (2) at the times (/ — ri2/c). This is the solution of 

our wave equation for any set of sources. 

We see now how to obtain a general solution for Maxwell's equations. If 

for xf/ we mean the scalar potential 0, the source function s becomes p/en. Or we 

can let \j/ represent any one of the three components of the vector potential A, 

replacing s by the corresponding component of j/e0c2. Thus, if we know the 

charge density p(x, y, z, /) and the current density j(a, y, z, /) everywhere, we can 

immediately write down the solutions of Eqs (21.4) and (21.5). They are 

and 

(21 15) 

(21.16) 

The fields E and B can then be found by differentiating the potentials, using Eqs. 

(21.2) and (21.3). [Incidentally, it is possible to verify that the 4> and A obtained 

from Eqs. (21.15) and (21.16) do satisfy the equality (21.6) ] 

We have solved Maxwell’s equations. Given the currents and charges in any 

circumstance, we can find the potentials directly from these integrals and then 

differentiate and get the fields. So we have finished with the Maxwell theory 

Also this permits us to close the ring back to our theory of light, because to connect 

with our earlier work on light, we need only calculate the electric field from a 
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moving charge. All that remains is to take a moving charge, calculate the po¬ 

tentials from these integrals, and then differentiate to find E from — Vtf> — dA/dt, 

We should get Eq. (21.1). It turns out to be lots of work, but that’s the principle. 

So here is the center of the universe of electromagnetism—the complete theory 

of electricity and magnetism, and of light; a complete description of the fields 

produced by any moving charges; and more. It is all here. Here is the structure 

built by Maxwell, complete in all its power and beauty. It is probably one of the 

greatest accomplishments of physics. To remind you of its importance, we will 

put it all together in a nice frame. 

Maxwell’s equations: 

vE 
p_ 

Cu 

v X E = 
dB 
dt 

v B = 0 

c2v X B j I d-E 

€,) dt 

Their solutions: 

E = —v<f> 
dA 
dt 

B = v x A 

0 p(2, ^_1*12/0 (ty 
4tT€q f 12 

A{ 1, 0 
7(2, t - r 12/c) .v 

4«oCsria aV2 

21-4 The fields of an oscillating dipole 

We have still not lived up to our promise to derive Eq. (21.1) for the electric 

field of a point charge m motion. Even with the results we already have, it is a 

relatively complicated thing to derive. We have not found Eq. (21.1) anywhere in 

the published literature except in Vol. I of these lectures.* So you can see that it is 

not easy to derive. (The fields of a moving charge have been written in many othei 

forms that are equivalent, of course.) We will have to limit ourselves here just to 

showing that, in a few examples, Eqs. (21.15) and (21.16) give the same results as 

Eq. (21.1). First, we will show that Eq (21.1) gives the correct fields with only the 

restriction that the motion of the charged particle is nonrelativistic. (Just this 

special case will take care of 90 percent, or more, of what we said about light.) 

We consider a situation in which we have a blob of charge that is moving 

about in some way, in a small region, and we will find the fields far away. To put it 

another way, we are finding the field at any distance from a point charge that is 

shaking up and down in very small motion. Since light is usually emitted from 

neutral objects such as atoms, we will consider that our wiggling charge q is located 

near an equal and opposite charge at rest. If the separation between the centers of 

the charges is d, the charges wdl have a dipole moment p = qd, which we take to 

be a function of time. Now we should expect that if we look at the fields close to 

the chaiges, we won’t have to worry about the delay; the electric field will be 

exactly the same as the one we have calculated earlier for an electrostatic dipole 

* The formula was worked out by R. P. Feynman, in about 1950, and given in some 
lectures as a good way of thinking about synchrotron radiation 
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Fig. 21-2. The potentials at (1) are 

given by integrals over the charge 

density p. 

—using, of course, the instantaneous dipole moment p{t). But if we go very far 

out, we ought to find a term in the field that goes as 1 /r and depends on the ac¬ 

celeration of the charge perpendicular to the line of sight. Let’s see if we get such 

a result. 

We begin by calculating the vector potential A, using Eq. (21.16). Suppose 

that our moving charge is in a small blob whose charge density is given by p(x, y, z), 

and the whole thing is moving at any instant with the velocity v. Then the current 

density j(x, y, z) will be equal to vp(x, y, z). It will be convenient to take our 

coordinate system so that the z-axis is in the direction of v; then the geometry of 

our problem is as shown in Fig. 21-2. We want the integral 

y(2, / - r12/c) 
dV>. 

rvi 
(21.17) 

Now if the size of the charge-blob is really very small compared with r12, we 

can set the rl2 term in the denominator equal to r, the distance to the center of the 

blob, and take r outside the integral. Next, we are also going to set r12 = r in 

the numerator, although that is not really quite right. It is not right because we 

should take j at, say, the top of the blob at a slightly different time than we used 

for j at the bottom of the blob. When we set r12 = r in j(t — r12/c), we are 

taking the current density for the whole blob at the same time (t — r/c). That is 

an approximation that will be good only if the velocity v of the charge is much 

less than c. So we are making a nonrelativistic calculation. Replacing j by pv, 

the integral (21.17) becomes 

~ Jvp(2, t - r/c) dV2. 

Since all the charge has the same velocity, this integral is just v/r times the total 

charge q. But qv is just Bp/Bt, the rate of change of the dipole moment—which is, 

of course, to be evaluated at the retarded time (t — r/c). We will write it as 

p{t — r/c). So we get for the vector potential 

A(\,t) 
1 pit - r/c) 

4lT6qC2 r 
(21.18) 

Our result says that the current in a varying dipole produces a vector potential 

in the form of spherical waves whose source strength is ^/4xe0c2. 

We can now get the magnetic field from B — V X A. Sincep is totally in the 

z-direction, A has only a z-component; there are only two nonzero derivatives in 

the curl So Bx = BAZ/By and By = —dAz/dx. Let’s first look at Bx: 

dAz _ 1 d p(t — r/c) 

By 47re0c2 By r 
(21.19) 

To carry out the differentiation, we must remember that r = \fx^ + y2 + z2, so 

Bx - -x p(t - r c) 
47re0c2 By 50) + 1 1 B 

4ir€0c2 r By 
p{t - r/c). (21.20) 

Remembering that Br/By = y/r, the first term gives 

_1_yp(t r/c) ^ 

47T€0c2 r 
(21.21) 

which drops off as 1/a*2 like the fields of a static dipole (because y/r is constant for 

a given direction). 

The second term in Eq. (21.20) gives us the new effects. Carrying out the 

differentiation, we get 

47T€qC2 cr2 
p(t - r/c), (21.22) 

where p means, of course, the second derivative of p with respect to i. This term, 
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which comes from differentiating the numerator, is responsible for radiation. 

First, it describes a field which decreases with distance only as \/r. Second, it 

depends on the acceleration of the charge. You can begin to see how we are going 

to get a result like Eq. (21 1'), which describes the radiation of light. 

Let’s examine in a little more detail how this radiation term comes about—it 

is such an interesting and important result. We start with the expression (21.18), 

which has a \/r dependence and is therefore like a Coulomb potential, except for 

the delay term in the numerator. Why is it then that when we differentiate with 

respect to space coordinates to get the fields, we don’t just get a l/r2 field—with, 

of course, the corresponding time delays? 

We can see why in the following way: Suppose that we let our dipole oscillate 

up and down in a sinusoidal motion. Then we would have 

and 
P = Pz = Po sin a)t 

Az 
1 (tipo cos cti(t — r/c) 

47T€0C2 r 

If we plot a graph of Az as a function of r at a given instant, we get the curve shown 

in Fig 21-3. The peak amplitude decreases as \/r, but there is, in addition, an 

oscillation in space, bounded by the l/r envelope. When we take the spatial de¬ 

rivatives, they will be proportional to the slope of the curve. From the figure we 

see that there are slopes much steeper than the slope of the l/r curve itself. It is, 

in fact, evident that for a given frequency the peak slopes are proportional to the 

amplitude of the wave, which varies as l/r. So that explains the drop-off rate of 

the radiation term. 

It all comes about because the variations with time at the source are translated 

into variations m space as the waves are propagated outward, and the magnetic 

fields depend on the spatial derivatives of the potential. 

Let's go back and finish our calculation of the magnetic field. We have for 

Bx the two terms (21.21) and (21.22), so 

yp(t - r/c) _ yp(t - r/c) 
r4 Cr2 

Br = 
AtTCqC- 

Fig. 21-3. The magnitdue of A as a 

function of r at the instant t for the 

spherical wave from an oscillating dipole. 

With the same kind of mathematics, we get 

47reQc2 

xp(t r/c) + xp(t r/c) 

cr2 

Or we can put it all together in a nice vector formula: 

B = 
1 [P + (r/c)p]t-vic X r 

47r€oC2 rs 
(21 23) 

Now let’s look at this formula. First of all, if we go very far out in r, only the 

p term counts. The direction of 2?is given by p X r, which is at right angles to the 

radius r and also at right angles to the acceleration, as in Fig. 21-4. Everything is 

coming out right; that is also the result we get from Eq. (21.1'). 

Now let’s look at what we are not used to—at what happens closer in. In 

Section 14-9 we worked out the law of Biot and Savart for the magnetic field of an 

element of current. We found that a current element j dV contributes to the mag¬ 

netic field the amount 

dB - 
_1__ j X r 
47re0c2 rs 

dV. (21.24) 

Fig. 21-4. The radiation fields B and 

E of an oscillating dipole. 

You see that this formula looks very much like the first term of Eq (21.23), if we 

remember that p is the current. But there is one difference. In Eq. (21.23), the 

current is to be evaluated at the time (/ — r/c), which doesn’t appear in Eq. (21.24). 

Actually, however, Eq. (21.24) is still very good for small r, because the second 
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term of Eq. (21 23) tends to cancel out the effect of the retardation in the first term. 

The two together give a result very near to Eq. (21 24) when r is small. 

We can see that this way. When r is small, (/ — r/c) is not very different from 

t, so we can expand the bracket in Eq. (21.23) in a Taylor series. For the first term, 

Pit - r/c) = p{t) - ~ p(t) + etc., 

and to the same order in r/c, 

p(t - r/c) = pit). 

When we take the sum, the two terms in p cancel, and we are left with the un¬ 

retarded current/?: that is ,p(t)—plus terms of order (r/c)2 or higher [e.g., \(r/c)2p] 

which will be very small for r small enough that p does not alter markedly in the 

time r/c. 

So Eq. (21 23) gives fields very much like the instantaneous theory—much 

closer than the instantaneous theory with a delay; the first-order effects of the delay 

are taken out by the second term. The static formulas are very accurate, much 

more accurate than you might think Of course, the compensation only works for 

points close in. For points far out the correction becomes very bad, because the 

time delays produce a very large effect, and we get the important 1 jr term of the 

radiation. 

We still have the problem of computing the electric field and demonstrating 

that it is the same as Eq. (2l.T)- For large distances we can see that the answer 

is going to come out all right. We know that far from the sources, where we have 

a propagating wave, E is perpendicular to B (and also to #*), as in Fig. 21-4, and 

that cB ~ E So E is proportional to the acceleration p, as expected from Eq. 

(21.T). 
To get the electric field completely for all distances, we need to solve for the 

electrostatic potential. When we computed the current integral for A to get 

Eq. (21.18), we made an approximation by disregarding the slight variation of r 

in the delay terms. This will not work for the electrostatic potential, because we 

would then get 1 /r times the integral of the charge density, which is a constant. 

This approximation is too rough. We need to go to one higher order. Instead of 

getting involved in that higher-order computation directly, we can do something 

else—we can determine the scalar potential from Eq. (21.6), using the vector po¬ 

tential we have already found. The divergence of A, in our case, is just dAz/dz 

—since Ax and Ay are identically zero. Differentiating in the same way that we 

did above to find B, 

V A 
4tre0c2 

p(t - r/c) 
d , Id . 

Tz\r) + ~rTz PU ~ 
r/c) 

J_ 

47re0c2 

zpjt - r/c) _ zpjt - r/c) 

r'* cr2 

Or, in vector notation, 

v . A = _ J_IP + (r/c)p]t-r/c ■ r 
47T60c2 rA 

Using Eq. (21.6), we have an equation for 0: 

_ 1 [P + (r/c)p]t-rfC r 

dt 47T€0 

Integrating with respect to t just removes one dot from each of the p% so 

</>('% t) = 
1 [P + (r/c)p]t_r/c • r 

47re(j E5 
(21 25) 

(The constant of integration would correspond to some superposed static field 

which could, of course, exist. For the oscillating dipole we have taken, there is 

no static field ) 
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We are now able to find the electric field E from 

E = 
dA 

~v* ~ it 

Since the steps are tedious but straightforward [providing you remember that 

p(t — r/c) and its time derivatives depend on x, y, and z through the retardation 

r/c], we will just give the result: 

E(r, 0 = 
-1 

47T€n/'3 

with 

/ - 3 {P- r:pr + ^ {Pit ~ r/c) X r} X r 

P’ = Pit - r/c) + ~pit- r/c). 

(21.26) 

(21.27) 

Although it looks rather complicated, the result is easily interpreted. The 

vector />* is the dipole moment retarded and then “corrected” for the retardation, 

so the two terms with p* give just the static dipole field when r is small. [See 

Chapter 6, Eq. (6.14).] When r is large, the term in p dominates, and the electric 

field is proportional to the acceleration of the charges, at right angles to #*, and, m 

fact, directed along the projection of p m a plane perpendicular to r. 

This result agrees with what we would have gotten using Eq. (21.1). Of 

course, Eq. (21.1) is more general; it works with any motion, while Eq. (21.26) is 

valid only for small motions for which we can take the retardation r/c as constant 

over the source. At any rate, we have now provided the underpinnings for our 

entire previous discussion of light (excepting some matters discussed in Chapter 

36 of Vol. I), for it all hinged on the last term of Eq. (21.26). We will discuss next 

how the fields can be obtained for more rapidly moving charges (leading to the 

relativistic effects of Chapter 36 of Vol. I). 

21-5 The potentials of a moving charge; the general solution of Lienard and 

Wiechert 

In the last section we made a simplification in calculating our integral for A 

by considering only low velocities. But in doing so we missed an important point 

and also one where it is easy to go wrong. We will therefore take up now a calcula¬ 

tion of the potentials for a point charge moving in any way whatever—even with 

a relativistic velocity. Once we have this result, we will have the complete electro¬ 

magnetism of electric charges. Even Eq. (21.1) can then be derived by taking 

derivatives. The story will be complete. So bear with us. 

Let’s try to calculate the scalar potential 0(1) at the point (jcx, y u zx) produced 

by a point charge, such as an electron, moving in any manner whatsoever. By a 

"point” charge we mean a very small ball of charge, shrunk down as small as you 

like, with a charge density p(x, y, z). We can find 0 from Eq. (21.15): 

0(1. 0=4P(2’* ~ ria/c) dV2. (21.28) 

The answer would seem to be—and almost everyone would, at first, think—that 

the integral of p over such a “point” charge is just the total charge q, so that 

*0,0 
_J_q_ 
47re0 r'i2 

(wrong). 

By r[2 we mean the radius vector from the charge at point (2) to point (1) at the 

retarded time (t — r\ 2/c). It is wrong. 

The correct answer is 

*(1, 0 
i q l 

4tt€0 r\2 1 — vr'/c 9 
(21.29) 

where vr> is the component of the velocity of the charge parallel to r[2—namely, 

toward point (1). We will now show you why. To make the argument easier to 
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Fig. 21-5. (a) A “point" charge—considered as a small cubical distribution of 

charge—moving with the speed v toward point (1) (b) The volume element AV, 

used for calculating the potentials. 

follow, we will make the calculation first for a “point” charge which is in the form 

of a little cube of charge moving toward the point (1) with the speed v, as shown 

in Fig. 21-5(a). Let the length of a side of the cube be a, which we take to be 

much, much less than r12, the distance from the center of the charge to the 

point (1). 

Now to evaluate the integral of Eq. (21.28), we will return to basic principles; 

we will write it as the sum 

EPi kV% 

~TT’ 
(21.30) 

1 2 4 
5 1 4 

(a) 
__L i. 

( 

Fig. 21-6. Integrating p(f — r'/ c) dV 

for a moving charge. 

where rx is the distance from point (1) to the /th volume element AK and pt is the 

charge density at AVX at the time tt = t — rjc. Since rt » a, always, it will be 

convenient to take our AV, in the form of thin, rectangular slices perpendicular to 

r12, as shown in Fig. 21—5(b). 

Suppose we start by taking the volume elements AVt with some thickness w 

much less than a. The individual elements will appear as shown in Fig. 21-6(a), 

where we have put in more than enough to cover the charge. But we have not 

shown the charge, and for a good reason. Where should we draw it9 For each 

volume element AVt, we are to take p at the time th = (/ — rt/c), but since the 

charge is moving, it is in a different place for each volume element AK(! 

Let’s say that we begin with the volume element labeled “1” in Fig. 21-6(a), 

chosen so that at the time/i = (t — rx/c) the “back” edge of the charge occupies 

AVU as shown in Fig. 21-6(b). Then when we evalute p2 AK2, we must use the 

position of the charge at the slightly later time t2 = (/ — r2/c), when the charge 

will be in the position shown in Fig. 21-6(c). And so on, for AK3, AL4, etc. Now 

we can evaluate the sum. 

Since the thickness of each AV\ is w, its volume is wa2. Then each volume 

element that overlaps the charge distribution contains the amount of charge 

ir«2p, where p is the density of charge within the cube—which we take to be 

uniform. When the distance from the charge to point (1) is large, we will make a 

negligible error by setting all the in the denominators equal to some average 

value, say the retarded position rf of the center of the charge. Then the sum (21.30) 

i"> 

where AVis the last AV, that overlaps the charge distributions, as shown in Fig. 

21-6(e). The sum is, clearly, 

^ pwa2 _ pa3 /Ahv\ 
r! r! \ a ) 

Now pa* is just the total charge q and Nw is the length b shown in part (e) of the 

figure. So we have 

_ JL (b 
\a 

(21.31) 
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What is bl It is the length of the cube of charge increased by the distance 

moved by the charge between tx — (t — r^/c) and = (/ — rN/c)—which is 

the distance the charge moves in the time 

At = tv — ii = (>i — rN)/c — b/c. 

Since the speed of the charge is v9 the distance moved is v At = vb/c. But the 

length b is this distance added to a: 

Solving for />, we get 

b = a + - b. 
c 

b = 
a 

1 - (v/c) 

Of course by v we mean the velocity at the retarded time f = (t — r'/c), which 

we can indicate by writing [1 — r/c]rvU and Eq. (21.31) for the potential becomes 

0(1,0 
q_i_ 

47T6nTf [1 - (y/c)]ret 

This result agrees with our assertion, Eq. (21.29). There is a correction term which 

comes about because the charge is moving as our integral “sweeps over the charge.” 

When the charge is moving toward the point (1), its contribution to the integral is 

increased by the ratio b/a. Therefore the correct integral is qjr1 multiplied by 

b/a, which is 1/[1 — r/c]Tvi. 

If the velocity of the charge is not directed toward the observation point (1), 

you can see that what matters is the component of its velocity toward point (1). 

Calling this velocity component rr, the correction factor is 1/[1 — rr/c]Tvt. Also, 

the analysis we have made goes exactly the same way for a charge distribution of 

any shape—it doesn’t have to be a cube. Finally, since the “size” of the charge a 

doesn’t enter into the final result, the same result holds when we let the charge 

shrink to any size—even to a point. The general result is that the scalar potential 

for a point charge moving with any velocity is 

4,(0 4t€,/[1 - (tv/c)]rl„ ' 

This equation is often written in the equivalent form 

^ 47re0[r - (v • r/c)]ret ’ 

(21.32) 

(21.33) 

where r is the vector from the charge to the point (1), where 4> is being evaluated, 

and all the quantities in the bracket are to have their values at the retarded time 

tf = t — rf/c. 

The same thing happens when we compute A for a point charge, from Eq. 

(21.16). The current density is pv and the integral over p is the same as we found 

for (f>. The vector potential is 

A(\, /) 
_qv_ 
47re0c2[r - (u • r/c)]rr[ 

(21.34) 

The potentials for a point charge were first deduced m this form by Lienard 

and Wiechert and are called the Lienard-Wiechertpotentials. 

To close the ring back to Eq. (21.1) it is only necessary to compute E and B 

from these potentials (using B — V X A and E = —Vd>~ dA/dt). It is now 

only arithmetic. The arithmetic, however, is fairly involved, so we will not write 

out the details. Perhaps you will take our word for it that Eq. (21.1) is equivalent 

to the Lienard-Wiechert potentials we have derived.* 

* If you have a lot of paper and time you can try to work it through yourself. We 
would, then, make two suggestions- First, don’t forget that the derivatives of rf are 
complicated, since it is a function of t' Second, don’t try to derive (21 1), but carry out 
all of the derivatives in it, and then compare what you get with the E obtained from the 
potentials (21.33) and (21.34). 

21-11 



21-6 The potentials for a charge moving with constant velocity; the Lorentz 

formula 

We want next to use the Lienard-Wiechert potentials for a special case—to 

find the fields of a charge moving with uniform velocity in a straight line. We will 

do it again later, using the principle of relativity. We already know what the po¬ 

tentials are when we are standing in the rest frame of a charge. When the charge 

is moving, we can figure everything out by a relativistic transformation from one 

system to the other. But relativity had its origin in the theory of electricity and 

magnetism. The formulas of the Lorentz transformation (Chapter 15, Vol. 1) 

were discoveries made by Lorentz when he was studying the equations of electricity 

and magnetism. So that you can appreciate where things have come from, we 

would like to show that the Maxwell equations do lead to the Lorentz transforma¬ 

tion. We begin by calculating the potentials of a charge moving with uniform 

velocity, directly from the electrodynamics of Maxwell’s equations. We have 

shown that Maxwell’s equations lead to the potentials for a moving charge that we 

got in the last section. So when we use these potentials, we are using Maxwell’s 

theory. 

Fig. 21-7. Finding the potential at 

P of a charge moving with uniform 

velocity along the x-axis. 

Suppose we have a charge moving along the x-axis with the speed r. We want 

the potentials at the point P(x, y, z), as shown in Fig. 21-7. If / -= 0 is the moment 

when the charge is at the origin, at the time t the charge is at x = '>/, y = z = 0 

What we need to know, however, is its position at the retarded time 

/' = t - f (21.35) 

where r' is the distance to the point P from the charge at the retarded time. At the 

earlier time the charge was at x = so 

r' = \/{x - vt')* + y1 +~2tK (21.36) 

To find rf or f we have to combine this equation with Eq. (21.35). First, we 

eliminate r* by solving Eq. (21.35) for r' and substituting in Eq. (21.36). Then, 

squaring both sides, we get 

c2(t — t')2 = (x — rf)2 -f y2 + z2, 

which is a quadratic equation in f. Expanding the squared binomials and collecting 

like terms in t', we get 

(r2 - c2y2 - 2(xv - c2ty + x2 + y2 + 22 - (ct)2 = 0. 

Solving for f, 
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To get rf we have to substitute this expression for i' into 

r> - c(t - f). 

Now we are ready to find 0 from Eq. (21.33), which, since v is constant, 

becomes 

1 
<Kx,y,z,t) = 

47T€0 r* — (v • r'/c) 
(21.38) 

The component of v in the direction of r' is v X (x — vt)/r', so v • r' is just 

v X (x — vt'X and the whole denominator is 

c(t — tf) — ~(x — vf) 

Substituting for (1 — v2/c2)t' from Eq. (21.37), we get for 0 

-•['-s-O-sM- 

*X-y’Z’t) = 4k 
(x — vtf + 0-S) (y2 + z2) 

This equation is more understandable if we rewrite it as 

q 1 l <j>(x, y, z, t) = 
4rre0 Jl - ^ f(—-—V 

^ c L\\/l - t'Vc2/ 
+ / + z2 

1/2 
(21.39) 

2. The vector potential A is the same expression with an additional factor of v/c 

. v 
A = 

In Eq. (21.39) you can clearly see the beginning of the Lorentz transformation. 

If the charge were at the origin in its own rest frame, its potential would be 

z) Aveo lx2 + y2 + z2]i/2' 

We are seeing it in a moving coordinate system, and it appears that the coordinates 

should be transformed by 

x — vt 
x -> — - » 

Vl — v2/c2 

y y, 
z —» z. 

That is just the Lorentz transformation, and what we have done is essentially the 

way Lorentz discovered it. 

But what about that extra factor I/vT — v2/c% that appears at the front of 

Eq. (21.39)? Also, how does the vector potential A appear, when it is everywhere 

zero in the rest frame of the particle? We will soon show that A and 0 together 

constitute a four-vector, like the momentum p and the total energy U of a particle. 

The extra l/\/l — "?;2/c2 in Eq. (21.39) is the same factor that always comes in 

when one transforms the components of a four-vector—just as the charge density p 

transforms to p/y/\ — v2/c2. In fact, it is almost apparent from Eqs. (21 4) 

and (21.5) that A and 0 are components of a four-vector, because we have already 

shown in Chapter 13 that j and p are the components of a four-vector. 

Later we will take up in more detail the relativity of electrodynamics; here we 

only wished to show how naturally the Maxwell equations lead to the Lorentz 

transformation. You will not, then, be surprised to find that the laws of electricity 

and magnetism are already correct for Einstein’s relativity. We will not have to 

“fix them up,” as we had to do for Newton’s laws of mechanics. 
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22 

AC Circuits 

22-1 Impedances 

Most of our work in this course has been aimed at reaching the complete 

equations of Maxwell In the last two chapters we have been discussing the con¬ 

sequences of these equations. We have found that the equations contain all the 

static phenomena we had worked out earlier, as well as the phenomena of electro¬ 

magnetic waves and light that we had gone over in some detail in Volume I. The 

Maxwell equations give both phenomena, depending upon whether one computes 

the fields close to the currents and charges, or very far from them There is not 

much interesting to say about the intermediate region; no special phenomena 

appear there. 

There still remain, however, several subjects in electromagnetism that we 

want to take up. We want to discuss the question of relativity and the Maxwell 

equations—what happens when one looks at the Maxwell equations with respect 

to moving coordinate systems. There is also the question of the conservation of 

energy in electromagnetic systems. Then there is the broad subject of the electro¬ 

magnetic properties of materials; so far, except for the study of the properties 

of dielectrics, we have considered only the electromagnetic fields in free space And 

although we covered the subject of light in some detail in Volume I, there are 

still a few things we would like to do again from the point of view of the field 

equations. 

In particular, we want to take up again the subject of the index of re¬ 

fraction, particularly for dense materials. Finally, there are the phenomena 

associated with waves confined in a limited region of space. We touched on this 

kind of problem briefly when we were studying sound waves. Maxwell’s equations 

lead also to solutions which represent confined waves of the electric and magnetic 

fields. We will take up this subject, which has important technical applications, 

in some of the following chapters. In order to lead up to that subject, we will 

begin by considering the properties of electrical circuits at low frequencies. We 

will then be able to make a comparison between those situations m which the 

almost static approximations of Maxwell’s equations are applicable and those 

situations in which high-frequency effects are dominant. 

So we descend from the great and esoteric heights of the last few chapters 

and turn to the relatively low-level subject of electrical circuits. We will see, how¬ 

ever, that even such a mundane subject, when looked at in sufficient detail, can 

contain great complications 

We have already discussed some of the properties of electrical circuits in 

Chapters 23 and 25 of Vol. I. Now we will cover some of the same material again, 

but in greater detail. Again we are going to deal only with linear systems and with 

voltages and currents which all vary sinusoidally; we can then represent all voltages 

and currents by complex numbers, using the exponential notation described in 

Chapter 22 of Vol. I. Thus a time-varying voltage V(t) will be written 

22-1 

22-2 

22-3 
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22-5 

22-6 

22-7 

22-8 
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V(t) = Vew\ (22.1) 

where V represents a Complex number that is independent of t. It is, of course, 
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Similarly, all of our other time-varying quantities will be taken to vary 

sinusoidally at the same frequency co. So we write 

II ^-H
> ci e (current), 

g = g e™1 (emf), (22.2) 

E = £ elwt (electric field), 

and so on. 

Most of the time we will write our equations in terms of V, /,£,... (instead of 

in terms of V, /, £,. . .), remembering, though, that the time variations are as 

given in (22.2). 

In our earlier discussion of circuits we assumed that such things as inductances, 

capacitances, and resistances were familiar to you. We want now to look in a little 

more detail at what is meant by these idealized circuit elements. We begin with 

the inductance. 

An inductance is made by winding many turns of wire in the form of a coil 

and bringing the two ends out to terminals at some distance from the coil, as shown 

in Fig. 22-1. We want to assume that the magnetic field produced by currents in 

the coil does not spread out strongly all over space and interact with other parts of 

the circuit. This is usually arranged by winding the coil in a doughnut-shaped 

form, or by confining the magnetic field by winding the coil on a suitable iron core, 

or by placing the coil in some suitable metal box, as indicated schematically in 

Fig. 22-1. In any case, we assume that there is a negligible magnetic field in the 

external region near the terminals a and h. We are also going to assume that we 

can neglect any electrical resistance in the wire of the coil. Finally, we will assume 

that we can neglect the amount of electrical charge that appears on the surface of 

a wire in building up the electric fields. 

With all these approximations we have what we call an “ideal" inductance. 

(We will come back later and discuss what happens in a real inductance.) For an 

ideal inductance we say that the voltage across the terminals is equal to L(dl/dt). 

Let’s see why that is so. When there is a current through the inductance, a magnetic 

field proportional to the current is built up inside the coil. If the current changes 

with time, the magnetic field also changes. In general, the curl of E is equal to 

— dB/dt; or, put differently, the line integral of E all the way around any closed 

path is equal to the negative of the rate of change of the flux of B through the loop 

Now suppose we consider the following path: Begin at terminal a and go along 

the coil (staying always inside the wire) to terminal b \ then return from terminal b 

to terminal a through the air in the space outside the inductance. The line integral 

of E around this closed path can be written as the sum of two parts: 

jE d. f ds + J E • ds. 

via outside 
coil 

(22.3) 

As we have seen before, there can be no electric fields inside a perfect conductor. 

(The smallest fields would produce infinite currents.) Therefore the integral from 

a to b via the coil is zero. The whole contribution to the line integral of E comes 

from the path outside the inductance from terminal b to terminal a. Since we have 

assumed that there are no magnetic fields in the space outside of the “box," this 

part of the integral is independent of the path chosen and we can define the po¬ 

tentials of the two terminals. The difference of these two potentials is what we 

call the voltage difference, or simply the voltage K, so we have 

V = -f°E-ds = -j>E-ds. 

The complete line integral is what we have before called the electromotive 

force £ and is, of course, equal to the rate of change of the magnetic flux in the 

coil. We have seen earlier that this emf is equal to the negative rate of change of 
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the current, so we have 

V = 

where L is the inductance of the coil. Since dl/dt = iul, we have 

V = iuLL (22.4) 

The way we have described the ideal inductance illustrates the general approach 

to other ideal circuit elements—usually called “lumped” elements. The properties 

of the element are described completely in terms of currents and voltages that 

appear at the terminals. By making suitable approximations, it is possible to 

ignore the great complexities of the fields that appear inside the object. A separation 

is made between what happens inside and what happens outside. 

For all the circuit elements we will find a relation like the one in Eq. (22.4), in 

which the voltage is proportional to the current with a proportionality constant 

that is, m general, a complex number. This complex coefficient of proportionality 

is called the impedance and is usually written as 2 (not to be confused with the 

z-coordinate). It is, in general, a function of the frequency co. So for any lumped 

element we write 

v V 
j = j = (22.5) 

For an inductance, we have 

z (inductance) = zL = iwL. (22.6) 

Now let’s look at a capacitor from the same point of view * A capacitor con¬ 

sists of a pair of conducting plates from which two wires are brought out to suitable 

terminals. The plates may be of any shape whatsoever, and are often separated 

by some dielectric material. We illustrate such a situation schematically m Fig. 

22-2. Again we make several simplifying assumptions. We assume that the 

plates and the wires are perfect conductors. We also assume that the insulation 

between the plates is perfect, so that no charges can flow across the insulation 

from one plate to the other. Next, we assume that the two conductors are close 

to each other but far from all others, so that all field lines which leave one plate 

end up on the other. Then there are always equal and opposite charges on the two 

plates and the charges on the plates are much larger than the charges on the sur¬ 

faces of the lead-in wires. Finally, we assume that there are no magnetic fields 

close to the capacitor. 

^ Suppose now we consider the line integral of E around a closed loop which 

starts at terminal a, goes along inside the wire to the top plate of the capacitor, 

jumps across the space between the plates, passes from the lower plate to terminal 

b through the wire, and returns to terminal a in the space outside the capacitor. 

Since there is no magnetic field, the line integral of E around this closed path is 

zero. The integral can be broken down into three parts: 

Fig. 22-2. A capacitor (or con¬ 

denser). 

<^E * ds / 
along 
wires 

E * ds e ■ ds + r 
>b 

between outside 
plates 

E • ds. 
(22.7) 

The integral along the wires is zero, because there are no electric fields inside per¬ 

fect conductors. The integral from b to a outside the capacitor is equal to the nega¬ 

tive of the potential difference between the terminals. Since we imagined that the 

two plates are in some way isolated from the rest of the world, the total charge on 

* There are people who say we should call the objects by the names “inductor” and 
“capacitor” and call their properties “inductance” and “capacitance” (by analogy with 
“resistor” and “resistance”). We would rather use the words you will hear in the labora¬ 
tory. Most people still say “inductance” for both the physical coil and its inductance L. 
The word “capacitor” seems to have caught on—although you will still hear “condenser” 
fairly often—and most people still prefer the sound of “capacity" to "capacitance.” 
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the two plates must be zero; if there is a charge Q on the upper plate, there is an 

equal, opposite charge — Q on the lower plate. We have seen earlier that if two 

conductors have equal and opposite charges, plus and minus Q, the potential 

difference between the plates is equal to Q/C, where C is called the capacity of the 

two conductors. From Eq. (22.7) the potential difference between the terminals 

a and b is equal to the potential difference between the plates. We have, therefore, 

that 

V 
Q 
c * 

The electric current I entering the capacitor through terminal a (and leaving 

through terminal b) is equal to dQ/dt, the rate of change of the electric charge on 

the plates. Writing dV/dt as icvV, we can put the voltage current relationship for 

a capacitor in the following way: 

or 

V = 
I 

icoC 
(22.8) 

The impedance z of a capacitor, is then 

z (capacitor) = zc 
1 

iuoC 
(22.9) 

Fig. 22-3. A resistor. The third element we want to consider is a resistor. However, since we have 

not yet discussed the electrical properties of real materials, we are nor yet ready 

to talk about what happens inside a real conductor. We will just have to accept 

as fact that electric fields can exist inside real materials, that these electric fields 

give rise to a flow of electric charge—that is, to a current—and that this current 

is proportional to the integral of the electric field from one end of the conductor 

to the other. We then imagine an ideal resistor constructed as in the diagram of 

Fig. 22-3. Two wires which we take to be perfect conductors go from the terminals 

a and b to the two ends of a bar of resistive material. Following our usual line of 

argument, the potential difference between the terminals a and b is equal to the 

line integral of the external electric field, which is also equal to the line integral of 

the electric field through the bar of resistive material. It then follows that the cur¬ 

rent / through the resistor is proportional to the terminal voltage V: 

(b) (c) (d) / = 
V 

R’ 

O 

==c 

o 

z - I iojL 
I 

i ojC 

where R is called the resistance. We will see later that the relation between the 

current and the voltage for real conducting materials is only approximately linear. 

We will also see that this approximate proportionality is expected to be independent 

of the frequency of variation of the current and voltage only if the frequency is 

not too high. For alternating currents then, the voltage across a resistor is in phase 

with the current, which means that the impedance is a real number. 

R z (resistance) = zIt = R. (22.10) 

Fig. 22-4. The ideal lumped circuit Our results for the three lumped circuit elements—the inductor, the capacitor, 

elements (passive). and the resistor—are summarized in Fig. 22-4. In this figure, as well as in the 

preceding ones, we have indicated the voltage by an arrow that is directed from one 

terminal to another. If the voltage is “positive”—that is, if the terminal a is at a 

higher potential than the terminal b—the arrow indicates the direction of a positive 

“voltage drop.” 

Although we are talking about alternating currents, we can of course include 

the special case of circuits with steady currents by taking the limit as the frequency 

w goes to zero. For zero frequency—that is, for DC—the impedance of an induc¬ 

tance goes to zero; it becomes a short circuit. For DC, the impedance of a condenser 
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goes to infinity; it becomes an open circuit. Since the impedance of a resistor is 

independent of frequency, it is the only element left when we analyze a circuit 

for dc. 

In the circuit elements we have described so far, the current and voltage are 

proportional to each other. If one is zero, so also is the other. We usually think in 

terms like these: An applied voltage is “responsible” for the current, or a current 

“gives rise to” a voltage across the terminals; so in a sense the elements “respond” 

to the “applied” external conditions. For this reason these elements are called 

passive elements. They can thus be contrasted with the active elements, such as 

the generators we will consider in the next section, which are the sources of the 

oscillating currents or voltages in a circuit. 

22-2 Generators 

Now we want to talk about an active circuit element—one that is a source of 

the currents and voltages in a circuit—namely, a generator. 

Suppose that we have a coil like an inductance except that it has very few 
turns, so that we may neglect the magnetic field of its own current. This coil, 

however, sits in a changing magnetic field such as might be produced by a rotating 

magnet, as sketched in Fig. 22-5. (We have seen earlier that such a rotating mag¬ 

netic field can also be produced by a suitable set of coils with alternating currents.) 

Again we must make several simplifying assumptions. The assumptions we will 

make are all the ones that we described for the case of the inductance. In particular, 

we assume that the varying magnetic field is restricted to a definite region in the 

vicinity of the coil and does not appear outside the generator in the space between 

the terminals. 

Following closely the analysis we made for the inductance, we consider the 

line integral of E around a complete loop that starts at terminal a, goes through the 

coil to terminal b and returns to its starting point in the space between the two 

terminals. Again we conclude that the potential difference between the terminals 

is equal to the total line integral of E around the loop: 

V = - j>E-ds. 

This line integral is equal to the emf in the circuit, so the potential difference V 

across the terminals of the generator is also equal to the rate of change of the mag¬ 

netic flux linking the coil: 

K=-S = ^(flux). (22.11) 

For an ideal generator we assume that the magnetic flux linking the coil is deter¬ 

mined by external conditions—such as the angular velocity of a rotating magnetic 

field—and is not influenced in any way by the currents through the generator. 

Thus a generator—at least the ideal generator we are considering—is not an 

impedance. The potential difference across its terminals is determined by the 

arbitrarily assigned electromotive force £(/). Such an ideal generator is represented 

by the symbol shown in Fig. 22-6. The little arrow represents the direction of the 

emf when it is positive. A positive emf in the generator of Fig. 22-6 will produce 

a voltage V ~ £, with the terminal a at a higher potential than the terminal b. 

There is another way to make a generator which is quite different on the 

inside but which is indistinguishable from the one we have just described insofar 

as what happens beyond its terminals. Suppose we have a coil of wire which 

is rotated in a fixed magnetic field, as indicated in Fig. 22-7. We show a bar 

magnet to indicate the presence of a magnetic field; it could, of course, be replaced 

by any other source of a steady magnetic field, such as an additional coil carrying 

a steady current. As shown in the figure, connections from the rotating coil are 

made to the outside world by means of sliding contacts or “slip rings.” Again, 

we are interested in the potential difference that appears across the two terminals 
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Fig. 22-5. A generator consisting of 

a fixed coil and a rotating magnetic field. 

a 

b 

Fig. 22-6. Symbol for an ideal gen¬ 

erator. 
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Fig, 22-7. A generator consisting of 

a coil rotating in a fixed magnetic field. 

a and b, which is of course the integral of the electric field from terminal a to ter¬ 

minal b along a path outside the generator. 

Now in the system of Fig. 22-7 there are no changing magnetic fields, so we 

might at first wonder how any voltage could appear at the generator terminals 

In fact, there are no electric fields anywhere inside the generator. We are, as usual, 

assuming for our ideal elements that the wires inside are made of a perfectly con¬ 

ducting material, and as we have said many times, the electric field inside a perfect 

conductor is equal to zero. But that is not true. It is not true when a conductor 

is moving in a magnetic field. The true statement is that the total force on any 

charge inside a perfect conductor must be zero. Otherwise there would be an 

infinite flow of the free charges. So what is always true is that the sum of the electric 

field E and the cross product of the velocity of the conductor and the magnetic 

field B—which is the total force on a unit charge—must have the value zero 

inside the conductor: 

F=E-\-vXB = 0 (in a perfect conductor), (22.12) 

where v represents the velocity of the conductor. Our earlier statement that there 

is no electric field inside a perfect conductor is all right if the velocity v of the 

conductor is zero; otherwise the correct statement is given by Eq. (22.12). 

Returning to our generator of Fig. 22-7, we now see that the line integral of 

the electric field E from terminal a to terminal b through the conducting path of 

the generator must be equal to the line integral of v X B on the same path, 

fb E'ds = - fb (v X B)'ds. (22.13) 
Ja Ja 

inside inside 
conductor conductor 

It is still true, however, that the line integral of E around a complete loop, including 

the return from b to a outside the generator, must be zero, because there are no 

changing magnetic fields. So the first integral in Eq. (22.13) is also equal to K, 

the voltage between the two terminals. It turns out that the right-hand integral 

of Eq. (22 13) is just the rate of change of the flux linkage through the coil and is 

therefore—by the flux rule—equal to the emf in the coil. So we have again that 

the potential difference across the terminals is equal to the electromotive force in 

the circuit, in agreement with Eq. (22.11). So whether we have a generator in which 

a magnetic field changes near a fixed coil, or one in which a coil moves in a fixed 

magnetic field, the external properties of the generators are the same. There is a 

voltage difference V across the terminals, which is independent of the current in 

the circuit but depends only on the arbitrarily assigned conditions inside the 

generator. 

So long as we are trying to understand the operation of generators from the 

point of view of Maxwell’s equations, we might also ask about the ordinary chemi¬ 

cal cell, like a flashlight battery It is also a generator, i.e., a voltage source, al¬ 

though it will of course only appear in dc circuits. The simplest kind of cell to 

understand is shown in Fig. 22-8. We imagine two metal plates immersed in some 
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chemical solution. We suppose that the solution contains positive and negative 

ions. We suppose also that one kind of ion, say the negative, is much heavier than 

the one of opposite polarity, so that its motion through the solution by the process 

of diffusion is much slower. We suppose next that by some means or other it is 

arranged that the concentration of the solution is made to vary from one part of 

the liquid to the other, so that the number of ions of both polarities near, say, the 

lower plate is much larger than the concentration of ions near the upper plate. 

Because of their rapid mobility the positive ions will drift more readily into the 

region of lower concentration, so that there will be a slight excess of positive charge 

arriving at the upper plate. The upper plate will become positively charged and 

the lower plate will have a net negative charge. 

As more and more charges diffuse to the upper plate, the potential of this plate 

will rise until the resulting electric field between the plates produces forces on the 

ions which just compensate for their excess mobility, so the two plates of the cell 

quickly reach a potential difference which is characteristic of the internal con¬ 

struction. 

Arguing just as we did for the ideal capacitor, we see that the potential differ¬ 

ence between the terminals a and b is just equal to the line integral of the electric 

field between the two plates when there is no longer any net diffusion of the ions. 

There is, of course, an essential difference between a capacitor and such a chemical 

cell. If we short-circuit the terminals of a condenser for a moment, the capacitor 

is discharged and there is no longer any potential difference across the terminals. 

In the case of the chemical cell a current can be drawn from the terminals con¬ 

tinuously without any change in the emf—until, of course, the chemicals inside 

the cell have been used up. In a real cell it is found that the potential difference 

across the terminals decreases as the current drawn from the cell increases. In 

keeping with the abstractions we have been making, however, we may imagine an 

ideal cell in which the voltage across the terminals is independent of the current. 

A real cell can then be looked at as an ideal cell in series with a resistor. 

Fig. 22-8. A chemical cell. 

22-3 Networks of ideal elements; Kirchhoff’s rules 

As we have seen in the last section, the description of an ideal circuit element 

in terms of what happens outside the element is quite simple. The current and 

the voltage are linearly related. But what is actually happening inside the element 

is quite complicated, and it is quite difficult to give a precise description in terms of 

Maxwell’s equations. Imagine trying to give a precise description of the electric 

and magnetic fields of the inside of a radio which contains hundreds of resistors, 

capacitors, and inductors. It would be an impossible task to analyze such a thing 

by using Maxwell’s equations. But by making the many approximations we have 

described in Section 22-2 and summarizing the essential features of the real 

circuit elements in terms of idealizations, it becomes possible to analyze an elec¬ 

trical circuit in a relatively straightforward way. We will now show how that 

is done. 

Suppose we have a circuit consisting of a generator and several impedances 

connected together, as shown in Fig. 22-9. According to our approximations there 

is no magnetic field in the region outside the individual circuit elements. Therefore 

the line integral of E around any curve which does not pass through any of the 

elements is zero. Consider then the curve T shown by the broken line which goes 

all the way around the circuit in Fig. 22-9. The line integral of E around this curve 

is made up of several pieces. Each piece is the line integral from one terminal of a 

circuit element to the other. This line integral we have called the voltage drop 

across the circuit element. The complete line integral is then just the sum of the 

voltage drops across all of the elements in the circuit: 

f E ■ ds = 2 Vn. 

Since the line integral is zero, we have that the sum of the potential differences 

Fig. 22-9. The sum of the voltage 

drops around any closed path is zero. 
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(22.14) 

around a complete loop of a circuit is equal to zero: 

E v" = °- 
around 

any loop 

Fig. 22-10. The sum of the currents 

into any node is zero. 

This result follows from one of Maxwell’s equations—that in a region where there 

are no magnetic fields the line integral of £ around any complete loop is zero. 

Suppose we consider now a circuit like that shown in Fig. 22-10. The hori¬ 

zontal line joining the terminals a, b, c, and d is intended to show that these ter¬ 

minals are all connected, or that they are joined by wires of negligible resistance. 

In any case, the drawing means that terminals a, b, c, and d are all at the same 

potential and, similarly, that the terminals c,/, g, and h are also at one common 

potential. Then the voltage drop V across each of the four elements is the same. 

Now one of our idealizations has been that negligible electrical charges ac¬ 

cumulate on the terminals of the impedances. We now assume further that any 

electrical charges on the wires joining terminals can also be neglected. Then the 

conservation of charge requires that any charge which leaves one circuit element 

immediately enters some other circuit element. Or, what is the same thing, we 

require that the algebraic sum of the currents which enter any given junction must 

be zero. By a junction, of course, we mean any set of terminals such as a, b, c, 

and d which are connected. Such a set of connected terminals is usually called a 

“node.” The conservation of charge then requires that for the circuit of Fig. 22-10, 

h- h - h = 0. (22.15) 

The sum of the currents entering the node which consists of the four terminals 

e,/, g, and h must also be zero: 

~I\ + 12 + ^3 + A “ 0. (22.16) 

Fig. 22-11, Analyzing a 

Kirchhoff's rules. 

circuit with 

This is, of course, the same as Eq. (22.15). The two equations are not independent. 

The general rule is that the sum of the currents into any node must be zero. 

E 7" = °- (22.17) 
into 

a node 

Our earlier conclusion that the sum of the voltage drops around a closed loop 

is zero must apply to any loop in a complicated circuit. Also, our result that the 

sum of the currents into a node is zero must be true for any node. These two equa¬ 

tions are known as Kirchhoff's rules. With these two rules it is possible to solve for 

the currents and voltages in any network whatever. 

Suppose we consider the more complicated circuit of Fig. 22-11. How shall 

we find the currents and voltages in this circuit? We can find them in the following 

straightforward way. We consider separately each of the four subsidiary closed 

loops which appear in the circuit. (For instance, one loop goes from terminal a to 

terminal b to terminal e to terminal d and back to terminal a.) For each of the loops 

we write the equation for the first of Kirchhoff’s rules—that the sum of the voltages 

around each loop is equal to zero. We must remember to count the voltage drop 

as positive if we are going in the direction of the current and negative if we are 

going across an element m the direction opposite to the current; and we must 

remember that the voltage drop across a generator is the negative of the emf in 

that direction. Thus if we consider the small loop that starts and ends at terminal 

a we have the equation 

z\l\ + Z3/3 + — 61 = 0. 

Applying the same rule to the remaining loops, we would get three more equations 

of the same kind. 

Next, we must write the current equation for each of the nodes in the circuit. 

For example, summing the currents into the node at terminal b gives the equation 

h - h - h = 0. 
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Similarly, for the node labeled e we would have the current equation 

I3 “ ^4 + 4 “ ^5 “ 0. 

For the circuit shown there are five such current equations. It turns out, however, 

that any one of these equations can be derived from the other four; there are, 

therefore, only four independent current equations. We thus have a total of eight 

independent, linear equations: the four voltage equations and the four current 

equations. With these eight equations we can solve for the eight unknown currents. 

Once the currents are known the circuit is solved. The voltage drop across any 

element is given by the current through that element times its impedance (or, in 

the case of the voltage sources, it is already known). 

We have seen that when we write the current equations, we get one equation 

which is not independent of the others. Generally it is also possible to write down 

too many voltage equations. For example, in the circuit of Fig. 22-11, although 

we have considered only the four small loops, there are a large number of other 

loops for which we could write the voltage equation. There is, for example, the 

loop along the path abcfeda. There is another loop which follows the path 

abcfehgda. You can see that there are many loops. In analyzing complicated cir¬ 

cuits it is very easy to get too many equations. There are rules which tell us how to 

proceed so that only the minimum number of equations is written down, but 

usually with a little thought it is possible to see how to get the right number of 

equations in the simplest form. Besides, writing an extra equation or two doesn’t 

do any harm. They will not lead to any wrong answers, only perhaps a little 

unnecessary algebra. 

In Chapter 25 of Vol. I we showed that if the two impedances z4 and z2 are 

in series, they are equivalent to a single impedance zs given by 

zs = zx + z2. (22.18) 

We also showed that if the two impedances are connected in parallel, they are 

equivalent to the single impedance zp given by 

*»-(!>,) + ( (2219) 

If you look back you will see that in deriving these results we were in effect making 

use of Kirchhoff’s rules. It is often possible to analyze a complicated circuit by 

repeated application of the formulas for series and parallel impedances. For in¬ 

stance, the circuit of Fig. 22-12 can be analyzed that way. First, the impedances 

z4 and z5 can be replaced by their parallel equivalent, and so also can z0 and z7. 

Then the impedance z2 can be combined with the parallel equivalent of z6 and z7 

by the series rule. Proceeding in this way, the whole circuit can be reduced to a 

generator in series with a single impedance Z. The current through the generator 

is then just £/Z. Then by working backward one can solve for the currents in 

each of the impedances. 

There are, however, quite simple circuits which cannot be analyzed by this 

method, as for example the circuit of Fig. 22-13. To analyze this circuit we must 

Fig. 22-12. A circuit which can be 

analyzed in terms of series and parallel 

combinations. 

p3-«. 

Fig. 22-1 3. A circuit that cannot be 

analyzed in terms of series and parallel 

combinations. 
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write down the current and voltage equations from KirchhofF’s rules. Let’s do it. 

There is just one current equation: 

b 
♦- 

Fig. 22-14. A bridge circuit. 

-* 
b 

Fig. 22-15. Any two-terminal net¬ 

work of passive elements is equivalent to 

an effective impedance. 

11 + ^2 + ^3 ~ 

so we know immediately that 

h = ~(h + /2). 

We can save ourselves some algebra if we immediately make use of this result in 

writing the voltage equations. For this circuit there are two independent voltage 

equations; they are 

— Si + Z2Z 2 — = 0 

and 

S2 — (/1 + 12)z3 — 22z2 — 0. 

There are two equations and two unknown currents. Solving these equations for 

I\ and /2, we get 

and 

h 

h 

z282 — (z2 + z3)8j 

zl(z2 + z3) + Z2Z3 
(22.20) 

Zi82 ~\~ ^381 

Z1(z2 + z3) + Z2Z3 
(22.21) 

The third current is obtained from the sum of these two. 

Another example of a circuit that cannot be analyzed by using the rules for 

series and parallel impedance is shown in Fig. 22-14. Such a circuit is called a 

“bridge.” It appears in many instruments used for measuring impedances. With 

such a circuit one is usually interested in the question: How must the various 

impedances be related if the current through the impedance z3 is to be zero? We 

leave it for you to find the conditions for which this is so. 

22-4 Equivalent circuits 

Suppose we connect a generator 8 to a circuit containing some complicated 

interconnection of impedances, as indicated schematically in Fig. 22-15(a). All 

of the equations we get from KirchhofT’s rules are linear, so when we solve them 

for the current / through the generator, we will get that / is proportional to 8. 

We can write 

/ = — , 

zeff 

where now zeff is some complex number, an algebraic function of all the elements 

in the circuit. (If the circuit contains no generators other than the one shown, there 

is no additional term independent of 8.) But this equation is just what we would 

write for the circuit of Fig. 22-15(b). So long as we are interested only m what 

happens to the left of the two terminals a and b, the two circuits of Fig. 22-15 are 

equivalent. We can, therefore, make the general statement that any two-terminal 

network of passive elements can be replaced by a single impedance zeff without 

changing the currents and voltages in the rest of the circuit. This statement is, of 

course, just a remark about what comes out of Kirchhoff’s rules—and ultimately 

from the linearity of Maxwell’s equations. 

The idea can be generalized to a circuit that contains generators as well as 

impedances. Suppose we look at such a circuit “from the point of view” of one of 

the impedances, which we will call zn, as in Fig. 22-16(a). If we were to solve the 

equation for the whole circuit, we would find that the voltage Vn between the two 

terminals a and b is a linear function of /, which we can write 

vn = A - Bln, (22.22) 

where A and B depend on the generators and impedances in the circuit to the left 
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of the terminals. For instance, for the circuit of Fig. 22-13, we find = Ixzx. 
This can be written (by rearranging Eq. (22.20)] as 

- ^2 

X2 + z3 
) s2 - s,j 

^2 + ^3 
(22.23) 

The complete solution is then obtained by combining this equation with the one 
for the impedance zu namely, V\ = I\zu or in the general case, by combining 
Eq. (22.22) with 

If now we consider that zn is attached to a simple series circuit of a generatoi 
and a current, as in Fig. 22-15(b), the equation corresponding to Eq. (22.22) is 

Vn = S, Ai7eff s 

which is identical to Eq. (22.22) provided we set Seff = A and 2eff = B. So if we 
are interested only in what happens to the right of the terminals a and 6, the arbi¬ 
trary circuit of Fig. 22-16 can always be replaced by an equivalent combination of 
a generator in series with an impedance. 

22-5 Energy 

We have seen that to build up the current / in an inductance, the energy 
U = \Ll2 must be provided by the external circuit. When the current falls back 
to zero, this energy is delivered back to the external circuit. There is no energy-loss 
mechanism in an ideal inductance. When there is an alternating current through 
an inductance, energy flows back and forth between it and the rest of the circuit, 
but the average rate at which energy is delivered to the circuit is zero. We say that 
an inductance is a nondissipative element; no electrical energy is dissipated—that is, 
“lost”—in it. 

Similarly, the energy of a condenser, U ~ iCV2, is returned to the external 
circuit when a condenser is discharged. When a condenser is in an ac circuit 
energy flows in and out of it, but the net energy flow in each cycle is zero. An ideal 
condenser is also a nondissipative element. 

We know that an emf is a source of energy. When a current / flows in the 
direction of the emf, energy is delivered to the external circuit at the rate dU/dt = 
£/. If current is driven against the emf—by other generators in the circuit—the 
emf will absorb energy at the rate £/; since / is negative, dU/dt will also be negative. 

If a generator is connected to a resistor /?, the current through the resistor 
is / = &/R. The energy being supplied by the generator at the rate £/ is being 
absorbed by the resistor. This energy goes into heat in the resistor and is lost 
from the electrical energy of the circuit. We say that electrical energy is dissipated 
in a resistor. The rate at which energy is dissipated in a resistor is dU/dt = RI2. 

In an ac circuit the average rate of energy lost to a resistor is the average of 
RI2 over one cycle. Since I = —by which we really mean that I varies as 
cos cot—the average of l2 over one cycle is |/|2/2, since the peak current is |/| and 
the average of cos2 cot is 1/2. 

What about the energy loss when a generator is connected to an arbitrary 
impedance z? (By “loss” we mean, of course, conversion of electrical energy into 
thermal energy.) Any impedance z can be written as the sum of its real and im- 
ginary parts. That is, 

z - R + iX, (22.24) 

where R and X are real numbers. From the point of view of equivalent circuits we 
can say that any impedance is equivalent to a resistance in series with a pure 
imaginary impedance—called a reactance—as shown in Fig. 22-P. 

We have seen earlier that any circuit that contains only L’s and Cs has an 
impedance that is a pure imaginary number. Since there is no energy loss into any 
of the Vs and C’s on the average, a pure reactance containing only L’s and C’s 
will have no energy loss. We can see that this must be true in general for a reactance. 

22-ti 

b 

Fig. 22-16. Any two-terminal net¬ 

work can be replaced by a generator in 

series with an impedance. 

Fig. 22-17. Any impedance is equiv¬ 

alent to a series combination of a pure 

resistance and a pure reactance. 



If a generator with the emf 8 is connected to the impedance z of Fig. 22-17, 

the emf must be related to the current / from the generator by 

8 - I(R + iX). (22.25) 

To find the average rate at which energy is delivered, we want the average of the 

product 81. Now we must be careful. When dealing with such products, we must 

deal with the real quantities 8(0 and /(/). (The real parts of the complex functions 

will represent the actual physical quantities only when we have linear equations; 

now we are concerned with products, which are certainly not linear.) 

Suppose we choose our origin of t so that the amplitude 1 is a real number, 

let’s say /0; then the actual time variation I is given by 

/ — Iq cos cot. 

The emf of Eq. (22.25) is the real part of 

I0elut(R + iX) 
or 

8 = I0R cos cot — I0X sin cot. (22.26) 

(a) 
i 

Z3 = Zl +Z2 

tb) 

b 

N 

LJ 

The two terms in Eq. (22.26) represent the voltage drops across R and X 

in Fig. 22-17. We see that the voltage drop across the resistance is in phase with 

the current, while the voltage drop across the purely reactive part is out of phase 

with the current. 

The average rate of energy loss, (P)tlv, from the generator is the integral of 

the product 8/ over one cycle divided by the period T; in other words, 

1 [T ^ r-T ^ />T 

(P)av 8/dt = ^ IqR cos2 cot dt — 7=, / lf)Xcos cot sin cot dt. 
1 J 0 t Jo 1 J o 

The first integral is iI$R, and the second integral is zero. So the average 

energy loss in an impedance z = R + iX depends only on the real part of z, 

and is IqR/2, which is in agreement with our earlier result for the energy loss in a 

resistor. There is no energy loss in the reactive part. 

= (d) 

z4 z2 =z. + z4 

Fig. 22-18. The effective impedance 

of a ladder. 

22-6 A ladder network 

We would like now to consider an interesting circuit which can be analyzed 

in terms of series and parallel combinations. Suppose we start with the circuit of 

Fig. 22-18(a). We can see right away that the impedance from terminal a to ter¬ 

minal b is simply zx + z2. Now let’s take a little harder circuit, the one shown in 

Fig. 22-18(b). We could analyze this circuit using KirchhofTs rules, but it is 

also easy to handle with series and parallel combinations. We can replace the 

two impedances on the right-hand end by a single impedance z3 = zx + z2, as 

in part (c) of the figure. Then the two impedances z2 and z3 can be replaced by 

their equivalent parallel impedance z4, as shown in part (d) of the figure. Finally, 

zi and z4 are equivalent to a single impedance z5, as shown in part (e). 

Now we may ask an amusing question: What would happen if in the network 

of Fig. 22-18(b) we kept on adding more sections forever—as we indicate by the 

dashed lines in Fig. 22-19(a)? Can we solve such an infinite network? Well, that’s 

(a) 

Fig. 22-19. The effective impedance of an infinite ladder. 

22-12 



not so hard. First, we notice that such an infinite network is unchanged if we add 

one more section at the “front” end. Surely, if we add one more section to an 

infinite network it is still the same infinite network. Suppose we call the impedance 

between the two terminals a and b of the infinite network z0; then the impedance of 

all the stuff to the right of the two terminals c and d is also z0. Therefore, so far as 

the front end is concerned, we can represent the network as shown in Fig. 22-19(b). 

Combining the parallel combinations z2z0 and adding the result in series with zi, 

we can immediately write down the impedance of this combination: 

z Zl + (l/z2) + (l/z0) 
or z = Zl + 

z2 + z0 

But this impedance is also equal to z0, so we have the equation 

We can solve for z0 to get 

20 = zi + 
Z2Z0 f 

z2 + z0 

za = y + VOj/4) + ziz2. (22.27) 

So we have found the solution for the impedance of an infinite ladder of repeated 

series and parallel impedances. The impedance z0 is called the characteristic 

impedance of such an infinite network. 

Let’s now consider a specific example in which the series element is an in¬ 

ductance L and the shunt element is a capacitance C, as shown in Fig. 22-20(a). 

In this case we find the impedance of the infinite network by setting zx = zcuL 

and z2 = \/iaC. Notice that the first term, Zj/2, in Eq. (22.27) is just one-half 

the impedance of the first element. It would therefore seem more natural, or at 

least somewhat simpler, if we were to draw our infinite network as shown in Fig. 

22-20(b), Looking at the infinite network from the terminal a' we would see the 

characteristic impedance 

z0 = sAL/C) “(co2LV4j. (22.28) 

Now there are two interesting cases, depending on the frequency co. If a?2 is less 

than 4/LC, the second term in the radical will be smaller than the first, and the 

impedance z() will be a real number. On the other hand, if to2 is greater than 

4/1C the impedance z0 will be a pure imaginary number which we can write as 

o—nnnr^ 
L 

-^orrv 

(0) IT Tc 
ll_T 

=j^C etc 

Fig. 22-20. An L-C ladder drawn 

in two equivalent ways. 

z0 = zvVLV4) - (L/C). 

We have said earlier that a circuit which contains only imaginary impedances, 

such as inductances and capacitances, will have an impedance which is purely 

imaginary. How can it be then that for the circuit we are now studying—which has 

only Vs and C’s—the impedance is a pure resistance for frequencies below y/A/LCl 

For higher frequencies the impedance is purely imaginary, in agreement with our 

earlier statement. For lower frequencies the impedance is a pure resistance and 

will therefore absorb energy. But how can the circuit continuously absorb energy, 

as a resistance does, if it is made only of inductances and capacitances? Answer: 

Because there is an infinite number of inductances and capacitances, so that when 

a source is connected to the circuit, it supplies energy to the first inductance and 

capacitance, then to the second, to the third, and so on. In a circuit of this kind, 

energy is continually absorbed from the generator at a constant rate and flows 

constantly out into the network, supplying energy which is stored in the induc¬ 

tances and capacitances down the line. 

This idea suggests an interesting point about what is happening in the circuit. 

We would expect that if we connect a source to the front end, the effects of this 

source will be propagated through the network toward the infinite end. The 

propagation of the waves down the line is much like the radiation from an antenna 

which absorbs energy from its driving source; that is, we expect such a propagation 

to occur when the impedance is real, which occurs if w is less than y/4/LC. But 

when the impedance is purely imaginary, which happens for to greater than y/4/LCt 

we would not expect to see any such propagation. 

22-13 



22-7 Filters 

We saw in the last section that the infinite ladder network of Fig. 22-20 absorbs 

energy continuously if it is driven at a frequency below a certain critical frequency 

\/4/LC, which we will call the cutoff frequency co0. We suggested that this effect 

could be understood in terms of a continuous transport of energy down the line. 

On the other hand, at high frequencies, for co > o>0, there is no continuous ab¬ 

sorption of energy; we should then expect that perhaps the currents don't “pene¬ 

trate” very far down the line. Let’s see whether these ideas are right. 

Suppose we have the front end of the ladder connected to some Ac generator 

and we ask what the voltage looks like at, say, the 754th section of the ladder. 

Since the network is infinite, whatever happens to the voltage from one section to 

the next is always the same; so let’s just look at what happens when we go from 

some section, say the nth to the next. We will define the currents h and voltages 

Vn as shown in Fig. 22-21(a). 

(b) 

I n+i 

Fig. 22-21. Finding the propagation factor of a ladder. 

We can get the voltage from Vn by remembering that we can always 

replace the rest of the ladder after the /ith section by its characteristic impedance z0; 

then we need only analyze the circuit of Fig. 22-21(b). First, we notice that any 

Vn, since it is across z0, must equal Inz0. Also, the difference between V„ and +1 

is just 7nZj: 

VH ~ Vn + 1 = InZ, = V„ 
Z0 

So we get the ratio 

Ki+1 __ | rJ Z(L~_Zl 
Vn Z(\ z„ 

We can call this ratio the propagation factor for one section of the ladder; we’ll 

call it a. It is, of course, the same for all sections: 

a = --1-- (22.29) 
Zq 

The voltage after the nth section is then 

yn - anF>. (22.30) 

You can now find the voltage after 754 sections; it is just a to the 754th power 

times 8. 

Suppose we see what a is like for the L-C ladder of Fig. 22-20(a) Using z0 
from Eq. (22.27), and z i icaL, we get 

s/Tl/cT^Wl*,7*) ~ 1(^/2) (2231) 
vWc7-'(^~2?4) + /(&>£/2) 

If the driving frequency is below the cutoff frequency co„ = \/4]~LC, the radical 

is a real number, and the magnitudes of the complex numbers in the numerator 

and denominator are equal. Therefore, the magnitude of a is one; we can write 

a = e'\ 

which means that the magnitude of the voltage is the same at every section, only 
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its phase changes. The phase change 5 is, in fact, a negative number and represents 

the “delay” of the voltage as it passes along the network. 

For frequencies above the cutoff frequency co0 it is better to factor out an i 

from the numerator and denominator of Eq. (22 31) and rewrite it as 

yV^/4) _ (L/C) - (uL/2) (22 

4) - (L/C) + (wL/2) 

The propagation factor a is now a real number, and a number less than one. That 

means that the voltage at any section is always less than the voltage at the pre¬ 

ceding section by the factor a. For any frequency above w0, the voltage dies 

away rapidly as we go along the network. A plot of the absolute value of a as a 

function of frequency looks like the graph in Fig. 22-22. 

We see that the behavior of a, both above and below co0, agrees with our 

interpretation that the network propagates energy for co < co0 and blocks it for 

o) > w„. We say that the network “passes” low frequencies and “rejects" oi 

“filters out” the high frequencies. Any network designed to have its characteristics 

vary in a prescribed way with frequency is called a “filter.” We have been analyzing 

a “low-pass filter.” 

You may be wondering why all this discussion of an infinite network which 

obviously cannot actually occur. The point is that the same characteristics arc 

found in a finite network if we finish it off at the end with an impedence equal to 

the characteristic impedence z0. Now in practice it is not possible to exactly 

reproduce the characteristic impedance with a few simple elements—like R's, 

L’s, and C’s. But it is often possible to do so with a fair approximation for a certain 

range of frequencies. In this way one can make a finite filter network whose 

properties are very nearly the same as those for the infinite case For instance, the 

L-C ladder behaves much as we have described it if it is terminated in the pure 

resistance R = xTjC. 

If in our L-C ladder we interchange the positions of the Us and C’s, to make 

the ladder shown in Fig. 22-23(a), we can have a filter that propagates high fre¬ 

quencies and rejects low frequencies. It is easy to see what happens with this net¬ 

work by using the results we already have. You will notice that whenever we change 

an L to a C and vice versa, we also change every ;co to 1 //co. So whatever happened 

at co before will now happen at 1 /co. In particular, we can see how a will vary with 

frequency by using Fig. 22-22 and changing the label on the axis to 1 /co, as we 

have done in Fig. 22-23(b). 

The low-pass and high-pass filters we have described have various technical 

applications. An L-C low-pass filter is often used as a “smoothing” filter m a dc 

power supply. If we want to manufacture DC power from an Ac source, we begin 

with a rectifier which permits current to flow only in one direction. From the 

rectifier we get a series of pulses that look like the function V(t) shown in 

Fig 22-24, which is lousy dc, because it wobbles up and down. Suppose we would 

like a nice pure DC, such as a battery provides. We can come close to that by 

putting a low-pass filter between the rectifier and the load. 

We know from Chapter 50 of Vol. I that the time function in Fig. 22-24 can be 

represented as a superposition of a constant voltage plus a sine wave, plus a higher- 

frequency sine wave, plus a still higher-frequency sine wave, etc.—by a Fourier 

series. If our filter is linear (if, as we have been assuming, the L’s and C’s don't 

vary with the currents or voltages) then what comes out of the filter is the super¬ 

position of the outputs for each component at the input. If we arrange that the 

cutoff frequency of our filter is well below the lowest frequency in the function 

V(t)y the nc (for which co = 0) goes through fine, but the amplitude of the first 

harmonic will be cut down a lot. And amplitudes of the higher harmonics will be 

cut down even more. So we can get the output as smooth as we wish, depending 

only on how many filter sections we are willing to buy. 

A high-pass filter is used if one wants to reject certain low frequencies. For 

instance, in a phonograph amplifier a high-pass filter may be used to let the music 

Fig 22-22. The propagation factor 

of a section of an t-C ladder 

c c c c 

(b) 

Fig. 22-23. (a) A high-pass filter; 

(b) its propagation factor as a function 

Of 1 CO. 

Fig. 22-24. The output voltage of a 

full-wave rectifier. 
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Fig. 22-25. (a) A band-pass filter, 

(b) A simple resonant filter. 

through, while keeping out the low-pitched rumbling from the motor of the 

turntable. 

It is also possible to make “band-pass” filters that reject frequencies below 

some frequency u>! and above another frequency w2 (greater than wO, but pass the 

frequencies between wi and w2. This can be done simply by putting together a 

high-pass and a low-pass filter, but it is more usually done by making a ladder in 

which the impedances zx and z2 are more complicated—being each a combination 

of Z/s and C’s. Such a band-pass filter might have a propagation constant like 

that shown in Fig. 22-25(a). It might be used, for example, in separating signals 

that occupy only an interval of frequencies, such as each of the many voice channels 

in a high-frequency telephone cable, or the modulated carrier of a radio trans¬ 

mission. 

We have seen in Chapter 25 of Vol. I that such filtering can also be done using 

the selectivity of an ordinary resonance curve, which we have drawn for comparison 

in Fig. 22—25(b). But the resonant filter is not as good for some purposes as the 

band-pass filter. You will remember (Chapter 48, Vol. I) that when a carrier of 

frequency wr is modulated with a “signal” frequency cos, the total signal contains 

not only the carrier frequency but also the two side-band frequencies cor + ws 

and cor — w,. With a resonant filter, these side-bands are always attentuated some¬ 

what, and the attenuation is more, the higher the signal frequency, as you can see 

from the figure. So there is a poor “frequency response.” The higher musical 

tones don’t get through. But if the filtering is done with a band-pass filter designed 

so that the width w2 — wi is at least twice the highest signal frequency, the fre¬ 

quency response will be “flat” for the signals wanted. 

We want to make one more point about the ladder filter: the L-C ladder of 

Fig. 22-20 is also an approximate representation of a transmission line. If we 

have a long conductor that runs parallel to another conductor—such as a wire in a 

coaxial cable, or a wire suspended above the earth—there will be some capacitance 

between the two conductors and also some inductance due to the magnetic field 

between them. If we imagine the line as broken up into small lengths Af, each 

length will look like one section of the L-C ladder wiih a series inductance AL and 

a shunt capacitance AC. We can then use our results for the ladder filter. If we 

take the limit as At goes to zero, we have a good description of the transmission 

line. Notice that as Al is made smaller and smaller, both AL and AC decrease, but 

in the same proportion, so that the ratio AL/AC remains constant. So if we take 

the limit of Eq. (22.28) as AL and AC go to zero, we find that the characteristic 

impedance z0 is a pure resistance whose magnitude is VAL/AC. We can also 

write the ratio AL/AC as L0/C0, where L0 and C0 are the inductance and capaci¬ 

tance of a unit length of the line; then we have 

You will also notice that as AL and AC go to zero, the cutoff frequency 

wq = V4/LC goes to infinity. There is no cutoff frequency for an ideal 

transmission line. 

Fig. 22-26. Equivalent circuit of a 

mutual inductance. 

22-8 Other circuit elements 

We have so far defined only the ideal circuit impedances—the inductance, 

the capacitance, and the resistance—as well as the ideal voltage generator. We want 

now to show that other elements, such as mutual inductances or transistors or 

vacuum tubes, can be described by using only the same basic elements. Suppose 

that we have two coils and that on purpose, or otherwise, some flux from one of 

the coils links the other, as shown in Fig. 22-26(a). Then the two coils will have a 

mutual inductance M such that when the current varies in one of the coils, there 

will be a voltage generated in the other. Can we take into account such an effect 

in our equivalent circuits? We can in the following way. We have seen that the 
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induced emPs in each of two interacting coils can be written as the sum of two parts: 

51 

52 

— L dh 
dt 

dl 

dt 

M —■ 
dt 

(22.34) 

The first term comes from the self-inductance of the coil, and the second term 

comes from its mutual inductance with the other coil. The sign of the second term 

can be plus or minus, depending on the way the flux from one coil links the other. 

Making the same approximations we used m describing an ideal inductance, we 

would say that the potential difference across the terminals of each coil is equal to 

the electromotive force in the coil. Then the two equations of (22.34) are the same 

as the ones we would get from the circuit of Fig. 22-26(b), provided the electro¬ 

motive force in each of the two circuits shown depends on the current m the 

opposite circuit according to the relations 

£1 = icoM/2, £2 — (22.35) 

So what we can do is represent the effect of the self-inductance in a normal way but 

replace the effect of the mutual inductance by an auxiliary ideal voltage generator. 

We must in addition, of course, have the equation that relates this emf to the 

current in some other part of the circuit; but so long as this equation is linear, we 

have just added more linear equations to our circuit equations, and all of our 

earlier conclusions about equivalent circuits and so forth are still correct. 

In addition to mutual inductances there may also be mutual capacitances. 

So far, when we have talked about condensers we have always imagined that there 

were only two electrodes, but in many situations, for example in a vacuum tube, 

there may be many electrodes close to each other. If we put an electric charge on 

any one of the electrodes, its electric field will induce charges on each of the other 

electrodes and affect its potential. As an example, consider the arrangement of 

four plates shown in Fig. 22-27(a). Suppose these four plates are connected to 

external circuits by means of the wires A, B, C, and D. So long as we are only 

worried about electrostatic effects, the equivalent circuit of such an arrangement 

of electrodes is as shown in part (b) of the figure. The electrostatic interaction of 

any electrode with each of the others is equivalent to a capacity between the 

two electrodes. 

Finally, let’s consider how we should represent such complicated devices as 

transistors and radio tubes in an ac circuit. We should point out at the start that 

such devices are often operated in such a way that the relationship between the 

currents and voltages is not at all linear. In such cases, those statements we have 

made which depend on the linearity of equations are, of course, no longer correct. 

On the other hand, in many applications the operating characteristics are sufficiently 

linear that we may consider the transistors and tubes to be linear devices. By this 

we mean that the alternating currents in, say, the plate of a vacuum tube are linearly 

proportional to the voltages that appear on the other electrodes, say the grid 

voltage and the plate voltage. When we have such linear relationships, we can 

incorporate the device into our equivalent circuit representation. 

As in the case of the mutual inductance, our representation will have to include 

auxiliary voltage generators which describe the influence of the voltages or currents 

in one part of the device on the currents or voltages in another part. For example, 

the plate circuit of a triode can usually be represented by a resistance in series with 

an ideal voltage generator whose source strength is proportional to the grid voltage. 

We get the equivalent circuit shown m Fig. 22-28.* Similarly, the collector circuit 

Fig. 22-27. Equivalent circuit of 

mutual capacitance. 

Fig. 22-28. A low-frequency equiv¬ 

alent circuit of a vacuum triode. 

* The equivalent circuit shown is correct only for low frequencies. For high frequencies 
the equivalent circuit gets much more complicated and will include various so-called 
“parasitic” capacitances and inductances. 
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Fig. 22-29. A low-frequency equiv¬ 

alent circuit of a transistor. 

E C 

of a transistor is conveniently represented as a resistor in series with an ideal 

voltage generator whose source strength is proportional to the current from the 

emitter to the base of the transistor. The equivalent circuit is then like that in Fig. 

22-29. So long as the equations which describe the operation are linear, we can 

use such representations for tubes or transistors. Then, when they are incorporated 

in a complicated network, our general conclusions about the equivalent representa¬ 

tion of any arbitrary connection of elements is still valid. 

There is one remarkable thing about transistor and radio tube circuits which 

is different from circuits containing only impedances: the real part of the effective 

impedance z(.ff can become negative. We have seen that the real part of z represents 

the loss of energy. But it is the important characteristic of transistors and tubes 

that they supply energy to the circuit. (Of course they don't just “make” energy; 

they take energy from the DC circuits of the power supplies and convert it into 

ac energy.) So it is possible to have a circuit with a negative resistance. Such a 

circuit has the property that if you connect it to an impedance with a positive real 

part, i.e., a positive resistance, and arrange matters so that the sum of the two 

real parts is exactly zero, then there is no dissipation in the combined circuit. If 

there is no loss of energy, any alternating voltage once started will remain forever. 

This is the basic idea behind the operation of an oscillator or signal generator which 

can be used as a source of alternating voltage at any desired frequency. 
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23-1 Real circuit elements 

When looked at from any one pair of terminals, any arbitrary circuit made 

lip of ideal impedances and generators is, at any given frequency, equivalent to a 

generator V, in series with an impedance z. That comes about because if we put a 

voltage V across the terminals and solve all the equations to find the current /, 

we must get a linear relation between the current and the voltage. Since all the 

equations are linear, the result for / must also depend only linearly on V The 

most general linear form can be expressed as 

23-1 Real circuit elements 

23-2 A capacitor at high frequencies 

23-3 A resonant cavity 

23-4 Cavity modes 

23-5 Cavities and resonant circuits 

/ = \ (V - £). (23.1) 

In general, both z and V, may depend in some complicated way on the frequency w. 

Equation (23 I), however, is the relation we would get if behind the two terminals 

there was just the generator V>(co) in series with the impedance z(co). 

There is also the opposite kind of question* If we have any electromagnetic 

device at all with two terminals and we measure the relation between / and V to 

detei mine V, and z as functions of frequency, can we find a combination of our ideal 

elements that is equivalent to the internal impedance z? The answer is that for 

any reasonable—that is, physically meaningful—function z(to), it is possible to 

approximate the situation to as high an accuracy as you wish with a circuit containing 

a finite set of ideal elements. We don't want to consider the general problem now 

but only look at what might be expected from physical arguments for a few cases 

If we think of a real resistor, we know that the current through it will produce 

a magnetic held. So any real resistor should also have some inductance. Also, 

when a resistor has a potential difference across it, there must be charges on the 

ends of the resistoi to produce the necessary electric fields As the voltage changes, 

the charges will change in proportion, so the resistor will also have some capaci¬ 

tance. We expect that a real resistor might have the equivalent circuit shown in 

Fig 23-1 In a well-designed resistor, the so-called “parasitic” elements L and C 

are small, so that at the frequencies for which it is intended, ccL is much less than 

/?, and 1/coC is much greater than R. It may therefore be possible to neglect them 

As the frequency is raised, however, they will eventually become important, and a 

resistor begins to look like a resonant circuit. 

A real inductance is also not equal to the idealized inductance, whose impe¬ 

dance is iu)L. A real coil of wire will have some resistance, so at low frequencies the 

coil is really equivalent to an inductance in series with some resistance, as shown m 

Fig. 23-2(a) But, you are thinking, the resistance and inductance are together in a 

real coil—the resistance is spread all along the wire, so it is mixed in with the 

inductance. We should probably use a circuit more like the one m Fig. 23-2(b), 

which has several little /?’s and Us in series. But the total impedance of such a 

circuit is just £/? + which is equivalent to the simpler diagram of part (a) 

As we go up in frequency with a real coil, the approximation of an inductance 

plus a resistance is no longer very good. The charges that must build up on the 

wires to make the voltages will become important. It is as if there were little con¬ 

densers across the turns of the coil, as sketched in Fig 23-3(a). We might try to 

approximate the real coil by the circuit in Fig. 23—3(b). At low frequencies, this 

circuit can be imitated fairly well by the simpler one in part (c) of the figure (which 

is again the same resonant circuit we found for the high-frequency model of a 

resistor) For higher frequencies, however, the more complicated circuit of 

Review: Chapter 23, Vo I. I. Resonance 

Chapter 49, Vol I, Modes 

i 

Fig. 23-1. Equivalent circuit of a 

real resistor. 

(a) (b) 

Fig. 23-2. The equivalent circuit of 

a real inductance at low frequencies. 
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(b) (c) 

Fig. 23-3. The equivalent circuit of 

a real inductance at higher frequencies. 

Fig. 23-3(b) is better. In fact, the more accurately you wish to represent the actual 

impedance of a real, physical inductance, the more ideal elements you will have to 

use in the artificial model of it. 

Let's look a little more closely at what goes on in a real coil. The impedance 

of an inductance goes as oL, so it becomes zero at low frequencies—it is a “short 

circuit”: all we see is the resistance of the wire. As we go up in frequency, a)L soon 

becomes much larger than R, and the coil looks pretty much like an ideal induc¬ 

tance. As we go still higher, however, the capacities become important. Their 

impedance is proportional to 1/coC, which is large for small co. For small enough 

frequencies a condenser is an “open circuit,” and when it is in parallel with some¬ 

thing else, it draws no current. But at high frequencies, the current prefers to flow 

into the capacitance between the turns, rather than through the inductance. So 

the current in the coil jumps from one turn to the other and doesn’t bother to go 

around and around where it has to buck the emf So although we may have 

intended that the current should go around the loop, it will take the easier path—the 

path of least impedance. 

If the subject had been one of popular interest, this effect would have been 

called “the high-frequency barrier,” or some such name. The same kind of thing 

happens m all subjects. In aerodynamics, if you try to make things go faster than 

the speed of sound when they were designed for lower speeds, they don’t work. 

It doesn’t mean that there is a great “barrier” there, it just means that the object 

should be redesigned. So this coil which we designed as an “inductance” is not 

going to work as a good inductance, but as some other kind of thing at very high 

frequencies. For high frequencies, we have to find a new design. 

23-2 A capacitor at high frequencies 

Now we want to discuss in detail the behavior of a capacitor—a geometrically 

ideal capacitor—as the frequency gets larger and larger, so we can see the transition 

of its properties. (We prefer to use a capacitor instead of an inductance, because 

the geometry of a pair of plates is much less complicated than the geometry of a 

coil.) We consider the capacitor shown in Fig. 23-4(a), which consists of two par¬ 

allel circular plates connected to an external generator by a pair of wires. If we 

charge the capacitor with DC, there will be a positive charge on one plate and a 

negative charge on the other; and there will be a uniform electric field between the 

plates. 

Now suppose that instead of DC, we put an Ac of low frequency on the plates. 

(We will find out later what is “low” and what is “high”.) Say we connect the ca¬ 

pacitor to a lower-frequency generator. As the voltage alternates, the positive 

charge on the top plate is taken off and negative charge is put on. While that is 

happening, the electric field disappears and then builds up in the opposite direction. 

Fig. 23-4. The electric and magnetic fields between the plates of a capacitor. 
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As the charge sloshes back and forth slowly, the electric field follows At each 

instant the electric field is uniform, as shown in Fig 23-4(b), except for some edge 

effects which we are going to disregard. We can write the magnitude of the electric 

field as 

E = Eve™1. (23.2) 

where E0 is a constant. 

Now will that continue to be right as the frequency goes up? No, because as 

the electric field is going up and down, there is a flux of electric field through any 

loop like in Fig 23-4(a). And, as you know, a changing electric field acts to 

produce a magnetic field. One of Maxwell’s equations says that when there is a 

varying electric field, as there is here, there has got to be a line integral of the 

magnetic field. The integral of the magnetic field around a closed ring, multiplied 

by c2, is equal to the time rate-of-change of the electric flux through ihe area 

inside the ring (if there are no currents): 

c2j> B - ds — ~ J E • n da. (23.3) 

inside T 

So how much magnetic field is there? That’s not very hard. Suppose that we take 

the loop Ti, which is a circle of radius r. We can see from symmetry that the 

magnetic field goes around as shown in the figure. Then the line integral of B is 

2irrB. And, since the electric field is uniform, the flux of the electric field is simply 

E multiplied by 'nr2, the area of the circle: 

c2B • 2irr = 4 E ■ vr2. (23.4) 
ot 

The derivative of E with respect to time is, for our alternating field, simply icoE^e™1, 

So we find that our capacitor has the magnetic field 

B = gH E0e'“‘. (23.5) 

In other words, the magnetic field also oscillates and has a strength proportional 

to r. 

What is the effect of that? When there is a magnetic field that is varying, there 

will be induced electric fields and the capacitor will begin to act a little bit like an 

inductance. As the frequency goes up, the magnetic field gets stronger; it is pro¬ 

portional to the rate of change of E, and so to ca The impedance of the capacitor 

will no longer be simply 1 //caC. 

Let’s continue to raise the frequency and to analyze what happens more care¬ 

fully. We have a magnetic field that goes sloshing back and forth. But then the 

electric field cannot be uniform, as we have assumed! When there is a varying 

magnetic field, there must be a line integral of the electric field—because of Faraday’s 

law So if there is an appreciable magnetic field, as begins to happen at high fre¬ 

quencies, the electric field cannot be the same at all distances from the center. The 

electric field must change with r so that the line integral of the electric field can 

equal the changing flux of the magnetic field. 

Let’s see if we can figure out the correct electric field. We can do that by 

computing a “correction” to the uniform field we originally assumed for low 

frequencies. Let’s call the uniform field which will still be E{)e™\ and write 

the correct field as 

E — Ei -\- E2, 

where E2 is the correction due to the changing magnetic field. For any co we will 

write the field at the center of the condenser as E0elut (thereby defining E0), so 

that we have no correction at the center; E2 ~ 0 at r = 0. 

To find E2 we can use the integral form of Faraday’s law: 

E • ds — — ~ (flux of B). 
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The integrals are simple if we take them for the curve shown in Fig 23-4(b), 

which goes up along the axis, out radially the distance r along the top plate, down 

vertically to the bottom plate, and back to the axis The line integral of Ex around 

this curve is, of course, zero; so only E2 contributes, and its integral is just 

— E2(r) ■ /?, where h is the spacing between the plates. (We call E positive if it 

points upward.) This is equal to the rate of change of the flux of B, which we have 

to get by an integral over the shaded area S inside V2 in Fig. 23-4(b). The flux 

through a vertical strip of width dr is B(r)h dr, so the total flux is 

h B(r) dr. 

Fig. 23-5. The electric field between 

the capacitor plates at high frequency. 

(Edge effects are neglected.) 

Setting —d/d/ of the flux equal to the line integral of £N, we have 

/■ 
E2(r) = jt I B(r) dr. (23.6) 

Notice that the h cancels out, the fields don’t depend on the separation of the plates 

Using Eq (23.5) for B{r), we have 

E2{r) 
d icar 

dt 4c2 
E0el 

The time derivative just brings down another factor /co; we get 

Srfr) = - ~ E0e'“l. (23.7) 

As we expect, the induced field tends to reduce the electric field farther out. The 

corrected field E ~ E\ + E > is then 

E = E, + E2 = (l - i //) JV". (23.8) 

The electric field in the capacitor is no longer uniform; it has the parabolic 

shape shown by the broken line in Fig. 23-5 You see that our simple capacitor is 

getting slightly complicated. 

We could now use our results to calculate the impedance of the capacitor 

at high frequencies. Knowing the electric field, we could compute the charges on 

the plates and find out how the current through the capacitor depends on the 

frequency co, but we are not interested in that problem for the moment. We are 

more interested in seeing what happens as we continue to go up with the frequency 

—to see what happens at even higher frequencies Aren’t we already finished? 

No, because we have corrected the electric field, which means that the magnetic 

field we have calculated is no longer right. The magnetic field of Eq. (23.5) is 

approximately right, but it is only a first approximation So let’s call it Bl We 

should then rewrite Eq. (23.5) as 

B, = *7 alat 

2^Ene ■ 
(23.9) 

You will remember that this field was produced by the variation of Elt Now the 

correct magnetic field will be that produced by the total electric field Ex + E2. 

If we write the magnetic field as B = Bx + B2, the second term is just the addi¬ 

tional field produced by E2 To find B2 we can go through the same arguments 

we have used to find Biy the line integral of B2 around the curve IN is equal to 

the rate of change of the flux of E2 through IN. We will just have Eq (23 4) again 

with B replaced by B2 and E replaced by E2: 

c2B 2*r = - (flux of E2 through IN). 

Since E2 varies with radius, to obtain its flux we must integrate over the circular 
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surface inside Vx. Using 2irr dr as the element of area, this integral is 

f E2(r) ■ 2wr dr. 
Jo 

So we get for B2(r) 

B2(0 = E2(r)rdr. (23.10) 

Using E2(r) from Eq. (23.7), we need the integral of r3 dr, which is, of course, 

r4/4. Our correction to the magnetic field becomes 

B2(r) = ~ Eoe^- (23,11) 

But we are still not finished! If the magnetic field B is not the same as we first 

thought, then we have incorrectly computed E2. We must make a further cor¬ 

rection to E, which comes from the extra magnetic field B2. Let’s call this additional 

correction to the electric field E%. It is related to the magnetic field B2 in the same 

way that E2 was related to Bx. We can use Eq. (23.6) all over again just by chang¬ 

ing the subscripts: 

&(.') = ytfBa(r)dr- (2312) 

Using our result, Eq. (23.11), for B2y the new correction to the electric field is 

= +£ E0e^1. (23.13) 

Writing our doubly corrected electric field as E ~ Ex + E2 + Ej, we get 

E . [l - i (?)“] • (23-14) 

The variation of the electric field with radius is no longer the simple parabola we 

drew in Fig. 23-5, but at large radii lies slightly above the curve (Ex + E2). 

We are not quite through yet. The new electric field produces a new correction 

to the magnetic field, and the newly corrected magnetic field will produce a further 

correction to the electric field, and on and on. However, we already have all the 

formulas that we need For B3 we can use Eq. (23.10), changing the subscripts of 

B and E from 2 to 3. 

The next correction to the electric field is 

E*= ~ 2'i • 42 • 62 (t) E°e'Ut' 

So to this order we have that the complete electric field is given by 

(23.15) 

where we have written the numerical coefficients in such a way that it is obvious 

how the series is to be continued. 

Our final result is that the electric field between the plates of the capacitor, 

for any frequency, is given by E0e%<1,t times the infinite series which contains only 

the variable ojr/c. If we wish, we can define a special function, which we will call 

70(x), as the infinite series that appears in the brackets of Eq. (23.15): 

J0(X) 1 (11)2 
1 

(3!)2 
(23.16) 
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Then we can write our solution as times this function, with x = oor/c: 

E = E0e'uiJo (~) ' (23.17) 

The reason we have called our special function J0 is that, naturally, this is not 

the first time anyone has ever worked out a problem with oscillations in a cylinder. 

The function has come up before and is usually called It always comes up 

whenever you solve a problem about waves with cylindrical symmetry. The func¬ 

tion J{) is to cylindrical waves what the cosine function is to waves on a straight 

line. So it is an important function, invented a long time ago. Then a man named 

Bessel got his name attached to it. The subscript zero means that Bessel invented 

a whole lot of different functions and this is just the first of them. 

The other functions of Bessel—+ J2, and so on—have to do with cylindrical 

waves which have a variation of their strength with the angle around the axis of 

the cylinder. 

The completely corrected electric field between the plates of our circular 

capacitor, given by Eq. (23.17), is plotted as the solid line in Fig. 23-5. For 

frequencies that are not too high, our second approximation was already quite 

good. The third approximation was even better—so good, in fact, that if we had 

plotted it, you would not have been able to see the difference between it and the 

solid curve. You will see in the next section, however, that the complete series is 

needed to get an accurate description for large radii, or for high frequencies. 

23-3 A resonant cavity 

We want to look now at what our solution gives for the electric field between 

the plates of the capacitor as we continue to go to higher and higher frequencies. 

For large «, the parameter x = cor/c also gets large, and the first few terms m the 

series for Jq of x will increase rapidly. That means that the parabola we have 

drawn in Fig. 23-5 curves downward more steeply at higher frequencies In fact, 

it looks as though the field would fall all the way to zero at some high frequency, 

perhaps when c/to is approximately one-half of a. Let’s see whether J{) does indeed 

go through zero and become negative. We begin by trying x =■ 2* 

1 

Fig. 23-6. The Bessel function J0(x). 

M2) = l- l+ i-*V = <>22 

The function is still not zero, so let’s try a higher value of x, say, x = 2 5 Putting 

in numbers, we write 

/n(2.5) = I — 1.56 + 0.61 - 0 09 - -0.04. 

The function 70 has already gone through zero by the time we get to x — 2.5. 

Comparing the results for x = 2 and x = 2 5, it looks as though Jy) goes through 

zero at one-fifth of the way from 2.5 to 2. We would guess that the zero occurs for 

x approximately equal to 2.4. Let’s see what that value of x gives: 

JQ(2 4) = 1 — 1.44 + 0.52 - 008 - 000 

We get zero to the accuracy of our two decimal places. If we make the calculation 

more accurate (or since J{) is a well-known function, if we look it up m a book), we 

find that it goes through zero at x = 2 405 We have worked it out by hand to 

show you that you too could have discovered these things lather than having to 

borrow them from a book 

As long as we are looking up J0 in a book, it is interesting to notice how it 

goes for larger values of x, it looks like the graph in Fig 23-6. As x increases, 

■/„(x) oscillates between positive and negative values with a decreasing amplitude 

of oscillation 

We have gotten the following interesting result: If we go high enough in fre¬ 

quency, the electric field at the center of our condenser will be one way and the 

electric field near the edge will point in the opposite direction. Foi example, 

23-6 



suppose that we take an to high enough so that x = o>r/c at the outer edge of the 

capacitor is equal to 4; then the edge of the capacitor corresponds to the abscissa 

x = 4 in Fig. 23-6. This means that our capacitor is being operated at the fre¬ 

quency oj = 4c/a At the edge of the plates, the electric field will have a rather 

high magnitude opposite the direction we would expect. That is the terrible thing 

that can happen to a capacitor at high frequencies. If we go to very high frequencies, 

the direction of the electric field oscillates back and forth many times as we go 

out from the center of the capacitor. Also there are the magnetic fields associated 

with these electric fields. It is not surprising that our capacitor doesn’t look like 

the ideal capacitance for high frequencies. We may even start to wonder whether 

it looks more like a capacitor or an inductance We should emphasize that there 

are even more complicated effects that we have neglected which happen at the edges 

of the capacitor. For instance, there will be a radiation of waves out past the edges, 

so the fields are even more complicated than the ones we have computed, but we 

will not worry about those effects now. 

We could try to figure out an equivalent circuit for the capacitor, but perhaps 

it is better if we just admit that the capacitor we have designed for low-frequency 

fields is just no longer satisfactory when the frequency is too high. If we want to 

treat the operation of such an object at high frequencies, we should abandon the 

approximations to Maxwell’s equations that we have made for treating circuits 

and return to the complete set of equations which describe completely the fields 

in space Instead of dealing with idealized circuit elements, we have to deal with 

the real conductors as they are, taking into account all the fields in the spaces in 

between. For instance, if we want a resonant circuit at high frequencies we will 

not try to design one using a coil and a parallel-plate capacitor. 

We have already mentioned that the parallel-plate capacitor we have been 

analyzing has some of the aspects of both a capacitor and an inductance. With the 

electric field there are charges on the surfaces of the plates, and with the magnetic 

fields there are back emf’s. Is it possible that we already have a resonant circuit? 

We do indeed. Suppose we pick a frequency for which the electric field pattern 

falls to zero at some radius inside the edge of the disc; that is, we choose coa/c 

greater than 2.405 Everywhere on a circle coaxial with the plates the electric field 

will be zero. Now suppose we take a thin metal sheet and cut a strip just wide 

enough to fit between the plates of the capacitor. Then we bend it into a cylinder 

that will go around at the radius where the electric field is zero Since there are 

no electric fields there, when we put this conducting cylinder in place, no currents 

will flow in it; and there will be no changes in the electric and magnetic fields. We 

have been able to put a direct short circuit across the capacitor without changing 

anything. And look what we have; we have a complete cylindrical can with elec¬ 

trical and magnetic fields inside and no connection at all to the outside world 

The fields inside won’t change even if we throw away the edges of the plates outside 

our can, and also the capacitor leads. All we have left is a closed can with electric 

and magnetic fields inside, as shown in Fig. 23-7(a). The electric fields are os¬ 

cillating back and forth at the frequency w—which, don’t forget, determined the 

diameter of the can The amplitude of the oscillating E field varies with the distance 

from the axis of the can, as shown in the graph of Fig. 23—7(b). This curve is just 

the first arch of the Bessel function of zero order. There is also a magnetic field 

which goes in circles around the axis and oscillates in time 90° out of phase with 

the electric field 

We can also write out a series for the magnetic field and plot it. as shown in 

the graph of Fig. 23-7(c). 

How is it that we can have an electric and magnetic field inside a can with no 

external connections? It is because the electric and magnetic fields maintain them¬ 

selves: the changing E makes a B and the changing B makes an E—all according 

to the equations of Maxwell. The magnetic field has an inductive aspect, and the 

electric field a capacitive aspect; together they make something like a resonant 

circuit. Notice that the conditions we have described would only happen if the 

radius of the can is exactly 2.405 c/co. For a can of a given radius, the oscillating 

electric and magnetic fields will maintain themselves—in the way we have described 

r 

Fig. 23—7. The electric and magnetic 

fields in an enclosed cylindrical can. 
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—only at that particular frequency. So a cylindrical can of radius r is resonant at 

the frequency 

ooq — 2.405 (23.18) 

INPUT - 
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'E 

B 

.OUTPUT 
LOOP 

Fig. 23-8. Coupling into and out of 

a resonant cavity. 

Fig. 23-9. A setup for observing the 

caviry resonance. 

Fig. 23-10. The frequency response 

curve of a resonant cavity. 

We have said that the fields continue to oscillate in the same way after the can 

is completely closed. That is not exactly right. It would be possible if the walls 

of the can were perfect conductors. For a real can, however, the oscillating cur¬ 

rents which exist on the inside walls of the can lose energy because of the resistance 

of the material. The oscillations of the fields will gradually die away. We can see 

from Fig. 23-7 that there must be strong currents associated with electric and 

magnetic fields inside the cavity. Because the vertical electrical field stops suddenly 

at the top and bottom plates of the can, it has a large divergence there; so there 

must be positive and negative electric charges on the inner Mirfaces of the can, as 

shown in Fig. 23-7(a) When the electric field reverses, the charges must reverse 

also, so there must be an alternating current between the top and bottom plates 

of the can These charges will flow in the sides of the can, as shown in the figure 

We can also see that there must be currents in the sides of the can by considering 

what happens to the magnetic field The graph of Fig. 23-7(c) tells us that the 

magnetic field suddenly drops to zero at the edge of the can Such a sudden change 

in the magnetic field can happen only if there is a current in the wall This current 

is what gives the alternating electric charges on the top and bottom plates of the 

can. 

You may be wondering about our discovery of currents in the vertical sides of 

the can What about our earlier statement that nothing would be changed when we 

introduced these vertical sides in a region where the electric field was zero9 Re¬ 

member, however, that when we first put in the sides of the can, the top and 

bottom plates extended out beyond them, so that there were also magnetic fields 

on the outside of our can It was only when we threw away the parts of the 

capacitor plates beyond the edges of the can that net currents had to appear on the 

insides of the vertical walls 

Although the electric and magnetic fields in the completely enclosed can will 

gradually die away because of the energy losses, we can stop this from happening 

if we make a little hole in the can and put in a little bit of electrical energy to make 

up the losses We take a small wire, poke it through the hole in the side of the can, 

and fasten it to the inside wall so that it makes a small loop, as shown in Fig 23 8. 

If we now connect this wire to a source of high-frequency alternating current, this 

current will couple energy into the electric and magnetic fields of the cavity and 

keep the oscillations going. This will happen, of course, only if the frequency of the 

driving source is at the resonant frequency of the can If the source is at the wrong 

frequency, the electric and magnetic fields will not resonate, and the fields m the 

can will be very weak. 

The resonant behavior can easily be seen by making another small hole in 

the can and hooking in another coupling loop, as we have also drawn in Fig. 23-8. 

The changing magnetic field through this loop will generate an induced electro¬ 

motive force in the loop. If this loop is now connected to some external measuring 

circuit, the currents will be proportional to the strength of the fields in the cavity 

Suppose we now connect the input loop of our cavity to an RF signal generator, 

as shown m Fig. 23-9. The signal generator contains a source of alternating current 

whose frequency can be varied by varying the knob on the front of the generator. 

Then we connect the output loop of the cavity to a ‘"detector,” which is an instru¬ 

ment that measures the current from the output loop. It gives a meter reading pro¬ 

portional to this current. If we now measure the output current as a function of 

the frequency of the signal generator, we find a curve like that shown in Fig 23-10. 

The output current is small for all frequencies except those very near the frequency 

o>n, which is the resonant frequency of the cavity. The resonance curve is very much 

like those we described in Chapter 23 of Vol. I. The width of the resonance is, 

however, much narrower than we usually find for resonant circuits made of induc¬ 

tances and capacitors; that is, the Q of the cavity is very high. It is not unusual 

to find Q's as high as 100,000 or more if the inside walls of the cavity are made of 

some material with a very good conductivity, such as silver 
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23-4 Cavity modes 

Suppose we now try to check our theory by making measurements with an 

actual can. We take a can which is a cylinder with a diameter of 3.0 inches and a 

height of about 2.5 inches. The can is fitted with an input and output loop, as 

shown in Fig. 23-8. If we calculate the resonant frequency expected for this can 

according to Eq (23.18), we get that /0 = w0/27r = 3010 megacycles When 

we set the frequency of our signal generator near 3000 megacycles and vary it 

slightly until we find the resonance, we observe that the maximum output current 

occurs for a frequency of 3050 megacycles, which is quite close to the predicted 

resonant frequency, but not exactly the same. There are several possible reasons 

for the discrepancy. Perhaps the resonant frequency is changed a little bit because 

of the holes we have cut to put in the coupling loops. A little thought, however, 

shows that the holes should lower the resonant frequency a little bit, so that cannot 

be the reason. Perhaps there is some slight error in the frequency calibration of the 

signal generator, or perhaps our measurement of the diameter of the cavity is not 

accurate enough. Anyway, the agreement is fairly close. 

Much more important is something that happens if we vary the frequency of 

our signal generator somewhat further from 3000 megacycles. When we do that 

we get the results shown in Fig. 23-11. We find that, in addition to the resonance 

we expected near 3000 megacycles, there is also a resonance near 3300 megacycles 

and one near 3820 megacycles. What do these extra resonances mean? We might 

get a clue from Fig. 23-6. Although we have been assuming that the first zero of 

the Bessel function occurs at the edge of the can, it could also be that the second 

zero of the Bessel function corresponds to the edge of the can, so that there is one 

complete oscillation of the electric field as we move from the center of the can out 

to the edge, as shown in Fig. 23-12. This is another possible mode for the oscillating 

fields. We should certainly expect the can to resonate in such a mode. But 

notice, the second zero of the Bessel function occurs at x = 5.52, which is over 

twice as large as the value at the first zero. The resonant frequency of this mode 

should therefore be higher than 6000 megacycles. We would, no doubt, find it 

there, but it doesn’t explain the resonance we observe at 3300. 

The trouble is that in our analysis of the behavior of a resonant cavity we have 

considered only one possible geometric arrangement of the electric and magnetic 

fields. We have assumed that the electric fields are vertical and that the magnetic 

fields lie in horizontal circles. But other fields are possible. The only requirements 

are that the fields should satisfy Maxwell’s equations inside the can and that the 

electric field should meet the wall at right angles. We have considered the case in 

which the top and the bottom of the can are flat, but things would not be completely 

different if the top and bottom were curved. In fact, how is the can supposed to 

know which is its top and bottom, and which are its sides? It is, in fact, possible 

to show that there is a mode of oscillation of the fields inside the can in which the 

electric fields go more or less across the diameter of the can, as shown in Fig. 23-13. 

It is not too hard to understand why the natural frequency of this mode 

should be not very different from the natural frequency of the first mode we have 

considered. Suppose that instead of our cylindrical cavity we had taken a cavity 

which was a cube 3 inches on a side. It is clear that this cavity would have three 

different modes, but all with the same frequency. A mode with the electric field 

going more or less up and down would certainly have the same frequency as the 

mode in which the electric field was directed right and left If we now distort the 

cube into a cylinder, we will change these frequencies somewhat. We would still 

expect them not to be changed too much, provided we keep the dimensions of the 

cavity more or less the same. So the frequency of the mode of Fig. 23-13 should 

not be too different from the mode of Fig. 23-8. We could make a detailed cal¬ 

culation of the natural frequency of the mode shown in Fig. 23-13, but we will not 

do that now. When the calculations are carried through, it is found that, for the 

dimensions we have assumed, the resonant frequency comes out very close to the 

observed resonance at 3300 megacycles. 

By similar calculations it is possible to show that there should be still another 

mode at the other resonant frequency we found near 3800 megacycles For this 
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Fig. 23-14. Another mode of a cy¬ 

lindrical cavity. 

mode, the electric and magnetic fields are as shown in Fig. 23-14. The electric 

field does not bother to go all the way across the cavity It goes from the sides to 

the ends, as shown. 

As you will probably now believe, if we go higher and higher in frequency we 

should expect to find more and more resonances. There are many different modes,* 

each of which will have a different resonant frequency corresponding to some par¬ 

ticular complicated arrangement of the electric and magnetic fields. Each of these 

field arrangements is called a resonant mode. The resonance frequency of each mode 

can be calculated by solving Maxwell’s equations for the electric and magnetic 

fields in the cavity. 

When we have a resonance at some particular frequency, how can we know 

which mode is being excited9 One way is to poke a little wire into the cavity 

through a small hole If the electric field is along the wire, as in Fig 23-15(a), 

there will be relatively large currents in the wire, sapping energy from the fields, 

and the resonance will be suppressed. If the electric field is as shown in Fig. 

23-15(b), the wire will have a much smaller effect. We could find which way the 

field points in this mode by bending the end of the wire, as shown in Fig 23-15(c) 

Then, as we rotate the wire, there will be a big effect when the end of the wire is 

parallel to E and a small effect when it is lotated so as to be at 90° to E. 

Fig. 23-15. A short metal wire inserted into a cavity will disturb the 

resonance much more when it is parallel to E than when it is at right angles. 

23-5 Cavities and resonant circuits 

Although the resonant cavity we have been desciibing seems to be quite 

different from the ordinary resonant circuit consisting of an inductance and a 

capacitor, the two resonant systems are, of course, closely related They are both 

members of the same family; they are just two extreme cases of electromagnetic 

resonators—and there are many intermediate cases between these two extremes. 

Suppose we start by considering the resonant circuit of a capacitor in parallel with 

an inductance, as shown in Fig. 23-16(a). This circuit will resonate at the frequency 

a>[} = \/\?rLC. If we want to raise the resonant frequency of this circuit, we can 

do so by lowering the inductance L, One way is to decrease the number of turns in 

the coil. We can, however, go only so far in this direction. Eventually we will get 

down to the last turn, and we will have just a piece of wire joining the top and 

bottom plates of the condenser. We could raise the resonant frequency still further 

by making the capacitance smaller; however, we can also continue to decrease the 

inductance by putting several inductances in parallel Two one-turn inductances in 

parallel will have only half the inductance of each turn. So when our inductance 

has been reduced to a single turn, we can continue to raise the resonant frequency 

by adding other single loops from the top plate to the bottom plate of the condenser. 

For instance. Fig 23-16(b) shows the condenser plates connected by six such 

“single-turn inductances.” If we continue to add many such pieces of wire, we can 

make the transition to the completely enclosed resonant system shown in part (c) 

of the figure, which is a drawing of the cross section of a cylindncally symmetrical 
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Fig. 23—16. Resonators of progressively higher resonant frequencies. 

object. Our inductance is now a cylindrical hollow can attached to the edges of 

the condenser plates. The electric and magnetic fields will be as shown m the 

figure. Such an object is, of course, a resonant cavity. It is called a “loaded” cavity. 

But we can still think of it as an L-C circuit in which the capacity section is the 

region where we find most of the electric field and the inductance section is 

that region where we find most of the magnetic field. 

If we want to make the frequency of the resonator in Fig. 23—16(c) still higher, 

we can do so by continuing to decrease the inductance L. To do that, we must 

decrease the geometric dimensions of the inductance section, for example by 

decreasing the dimension h in the drawing. As h is decreased, the resonant fre¬ 

quency will be increased Eventually, of course, we will get to the situation in 

which the height h is just equal to the separation between the condenser plates 

We then have just a cylindrical can, our resonant circuit has become the cavity 

resonator of Fig. 23-7. 

You will notice that in the original L-C resonant circuit of Fig. 23-16 the 

electric and magnetic fields are quite separate. As we have gradually modified the 

resonant system to make higher and higher frequencies, the magnetic field has been 

brought closer and closer to the electric field until in the cavity resonator the two 

are quite intermixed 

Although the cavity resonators we have talked about in this chapter have been 

cylindrical cans, there is nothing magic about the cylindrical shape A can of any 

shape will have resonant frequencies corresponding to various possible modes of 

oscillations of the electric and magnetic fields For example, the “cavity” shown 

in Fig 23-17 will have its own particular set of resonant frequencies—although 

they would be rather difficult to calculate. 
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24 

Waveguides 

24-1 The transmission line 

In the last chapter we studied what happened to the lumped elements of circuits 

when they were operated at very higli frequencies, and we were led to see that a 

resonant circuit could be replaced by a cavity with the fields resonating inside. 

Another interesting technical problem is the connection of one object to another, 

so that electromagnetic energy can be transmitted between them. In low-frequency 

circuits the connection is made with wires, but this method doesn't work very well 

at high frequencies because the circuits would radiate energy into all the space 

around them, and it is hard to control where the energy will go. The fields spread 

out around the wires; the currents and voltages are not “guided” very well by 

the wires. In this chapter we want to look into the ways that objects can be 

interconnected at high frequencies At least, that’s one way of presenting our 

subject. 

Another way is to say that we have been discussing the behavior of waves in 

free space. Now it is time to see what happens when oscillating fields are confined 

in one or more dimensions. We will discover the interesting new phenomenon 

when the fields are confined in only two dimensions and allowed to go free in the 

third dimension, they propagate in waves. These are “guided waves”—the subject 

of this chapter. 

We begin by working out the general theory of the transmission line. The 

ordinary power transmission line that runs from tower to tower over the country¬ 

side radiates away some of its power, but the power frequencies (50-60 cycles/sec) 

are so low that this loss is not serious. The radiation could be stopped by surround¬ 

ing the line with a metal pipe, but this method would not be practical for power 

lines because the voltages and currents used would require a very large, expensive, 

and heavy pipe. So simple “open lines” are used. 

For somewhat higher frequencies—say a few kilocycles—radiation can al¬ 

ready be serious However, it can be reduced by using “twisted-pair” transmission 

lines, as is done for short-run telephone connections. At higher frequencies, how¬ 

ever, the radiation soon becomes intolerable, either because of power losses or 

because the energy appears in other circuits where it isn’t wanted For frequencies 

from a few kilocycles to some hundreds of megacycles, electromagnetic signals 

and power are usually transmitted via coaxial lines consisting of a wire inside a 

cylindrical “outer conductor” or “shield ” Although the following treatment will 

apply to a transmission line of two parallel conductors of any shape, we will carry 

it out referring to a coaxial line. 

We take the simplest coaxial line that has a central conductor, which we sup¬ 

pose is a thm hollow cylinder, and an outer conductor which is another thin 

cylinder on the same axis as the inner conductor, as in Fig. 24-1 We begin by 

figuring out approximately how the line behaves at relatively low frequencies 

We have already described some of the low-frequency behavior when we said 

earlier that two such conductors had a certain amount of inductance per unit 

length or a certain capacity per unit length. We can, in fact, describe the low- 

frequency behavior of any transmission line by giving its inductance per unit 

length, L() and its capacity per unit length, C0. Then we can analyze the line as 

the limiting case of the L-C filter as discussed in Section 22-6. We can make a 

filter which imitates the line by taking small series elements L{) Ax and small 

shunt capacities C0 Ax, where Ax is an element of length of the line. Using our 

results for the infinite filter, we see that there would be a propagation of electric 

24-1 The transmission line 

24-2 The rectangular waveguide 

24-3 The cutoff frequency 

24-4 The speed of the guided waves 

24-5 Observing guided waves 

24-6 Waveguide plumbing 

24-7 Waveguide modes 

24-8 Another way of looking at the 

guided waves 

Fig. 24-1. A coaxial transmission line. 
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signals along the line. Rather than following that approach, however, we would 

now rather look at the line from the point of view of a differential equation. 

Suppose that we see what happens at two neighboring points along the 

transmission line, say at the distances * and x + Ax from the beginning of the 

line. Let’s call the voltage difference between the two conductors V(x), and the 

current along the “hot” conductor /(x) (see Fig. 24-2). If the current in the line 

is varying, the inductance will give us a voltage drop across the small section of 

line from x to x + Ax in the amount 

AV = V(x + Ax) - V(x) = -L0 Axj(- 

Or, taking the limit as Ax —> 0, we get 

100 I(x + Ax) 

r\ 
Vlx)j l V(xi-Ax) 

WIRE 2 V| V 
X x + Ax 

Fig. 24-2. The currents and voltages 

of a transmission line. 

dV _ dl 

dx jL° dt ‘ 
(24.1) 

The changing current gives a gradient of the voltage. 

Referring again to the figure, if the voltage at x is changing, there must be 

some charge supplied to the capacity in that region. If we take the small piece of 

line between x and x + Ax, the charge on it is q = C0 AxV. The time rate-of- 

change of this charge is C0 Ax dV/dt, but the charge changes only if the current 

/(x) into the element is different from the current /(x + Ax) out. Calling the differ¬ 

ence A/, we have 

A/ — — C0 Ax • 
dt 

Taking the limit as Ax —» 0, we get 

df 
dx 

(24.2) 

So the conservation of charge implies that the gradient of the current is propor¬ 

tional to the time rate-of-change of the voltage. 

Equations (24.1) and (24.2) are then the basic equations of a transmission 

line. If we wish, we could modify them to include the effects of resistance in the 

conductors or of leakage of charge through the insulation between the conductors, 

but for our present discussion we will just stay with the simple example. 

The two transmission line equations can be combined by differentiating one 

with respect to / and the other with respect to x and eliminating either V or /. 

Then we have either 

s2v „ T d2v ..... 
dx* ~ c°L°~w (24J) 

or 
f)2r 

(24-4) 

Once more we recognize the wave equation in x. For a uniform transmission 

line, the voltage (and current) propagates along the line as a wave. The voltage 

along the line must be of the form K(x, t) = / (x — vt) or K(x, /) = g(x + vt\ 

or a sum of both. Now what is the velocity vl We know that the coefficient of 

the a2/dt2 term is just l/v2, so 

o = —Lr • (24.5) 
VLqCo 

We will leave it for you to show that the voltage for each wave in a line is 

proportional to the current of that wave and that the constant of proportionality 

is just the characteristic impedance z0. Calling V+ and /+ the voltage and current 

for a wave going in the plus x-direction, you should get 

V+ = ZqI+. (24.6) 
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Similary, for the wave going toward minus x the relation is 

v~ = -z0 

The characteristic impedance—as we found out from our filter equations—is 

given by 

Ho 
C03 

(24.7) 

and is, therefore, a pure resistance. 

To find the propagation speed v and the characteristic impedance z0 of a 

transmission line, we have to know the inductance and capacity per unit length. 

We can calculate them easily for a coaxial cable, so we will see how that goes. For 

the inductance we follow the ideas of Section 17-8, and set \Ll2 equal to the mag¬ 

netic energy which we get by integrating t{)c2B2/2 over the volume. Suppose 

that the central conductor carries the current /; then we know that B ~ //27re0c2r, 

where r is the distance from the axis. Taking as a volume element a cylindrical 

shell of thickness dr and of length /, we have for the magnetic energy 

llirr dr, 
where a and b are the radii of the inner and outer conductors, respectively, 

ing out the integral, we get 

U = 
I21 

47re0c2 

Setting the energy equal to \LI2, we find 

Carry- 

(24 8) 

= 1 k. 
2tt€qc2 n a 

(24.9) 

It is, as it should be, proportional to the length / of the line, so the inductance per 

unit length L0 is 

In (b/a) 

L° 2ire0c2 
(24.10) 

We have worked out the charge on a cylindrical condenser (see Section 12-2) 

Now, dividing the charge by the potential difference, we get 

2re0l 

In (b/a) ‘ 

The capacity per unit length C0 is C/L Combining this result with Eq. (24.10), 

we see that the product LUC0 is just equal to 1/c2. so v — 1/\ZL0C0 is equal 

to c. The wave travels down the line with the speed of light. We point out that this 

result depends on our assumptions: (a) that there are no dielectrics or magnetic 

materials in the space between the conductors, and (b) that the currents are all on 

the surfaces of the conductors (as they would be for perfect conductors). We will 

see later that for good conductors at high frequencies, all currents distribute 

themselves on the surfaces as they would for a perfect conductor, so this assump¬ 

tion is then valid. 

Now it is interesting that so long as assumptions (a) and (b) are correct, the 

product L{)C0 is equal to 1/c2 for any parallel pair of conductors—even, say, for a 

hexagonal inner conductor anywhere inside an elliptical outer conductor. So long 

as the cross section is constant and the space between has no material, waves are 

propagated at the velocity of light. 

No such general statement can be made about the characteristic impedance. 

For the coaxial line, it is 

= In (b/a) 

2tre0c 
(24.11) 
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Fig. 24-3. Coordinates chosen for 

the rectangular waveguide. 

Fig. 24-4. The electric field in the 

waveguide at some value of z. 

f* 

Fig. 24—5. The z-dependence of the 

field in the waveguide. 

The factor l/e0c has the dimensions of a resistance and is equal to 1207r ohms. 

The geometric factor In (b/a) depends only logarithmically on the dimensions, so 

for the coaxial line—and most lines—the characteristic impedance has typical 

values of from 50 ohms or so to a few hundred ohms. 

24-2 The rectangular waveguide 

The next thing we want to talk about seems, at first sight, to be a striking 

phenomenon: if the central conductor is removed from the coaxial line, it can still 

carry electromagnetic power. In other words, at high enough frequencies a hollow 

tube will work just as well as one with wires. It is related to the mysterious way in 

which a resonant circuit of a condenser and inductance gets replaced by nothing 

but a can at high frequencies. 

Although it may seem to be a remarkable thing when one has been thinking 

in terms of a transmission line as a distributed inductance and capacity, we all 

know that electromagnetic waves can travel along inside a hollow metal pipe. 

If the pipe is straight, we can see through it! So certainly electromagnetic waves 

go through a pipe. But we also know that it is not possible to transmit low-fre¬ 

quency waves (power or telephone) through the inside of a single metal pipe. So 

it must be that electromagnetic waves will go through if their wavelength is short 

enough. Therefore we want to discuss the limiting case of the longest wavelength 

(or the lowest frequency) that can get through a pipe of a given size. Since the 

pipe is then being used to carry waves, it is called a waveguide. 

We will begin with a rectangular pipe, because it is the simplest case to 

analyze. We will first give a mathematical treatment and come back later to look 

at the problem in a much more elementary way. The more elementary approach, 

however, can be applied easily only to a rectangular guide. The basic phenomena 

are the same for a general guide of arbitrary shape, so the mathematical argument 

is fundamentally more sound. 

Our problem, then, is to find what kind of waves can exist inside a rectangular 

pipe. Let’s first choose some convenient coordinates; we take the z-axis along the 

length of the pipe, and the x- and ^-axes parallel to the two sides, as shown in 

Fig. 24-3. 

We know that when light waves go down the pipe, they have a transverse 

electric field; so suppose we look first for solutions in which E is perpendicular to 

z, say with only a jy-component, Eu. This electric field will have some variation 

across the guide; in fact, it must go to zero at the sides parallel to the j-axis, because 

the currents and charges in a conductor always adjust themselves so that there is 

no tangential component of the electric field at the surface of a conductor. So 

Ey will vary with x in some arch, as shown in Fig. 24-4. Perhaps it is the Bessel 

function we found for a cavity? No, because the Bessel function has to do with 

cylindrical geometries. For a rectangular geometry, waves are usually simple 

harmonic functions, so we should try something like sin kxx. 

Since we want waves that propagate down the guide, we expect the field to 

alternate between positive and negative values as we go along in z, as m Fig. 24-5, 

and these oscillations will travel along the guide with some velocity v. If we have 

oscillations at some definite frequency a>, we would guess that the wave might vary 

with z like cos(w/ — kzz), or to use the more convenient mathematical form, 

like eilu>t~kzll\ Jhis z-dependence represents a wave travelling with the speed 

v = a)/kz (see Chapter 29, Vol. I). 

So we might guess that the wave in the guide would have the following 

mathematical form: 

Ey = E0 sin kxXe*"1-*^. (24.12) 

Let’s see whether this guess satisfies the correct field equations. First, the 

electric field should have no tangential components at the conductors. Our field 

satisfies this requirement; it is perpendicular to the top and bottom faces and is 

zero at the two side faces. Well, it is if we choose kx so that one-half a cycle of 

24-4 



sin krx just fits in the width of the guide—that is, if 

kxa = 7r. (24.13) 

There are other possibilities, like kxa = 2ir, 37r, . . . , or, in general, 

kxa ~ rnr, (24 14) 

where n is any integer. These represent various complicated arrangements of the 

field, but for now let’s take only the simplest one, where kx = ir/a, where a is 

the width of the inside of the guide. 

Next, the divergence of E must be zero in the free space inside the guide, 

since there are no charges there. Our E has only a ^-component, and it doesn’t 

change with y, so we do have that V • E = 0. 

Finally, our electric field must agree with the rest of Maxwell’s equations in 

the free space inside the guide. That is the same thing as saying that it must 

satisfy the wave equation 

d^Ey B% d2Ey_j_ d?Ey = Q 
dx2 dy2 dz2 c2 dt2 

(24.15) 

We have to see whether our guess, Eq. (24.12), will work. The second derivative of 

E}/ with respect to ^ is just —k2xEy The second derivative with respect to y is 

zero, since nothing depends on v. The second derivative with respect to z is —k2zE,n 

and the second derivative with respect to t is —o)2Ey. Equation (24.15) then says 

that 

k2xEv + kjEv - « Ey = 0. 

Unless Ev is zero everywhere (which is not very interesting), this equation is correct 

if 

kl + k% (24,16) 

We have already fixed kx, so this equation tells us that there can be waves of the 

type we have assumed if kz is related to the frequency co so that Eq. (24 16) is 

satisfied—in other words, if 

kz = Vi^fc2) - (tr2/fl2). (24.17) 

The waves we have described are propagated in the z-direction with this value of kz 

The wave number kz we get from Eq. (24.17) tells us, for a given frequency w, 

the speed with which the nodes of the wave propagate down the guide. The 

phase velocity is 

v = £- (24.18) 
Kz 

You will remember that the wavelength X of a travelling wave is given by 

X = lirv/w, so kz is also equal to 27t/X£/, where \g is the wavelength of the oscilla¬ 

tions along the z-direction—the "guide wavelength.” The wavelength in the guide 

is different ,of course, from the free-space wavelength of electromagnetic waves 

of the same frequency. If we call the free-space wavelength X0, which is equal to 

Ittc/oo, we can write Eq. (24.17) as 

Vl - (X0/2a)2 
(24.19) 

Fig. 24-6. The magnetic field in the 

waveguide. 

Besides the electric fields there are magnetic fields that will travel with the 

wave, but we will not bother to work out an expression for them right now. Since 

c2V X B — dE/dt, the lines of B will circulate around the regions in which 

dE/dt is largest, that is, halfway between the maximum and minimum of E. The 

loops of B will lie parallel to the xz-plane and between the crests and troughs of 

E, as shown in Fig. 24-6. 
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24-3 The cutoff frequency 

In solving Eq. (24.16) for kz, there should really be two roots—one plus and 

one minus. We should write 

kz — =*= V(co2/c2) — (it2/a2). (24.20) 

The two signs simply mean that there can be waves which propagate with a nega¬ 

tive phase velocity (toward —z), as well as waves which propagate in the positive 

direction in the guide. Naturally, it should be possible for waves to go in either 

direction. Since both types of waves can be present at the same time, there will be 

the possibility of standing-wave solutions. 

Our equation for kz also tells us that higher frequencies give larger values of 

kz, and therefore smaller wavelengths, until in the limit of large co, k becomes 

equal to co/c, which is the value we would expect for waves in free space. The 

light we “see” through a pipe still travels at the speed c. But now notice that if we 

go toward low frequencies, something strange happens. At first the wavelength 

gets longer and longer, but if co gets too small the quantity inside the square root 

of Eq. (24.20) suddenly becomes negative. This will happen as soon as co gets to 

be less than irc/a—or when \0 becomes greater than 2a. In other words, when 

the frequency gets smaller than a certain critical frequency coc = irc/a, the wave 

number kz (and also \g) becomes imaginary and we haven’t got a solution any 

more. Or do we? Who said that k2 has to be real? What if it does come out 

imaginary? Our field equations are still satisfied. Perhaps an imaginary kz also 

represents a wave. 

Suppose co is less than coc; then we can write 

kz = =*=/*', (24.21) 

where kf is a positive real number: 

k' = V(7T2/a2) - (w2/c2). (24.22) 

If we now go back to our expression, Eq. (24.12), for Ey, we have 

7r 7r 

Fig, 24-7. The variation of By with 

z for CO « C0c. 

Ey = E0 sin kxxe^lh'z\ (24.23) 

which we can write as 

Ey = £*0 sin kzxe±k'zel03t. (24.24) 

This expression gives an £-field that oscillates with time as elu>t but which 

varies with z as e±k'z. It decreases or increases with z smoothly as a real exponent¬ 

ial In our derivation we didn’t worry about the sources that started the waves, 

but there must, of course, be a source someplace in the guide. The sign that goes 

with k' must be the one that makes the field decrease with increasing distance 

from the source of the waves. 

So for frequencies below coc — wc/a, waves do not propagate down the guide; 

the oscillating fields penetrate into the guide only a distance of the order of l/k'. 

For this reason, the frequency coc is called the “cutoff frequency” of the guide. 

Looking at Eq. (24 22), we see that for frequencies just a little below cue, the num¬ 

ber k' is small and the fields can penetrate a long distance into the guide. But if 

co is much less than coc, the exponential coefficient kf is equal to ir/a and the field 

dies off extremely rapidly, as shown in Fig. 24-7. The field decreases by 1/e in the 

distance a/ir, or in only about one-third of the guide width. The fields penetrate 

very little distance from the source. 

We want to emphasize an interesting feature of our analysis of the guided 

waves—the appearance of the imaginary wave number kz. Normally, if we solve 

an equation in physics and get an imaginary number, it doesn’t mean anything 

physical. For waves, however, an imaginary wave number does mean something. 

The wave equation is still satisfied; it only means that the solution gives expo¬ 

nentially decreasing fields instead of propagating waves. So in any wave problem 

where k becomes imaginary for some frequency, it means that the form of the wave 

changes—the sine wave changes into an exponential. 
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24-4 The speed of the guided waves 

The wave velocity we have used above is the phase velocity, which is the speed 
of a node of the wave; it is a function of frequency. If we combine Eqs. (24.17) 
and (24.18), we can write 

^phase 
_C_ 

Vl — (wc/w)2 
(24.25) 

For frequencies above cutoff—where travelling waves exist—coc/co is less than one, 
and / phase is real and greater than the speed of light. We have already seen in 
Chapter 48 of Vol. I that phase velocities greater than light are possible, because it 
is just the nodes of the wave which are moving and not energy or information. In 
order to know how fast signals will travel, we have to calculate the speed of pulses 
or modulations made by the interference of a wave of one frequency with one or 
more waves of slightly different frequencies (see Chapter 48. Vol. I). We have 
called the speed of the envelope of such a group of waves the group velocity; it is 
not co/k but clu/dk: 

^group 
dej 

dk 
(24.26) 

Taking the derivative of Eq. (24.17) with respect to to and inverting to get du/dk, 
we find that 

^group ~ cVl - (coc/co)2, (24.27) 

which is less than the speed of light. 
The geometric mean of rphase and rgroup is just c, the speed of light: 

^phase ^group = £ • (24.28) 

This is curious, because we have seen a similar relation in quantum mechanics. 
For a particle with any velocity—even relativistic—the momentum p and energy 
U are related by 

U2 = p2c2 + m2c\ (24.29) 

But in quantum mechanics the energy is fao, and the momentum is h/K which is 
equal to hk\ so Eq. (24.29) can be written 

CO2 j 2 , m2C2 
-=k+^, (24.30) 

or 

k = V(co2/c2) - (m2c2/h2)> (24.31) 

which looks very much like Eq. (24.17). . . Interesting! 
The group velocity of the waves is also the speed at which energy is transported 

along the guide. If we want to find the energy flow down the guide, we can get it 
from the energy density times the group velocity. If the root mean square electric 
field is E0, then the average density of electric energy is €qEq/2. There is also 
some energy associated with the magnetic field. We will not prove it here, but in 
any cavity or guide the magnetic and electric energies are equal, so the total 
electromagnetic energy density is €qEq. The power dU/dt transmitted by the guide 
is then 

~ = e0Elabvgro*P. (24.32) 

(We will see later another, more general way of getting the energy flow.) 

24-5 Observing guided waves 

Energy can be coupled into a waveguide by some kind of an “antenna.” For 
example, a little vertical wire or “stub” will do. The presence of the guided waves 
can be observed by picking up some of the electromagnetic energy with a little 
receiving “antenna,” which again can be a little stub of wire or a small loop. 
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Fig. 24-8. 

ing stub and a 

A waveguide with a driv- 

pickup probe. 

In Fig. 24-8, we show a guide with some cutaways to show a driving stub and a 

pickup “probe”. The driving stub can be connected to a signal generator via a 

coaxial cable, and the pickup probe can be connected by a similar cable to a 

detector. It is usually convenient to insert the pickup probe via a long thin slot 

in the guide, as shown in Fig, 24-8. Then the probe can be moved back and forth 

along the guide to sample the fields at various positions. 

If the signal generator is set at some frequency w greater than the cutoff 

frequency there will be waves propagated down the guide from the driving 

stub. These will be the only waves present if the guide is infinitely long, which 

can effectively be arranged by terminating the guide with a carefully designed 

absorber in such a way that there are no reflections from the far end. Then, since 

the detector measures the time average of the fields near the probe, it will pick 

up a signal which is independent of the position along the guide; its output will 

be proportional to the power being transmitted. 

If now the far end of the guide is finished off in some way that produces a 

reflected wave—as an extreme example, if we closed it off with a metal plate—there 

will be a reflected wave in addition to the original forward wave. These two waves 

will interfere and produce a standing wave in the guide similar to the standing 

waves on a string which we discussed in Chapter 49 of Vol. I. Then, as the pickup 

probe is moved along the line, the detector reading will rise and fall periodically, 

showing a maximum in the fields at each loop of the standing wave and a minimum 

at each node The distance between two successive nodes (or loops) is just X„/2. 

This gives a convenient way of measuring the guide wavelength. If the frequency 

is now moved closer to ooc, the distances between nodes increase, showing that the 

guide wavelength increases as predicted by Eq. (24.19). 

Suppose now the signal generator is set at a frequency just a little below ojc 

Then the detector output will decrease gradually as the pickup probe is moved 

down the guide If the frequency is set somewhat lower, the field strength will 

fall rapidly, following the curve of Fig. 24-7. and showing that waves are not 

propagated. 

24-6 Waveguide plumbing 

An important practical use of waveguides is for the transmission of high- 

frequency power, as, for example, in coupling the high-frequency oscillator or 

output amplifier of a radar set to an antenna. In fact, the antenna itself usually 

consists of a parabolic reflector fed at its focus by a waveguide flared out at the 

end to make a “horn” that radiates the waves coming along the guide. Although 

high frequencies can be transmitted along a coaxial cable, a waveguide is better 

for transmitting large amounts of power. First, the maximum power that can be 

transmitted along a line is limited by the breakdown of the insulation (solid or gas) 

between the conductors. For a given amount of power, the field strengths in a 

guide are usually less than they are in a coaxial cable, so higher powers can be 

transmitted before breakdown occurs. Second, the power losses in the coaxial cable 

are usually greater than in a waveguide. In a coaxial cable there must be insulating 

material to support the central conductor, and there is an energy loss in this 

material—particularly at high frequencies. Also, the current densities on the 

central conductor are quite high, and since the losses go as the square of the current 

density, the lower currents that appear on the walls of the guide result in lower 
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Fig. 24-9. Sections of waveguide connected 

with flanges. 

/ 

flange 
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^1 RESONANT 
CAVITY 

GUIDE 

Fig. 24—10. A low-loss connection between 

two sections of waveguide. 

energy losses. To keep these losses to a minimum, the inner surfaces of the guide 

are often plated with a material of high conductivity, such as silver. 

The problem of connecting a “circuit” with waveguides is quite different 

from the corresponding circuit problem at low frequencies, and is usually called 

microwave “plumbing.” Many special devices have been developed for the pur¬ 

pose. For instance, two sections of waveguide are usually connected together by 

means of flanges, as can be seen in Fig. 24-9. Such connections can, however, 

cause serious energy losses, because the surface currents must flow across the joint 

which may have a relatively high resistance. One way to avoid such losses is to 

make the flanges as shown in the cross section drawn in Fig. 24-10. A small space 

is left between the adjacent sections of the guide, and a groove is cut in the face of 

one of the flanges to make a small cavity of the type shown in Fig. 23-16(c) The 

dimensions are chosen so that this cavity is resonant at the frequency being used 

This resonant cavity presents a high “impedance” to the currents, so relatively 

little current flows across the metallic joints (at a in Fig. 24-10). The high guide 

currents simply charge and discharge the “capacity” of the gap (at b in the figure), 

where there is little dissipation of energy. 

Suppose you want to stop a waveguide in a way that won’t result in reflected 

waves. Then you must put something ai the end that imitates an infinite length of 

guide. You need a “termination” which acts for the guide like the characteristic 

impedance does for a transmission line—something that absorbs the arriving waves 

without making reflections. Then the guide will act as though it went on forever 

Such terminations are made by putting inside the guide some wedges of resistance 

material carefully designed to absorb the wave energy while generating almost 

no reflected waves. 

If you want to connect three things together—for instance, one source to 

two different antennas—then you can use a “T” like the one shown in Fig 24-11. 

Power fed in at the center section of the “T“ will be split and go out the two side 

arms (and there may also be some reflected waves). You can see qualitatively from 

the sketches in Fig. 24-12 that the fields would spread out when they get to the 

end of the input section and make electric fields that will start waves going out the 

two arms. Depending on whether electric fields in the guide are parallel or per¬ 

pendicular to the “top” of the “T,” the fields at the junction would be roughly 

as shown in (a) or (b) of Fig. 24-12. 

Finally, we would like to describe a device called an “unidirectional coupler," 

which is very useful for telling what is going on after you have connected a compli¬ 

cated arrangement of waveguides. Suppose you want to know which way the 

waves are going in a particular section of guide—you might be wondering, for 

instance, whether or not there is a strong reflected wave. The unidirectional 

coupler takes out a small fraction of the power of a guide if there is a wave going 

one way, but none if the wave is going the other way. By connecting the output 

of the coupler to a detector, you can measure the “one-way” power in the guide 
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Fig. 24-11. A waveguide "T.” (The 

flanges have plastic end caps to keep the 

inside clean while the “T” is not being 

used.) 
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Fig. 24-12. The electric fields in a 

waveguide “T" for two possible field 

orientations. 



Figure 24-13 is a drawing of a unidirectional coupler; a piece of waveguide 

AB has another piece of waveguide CD soldered to it along one face. The guide 

CD is curved away so that there is room for the connecting flanges. Before the 

guides are soldered together, two (or more) holes have been drilled in each guide 

(matching each other) so that some of the fields in the main guide AB can be 

coupled into the secondary guide CD. Each of the holes acts like a little antenna 

that produces a wave in the secondary guide. If there were only one hole, waves 

would be sent in both directions and would be the same no matter which way the 

wave was going in the primary guide. But when there are two holes with a separa¬ 

tion space equal to one-quarter of the guide wavelength, they will make two sources 

90° out of phase Do you remember that we considered in Chapter 29 of Vol I the 

interference of the waves from two antennas spaced X/4 apart and excited 90° 

out of phase in time? We found that the waves subtract in one direction and add 

in the opposite direction The same thing will happen here. The wave produced 

in the guide CD will be going in the same direction as the wave in AB. 

If the wave in the primary guide is travelling from A toward B, there will be 

a wave at the output D of the secondary guide. If the wave m the primary guide 

Fig 24-1 3. A unidirectional coupler. goes from B toward A, there will be a wave going toward the end C of the secondary 

guide. This end is equipped with a termination, so that this wave is absorbed and 

there is no wave at the output of the coupler 

24-7 Waveguide modes 

The wave we have chosen to analyze is a special solution of the field equations. 

There are many more. Each solution is called a waveguide “mode ” For example, 

our .v-dependence of the field was just one-half a cycle of a sine wave. There is an 

equally good solution with a full cycle, then the variation of EtJ with v; is as shown 

m Fig 24-14 The kr for such a mode is twice as large, so the cutoff frequency is 

much higher. Also, in the wave we studied E has only a y-component, but there 

are other modes with more complicated electric fields. If the electric field has 

T components only in x and y—so that the total electric field is always at light 

angles to the z-direction—the mode is called a “transverse electric” (or TE) mode. 

The magnetic field of such modes will always have a z-component. It turns out 

that if E has a component in the z-direction (along the direction of propagation), 

then the magnetic field will always have only transverse components. So such 

fields are called transverse magnetic (TM) modes. For a rectangular guide, all 

the other modes have a higher cutoff frequency than the simple TE mode we have 

x described. It is, therefore, possible—and usual—to use a guide with a frequency 

just above the cutoff for this lowest mode but below the cutoff frequency for all 

the others, so that just the one mode is propagated. Otherwise, the behavior gets 

complicated and difficult to control. 

Fig. 24-14. Another possible varia- 24-8 Another way of looking at the guided waves 
tion of Ey with x. 

We want now to show you another way of understanding why a waveguide 

attenuates the fields rapidly for frequencies below the cutoff frequency oj(. Then 

you will have a more “physical” idea of why the behavior changes so drastically 

between low and high frequencies We can do this for the rectangular guide by 

analyzing the fields in terms of reflections—or images—in the walls of the guide. 

The approach only works for rectangular guides, however, that’s why we started 

with the more mathematical analysis which works, in principle, for guides of any 

shape. 

For the mode we have described, the vertical dimension (in y) had no effect, 

so we can ignore the top and bottom of the guide and imagine that the guide is 

extended indefinitely in the vertical direction. We imagine then that the guide 

just consists of two vertical plates with the separation a. 

Let’s say that the source of the fields is a vertical wire placed in the middle of 

the guide, with the wire cairying a current that oscillates at the frequency to. 

In the absence of the guide walls such a wire would radiate cylindrical waves 
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Now we consider that the guide walls are perfect conductors. Then, just as in 

electrostatics, the conditions at the surface will be correct if we add to the field of 

the wire the field of one or more suitable image wires. The image idea works just 

as well for electrodynamics as it does for electrostatics, provided, of course, that 

we also include the retardations. We know that is true because we have often 

seen a mirror producing an image of a light source. And a mirror is just a “perfect” 

conductor for electromagnetic waves with optical frequencies. 

Now let’s take a horizontal cross section, as shown in Fig. 24-15, where W1 

and W2 are the two guide walls and S0 is the source wire. We call the direction of 

the current in the wire positive. Now if there were only one wall, say Wu we could 

remove it if we placed an image source (with opposite polarity) at the position 

marked Si. But with both walls in place there will also be an image of S0 in the 

wall W2, which we show as the image S2- This source, too, will have an image in 

Wi, which we call S3. Now both Si and S3 will have images in W2 at the positions 

marked S4 and S6, and so on. For our two plane conductors with the source 

halfway between, the fields are the same as those produced by an infinite line of 

sources, all separated by the distance a. (It is, in fact just what you would see if 

you looked at a wire placed halfway between two parallel mirrors.) For the fields 

to be zero at the walls, the polarity of the currents in the images must alternate 

from one image to the next. In other words, they oscillate 180° out of phase. 

The waveguide field is, then, just the superposition of the fields of such an infinite 

set of line sources. 

We know that if we are close to the sources, the field is very much like the 

static fields. We considered in Section 7-5 the static field ot a grid of line sources 

and found that it is like the field of a charged plate except for terms that decrease 

exponentially with the distance from the grid. Here the average source strength 

is zero, because the sign alternates from one source to the next. Any fields which 

exist should fall off exponentially with distance. Close to the source, we see the 

field mainly of the nearest source; at large distances, many sources contribute and 

their average effect is zero. So now we see why the waveguide below cutoff fre¬ 

quency gives an exponentially decreasing field. At low frequencies, in particular, 

the static approximation is good, and it predicts a rapid attenuation of the fields 

with distance. 

Now we are faced with the opposite question: Why are waves propagated 

at all? That is the mysterious part! The reason is that at high frequencies the 

retardation of the fields can introduce additional changes in phase which can cause 

the fields of the out-of-phase sources to add instead of cancelling. In fact, in 

Chapter 29 of Vol. I we have already studied, just for this problem, the fields 

generated by an array of antennas or by an optical grating. There we found that 

when several radio antennas are suitably arranged, they can give an interference 

pattern that has a strong signal in some direction but no signal in another. 

Suppose we go back to Fig. 24-15 and look at the fields which arrive at a 

large distance from the array of image sources. The fields will be strong only in 

certain directions which depend on the frequency—only in those directions for 

which the fields from all the sources add in phase. At a reasonable distance from 

the sources the field propagates in these special directions as plane waves. We have 

sketched such a wave in Fig. 24-16, where the solid lines represent the wave crests 

and the dashed lines represent the troughs. The wave direction will be the one 

for which the difference in the retardation for two neighboring sources to the crest 

of a wave corresponds to one-half a period of oscillation. In other words, the 

difference between r2 and /*0 in the figure is one-half of the free-space wavelength: 

The angle 6 is then given by 

sin 0 — — (24.33) 

There is, of course, another set of waves travelling downward at the symmetric 

angle with respect to the array of sources. The complete waveguide field (not too 
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Fig. 24-17. The waveguide field can 

be viewed as the superposition of two 

trains of plane waves. 

close to the source) is the superposition of these two sets of waves, as shown in 

Fig. 24-17. The actual fields are really like this, of course, only between the two 

walls of the waveguide. 

At points like A and C, the crests of the two wave patterns coincide, and the 

field will have a maximum, at points like B, both waves have their peak negative 

value, and the field has its minimum (largest negative) value. As time goes on 

the field in the guide appears to be travelling along the guide with a wavelength 

which is the distance from A to C. That distance is related to 6 by 

cos 6 = “ • 
hn 

Using Eq. (24.33) for B, we get that 

_ 
cos 6 ~ Vl - (Xo/2a)2 ’ 

(24 34) 

(24.35) 

which is just what we found in Eq (24 19) 

Now we see why there is only wave propagation above the cutoff frequency 

w,] If the free-space wavelength is longer than 2a, there is no angle where the waves 

shown in Fig 24-16 can appear. The necessary constructive interference appears 

suddenly when X0 drops below 2a, or when co goes above co() ^ irc/a. 

If the frequency is high enough, there can be two or more possible directions 

in which the waves will appear. For our case, this will happen if X() < %a In 

general, however, it could also happen when X0 < a. These additional waves 

correspond to the higher guide modes we have mentioned. 

It has also been made evident by our analysis why the phase velocity of the 

guided waves is greater than c and why this velocity depends on w As a; is changed, 

the angle of the free waves of Fig. 24-16 changes, and therefore so does the velocity 

along the guide. 

Although we have described the guided wave as the superposition of the fields 

of an infinite array of line sources, you can see that we would arrive at the same 

result if we imagined two sets of free-space waves being continually reflected back 

and forth between two perfect mirrors—remembering that a reflection means a 

reversal of phase. These sets of reflecting waves would all cancel each other unless 

they were going at just the angle 6 given m Eq. (24 33) There are many ways of 

looking at the same thing. 
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25 

Electrodynamics in ttelativistic Notation 

25-1 Four-vectors 

We now discuss the application of the special theory of relativity to electro¬ 

dynamics. Since we have already studied the special theory of relativity in Chapters 

15 through 17 of Vol. I, we will just review quickly the basic ideas. 

It is found experimentally that the laws of physics are unchanged if we move 

with uniform velocity. You can’t tell if you are inside a spaceship moving with 

uniform velocity in a straight line, unless you look outside the spaceship, or at 

least make an observation having to do with the world outside. Any true law of 

physics we write down must be arranged so that this fact of nature is built in. 

The relationship between the space and tune of two systems of coordinates, 

one, S\ in uniform motion in the ^-direction with speed r relative to the other, S, 

is given by the Lorentz transformation: 

t, t - vx 

\/] — V'Z 

x
 

II 
S

i 

. x — rt 
A = -- » zf — z. 

\/i — v2 

25-1 Four-vectors 

25-2 The scalar product 

25-3 The four-dimensional gradient 

25-4 Electrodynamics in 
four-dimensional notation 

25-5 The four-potential of a 
moving charge 

25-6 The invariance of the equations 
of electrodynamics 

In this chapter: c = 1 

The laws of physics must be such that after a Lorentz transformation, the new 

form of the laws looks just like the old form. This is just like the principle that 

the laws of physics don’t depend on the orientation of our coordinate system. In 

Chapter 11 of Vol I, we saw that the way to describe mathematically the invariance 

of physics with respect to rotations was to write our equations in terms of vectors. 

For example, if we have two vectors 

A ~ (An A,h A.) and B = (Br, £v, Bz), 

we found that the combination 

A * B = AXBX + AVB}/ + AZBZ 

Review* Chapter 15, Vol. I, The 

Special Theory of Relativity 

Chapter 16, Vol. I, Rela¬ 

tivistic Energy and Mo¬ 

mentum 

Chapter 17, Vol. I, Space- 

Time 

Chapter 13, Vol. II, Mag¬ 

netostatics 

was not changed if we transformed to a rotated coordinate system. So we know 

that if we have a scalar product like A ■ B on both sides of an equation, the equation 

will have exactly the same form in all rotated coordinate systems. We also dis¬ 

covered an operator (see Chapter 2), 

which, when applied to a scalar function, gave three quantities which transform 

just like a vector With this operator we defined the gradient, and in combination 

with other veclois, the divergence and the Laplacian. Finally we discovered that 

by taking sums of certain products of pairs of the components of two vectors we 

could get three new quantities which behaved like a new vector. We called it the 

cross product of two vectors Using the cross product with our operator V we then 

defined the curl of a vector 

Since we will be referring back to what we have done in vector analysis, we 

have put in Table 25-1 a summary of all the important vector operations in 

three dimensions that we have used in the past. The point is that it must be possible 

to write the equations of physics so that both sides transform the same way under 
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Table 25-1 

The important quantities and operations 
of vector analysis in three dimensions 

Definition of a 
vector 

Scalar product 

Differential vector 
operator 

Gradient 

Divergence 

Laplacian 

Cross product 

Curl 

A (AXi Ay, Az) 

A • B 

V 

W 
V A 

V V = V2 

A X B 

V x A 

rotations. If one side is a vector, the other side must also be a vector, and both 

sides will change together in exactly the same way if we rotate our coordinate sys¬ 

tem Similarly, if one side is a scalar, the other side must also be a scalar, so that 

neither side changes when we rotate coordinates, and so on. 

Now in the case of special relativity, time and space are inextricably mixed, 

and we must do the analogous things for four dimensions We want our equations 

to remain the same not only for rotations, but also for any inertial frame. That 

means that our equations should be invariant under the Lorentz transformation 

of equations (25.1). The purpose of this chapter is to show you how that can be 

done. Before we get started, however, we want to do something that makes out¬ 

work a lot easier (and saves some confusion) And that is to choose our units of 

length and time so that the speed of light c is equal to 1 You can think of it as 

taking our unit of time to be the time that it takes light to go one meter (which is 

about 3 X 10~<J sec) We can even call this time unit “one meter." Using this 

unit, all of our equations will show more clearly the space-time symmetry Also, 

all the c’s will disappear from our relativistic equations. (If this bothers you, 

you can always put the c’s back into any equation by replacing every t by cfT or, in 

general, by sticking in a c wherever it is needed to make the dimensions of the 

equations come out right.) With this groundwork we are ready to begin Our 

program is to do m the four dimensions of space-time all of the things we did with 

vectors for three dimensions. It is really quite a simple game, we just work by 

analogy The only real complications is the notation (we’ve already used up the 

vector symbol for three dimensions) and one slight twist of signs 

First, by analogy with vectors in three dimensions, we define a four-vector as 

a set of the four quantities af, ax, a,„ and u,, which transform like /, x, v, and z when 

we change to a moving coordinate system. There are several different notations 

people use for a four-vector; we will write by which we mean the group of four 

numbers (at, ax, az)—in other words, the subscript g can take on the four 

“values” /, x, y, z It will also be convenient, at times to indicate the three space 

components by a three-vector, like this: aM = (af, a) 

We have already encountered one four-vector, which consists of the energy 

and momentum of a particle (Chapter 17, Vol. I). In our new notation we write 

IX = (E,p), (25.2) 

which means that the four-vector /x is made up of the energy E and the three 

components of the three-vector p of a particle. 

It looks as though the game is really very simple—for each three-vector in 

physics all we have to do is find what the remaining component should be, and we 

have a four-vector To see that this is not the case, consider the velocity vector 

with components 

dx _ dy _ dz 

v* ~ di ’ ~ di' Vz ~ di' 

The question is: What is the time component? Instinct should give the right 

answer. Since four-vectors are like /, x, y, z, we would guess that the time com¬ 

ponent is 

Tins is wrong The reason is that the / in each denominator is not an invariant 

when we make a Lorentz transformation The numerators have the right behavior 

to make a foui -vector, but the dt in the denominator spoils things; it is unsymmetnc 

and is not the same in two different systems. 

It turns out that the four “velocity” components which we have written down 

will become the components of a four-vector if we just divide by r2. We 

can see that that is true because if we start with the momentum four-vector 

IX = (E,p) 
\/l — r2 V71 — 

(25 3) 
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and divide it by the rest mass mn, which is an invariant scalar in four dimensions, 

we have 

Pjl = (_L_, v 
\ \/i — v'z v 1 ~ Vz 

(24.4) 

which must still be a four-vector. (Dividing by an invariant scalar doesn’t change 

the transformation properties ) So we can define the “velocity fow-vector ' uM by 

Ul 

V\ \/l ~ V2 

Ux W; 
Vz # 

The four-velocity is a useful quantity; we can, foi instance, write 

Pfj. = W(j^. 

(25.5) 

(25.6) 

This is the typical sort of form an equation which is relativistically correct must 

have; each side is a four-vector. (The right-hand side is an invariant times a 

four-vector, which is still a four-vector.) 

25-2 The scalar product 

h is an accident of life, if you wish, that under coordinate rotations the 

distance of a point from the origin does not change. This means mathematically 

that r2 ~ x2 + y2 + z2 is an invariant In other words, after a rotation 

r’1 -- r2, or 

+ f2 + z'2 = .x2 + v2 + z2. 

Now the question is* Is there a similar quantity which is invariant under the 

Lorentz transformation7 There is. From Eq. (25.1) you can see that 

That is pietty nice, except that it depends on a particular choice of the x-direction 

We can fix that up by subtracting y2 and z2. Then any Lorentz transformation 

plus a rotation will leave the quantity unchanged. So the quantity which is anal- 

agous to r2 for four dimensions, in three dimensions is 

t2 — x2 - y2 — z2. 

It is an invariant under what is called the ‘‘complete Lorentz group”—which 

means for transformation of both translations at constant velocity and rotations. 

Now since this invariance is an algebraic matter depending only on the 

transformation rules of Eq (25.1)—plus rotations—it is true for any four-vector 

(by definition they all transform the same). So for a four-vector we have that 

*2 /2 /2 2 2 2 2 
o c ay az a i ax Oy Uz‘ 

We will call this quantity the square of “the length” of the four-vector (Some¬ 

times people change the sign of all the terms and call the length a2x + a2 + 

at — c/f, so you’ll have to watch out) 

Now if we have two vectors a^ and their corresponding components 

transform in the same way, so the combination 

aft ~ axbr — a,,bv — azbz 

is also an invariant (scalar) quantity. (We have in fact already proved this in 

Chapter 17 of Vol. I.) Clearly this expression is quite analogous to the dot product 

for vectors. We will, in fact, call it the dot product or scalar product of two four- 

vectors It would seem logical to write it as b^ so it would look like a dot prod¬ 

uct But, unhappily, it’s not done that way; it is usually written without the dot. 
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So we will follow the convention and write the dot product simply as aA*. So, 

by definition, 
tf/A — atbt ~ axbT — afiy ~ azbz (25.7) 

Whenever you see two identical subscripts together (we will occasionally have 

to use v or some other letter instead of p) it means that you arc to take the four 

products and sum, remembering the minus sign for the products of the space 

components. With this convention the invariance of the scalar product under a 

Lorentz transformation can be written as 

a^bl = 

Since the last three terms in (25.7) are just the scalar dot product in three 

dimensions, it is often more convenient to write 

ctpbfl = a(bt — a - b. 

It is also obvious that the four-dimensional length we described above can be 

written as a: 

= — al — a2y — a\ = a\ — a ■ a, (25.8) 

It will also be convenient to sometimes write this quantity as a*: 

2 _ 
On — OyOn' 

We will now give you an illustration of the usefulness of four-vector dot 

products. Antiprotons (P) are produced in large accelerators by the reaction 

P+P-^P+P+P+P. 

That is, an energetic proton collides with a proton at rest (for example, m a hy¬ 

drogen target placed in the beam), and if the incident proton has enough energy, 

a proton-antiproton pair may be produced, m addition to the two original protons.* 

The question is: How much energy must be given to the incident proton to make 

this reaction energetically possible9 

The easiest way to get the answer is to consider what the reaction looks like 

in the center-of-mass (CM) system (see Fig. 25-1), We’ll call the incident proton 

a and its four-momentum fil Similarly, we’ll call the target proton b and its four- 

Fig. 25-1. The reaction P + P —> 

3P + P viewed in the laboratory and 

CM systems. The incident proton is sup¬ 

posed to have just barely enough energy 

to make the reaction go. Protons are 

denoted by solid circles; anfiprofons, by 

open circles. 

* You may well ask: Why not consider the reactions 

P + P-^P+P + P, 
or even 

P+P^P+P 

which clearly require less energy? The answer is that a principle called conservation of 
baryons tells us the quantity “number of protons minus number of antiprotons” cannot 
change. This quantity is 2 on the left side of our reaction. Therefore, if we want an 
antiproton on the right side, we must have also three protons (or other baryons). 
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momentum p\. If the incident proton has just barely enough energy to make the 

reaction go. the final state—the situation after the collision—will consist of a 

glob containing three protons and an antiproton at rest m the CM system If 

the incident energy were slightly higher, the final state particles would have some 

kinetic energy and be moving apart; if the incident energy were slightly lower, 

there would not be enough energy to make the four particles 

If we call pi the total four-momentum of the whole glob in the final state, 

conservation of energy and momentum tells us that 

and 
/»“ + / = p°. 

Ea + Eb = Ec. 

Combining these two equations, we can write that 

Pl + A = Pr (25.9) 

Now the important thing is that this is an equation among four-vectors, and 

is, therefore, true in any inertial frame. We can use this fact to simplify our 

calculations. We start by taking the “length” of each side of Eq. (25 9); they are, 

of course, also equal. We get 

(p: + pbM + Pm) = PlPl (25.10) 

Since plpl is invariant, we can evaluate it in any coordinate system. In the CM 

system, the time component of pl is the rest energy of four protons, namely AM, 

and the space part p is zero; so pl = {AM, 0). We have used the fact that the 

rest mass of an antiproton equals the rest mass of a proton, and we have called 

this common mass M. 

Thus, Eq. (25.10) becomes 

PlPl + 2 pIpI + plpl = 16 M2. (25.11) 

Now plpl and plpl are very easy, since the “length” of the momentum four-vector 

of any particle is just the mass of the particle squared: 

PyiPfi = E2 - p2 = M2. 

This can be shown by direct calculation or, more cleverly, by noting that for a 

particle at rest p^ = (M, 0), so p^p^ = M2 But since it is an invariant, it is equal 

to M2 in any frame. Using these results in Eq. (25.11), we have 

2 PtA = UM2 
or 

ptA = 7 M2. (25.12) 

Now we can also evaluate plpl in the laboratory system. The four-vector 

pl can be written (Ea.pa), while pl = (M, 0), since it describes a proton at rest. 

Thus, plpl must also be equal to MEa, and since we know the scalar product is 

an invariant this must be numerically the same as what we found in (25.12). So 

we have that 

Ea = 1M, 

which is the result we were after The total energy of the initial proton must be 

at least 1M (about 6.6 Gev since M ~ 938 Mev) or, subtracting the rest mass M, 

the kinetic energy must be at least 6M (about 5.6 Gev). The Bevatron accelerator 

at Berkeley was designed to give about 6 2 Gev of kinetic energy to the protons it 

accelerates, in order to be able to make antiprotons 

Since scalar products are invariant, they are always interesting to evaluate. 

What about the “length” of the four-velocity 

2 2 1 1 

=!/(-« = T-Z-^2 - 1 Z „2 = !• 

Thus, Up is the unit four-vector 
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25-3 The four-dimensional gradient 

The next thing that we have to discuss is the four-dimensional analog of the 

gradient. We recall (Chapter 14, Vol. I) that the three differential operators 

d/dx, d/dy, d/dz transform like a three-vector and are called the gradient. The 

same scheme ought to work m four dimensions; that is, we might guess that the 

four-dimensional gradient should be (d/dt, d/dx, d/dy, d/dz). This is wrong. 

To see the error, consider a scalar function <£ which depends only on x and t. 

The change in <£, if we make a small change At in t while holding x constant, is 

W = ~ At. (25.13) 
at 

On the other hand, according to a moving observer. 

We can express Ax' and At' in terms of At by using Eq (25.1) Remembering 

that we are holding x constant, so that Ax = 0, we write 

Thus, 

Ax' = - V At; At’ = Af 
VT — v2 VT- v2 

A 0 = 
d<h 

~dxr VI 

= (d-Z - „*£) 
\df dx'J 

At) + 

At 

At h( 

dt' W/f 

dxf/ _ v2 

Comparing this result with Eq. (25.13), we learn that 

d(f> 

11 

A similar calculation gives 

1 /d(j> d4>\ 

W 1 ^'/ 

1 fd$ d<A 

v T- v~ W V dt) 

d<t> 

dx 

(25.14) 

(25.15) 

Now we can see that the gradient is rather strange. The formulas for x and t 

in terms of x' and f [obtained by solving Eq. (25 1)] are: 

/' + vxf _ xf + v? 

vr~- v2 ’ 

This is the way a four-vector must transform. But Eqs. (25.14) and (25 15) have 

a couple of signs wrong1 

The answer is that instead of the incorrect (d/dt, V), we must define the four- 

dimensional gradient operator, winch we will call by 

(25.16) 

With this definition, the sign difficulties encountered above go away, and 

behaves as a four-vector should. (It’s rather awkward to have those minus signs, 

but that’s the way the world is.) Of course, what it means to say that “behaves 

like a four-vector” is simply that the four-gradient of a scalar is a four-vector. If 

0 is a true scalar invariant field (Lorentz invariant) then is a four-vector field 

All right, now that we have vectors, gradients, and dot products, the next 

thing is to look for an invariant which is analogous to the divergence of three- 

dimensional vector analysis. Clearly, the analog is to form the expression V^, 

where bu is a four-vector field whose components are functions of space and time. 
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We define the diligence of the four-vector = {b<,h) as the dot product of 

Vp and bM: 

v*‘- - IM)*• - (- It- (-a)'b- 
(25.17) 

= ~tbt + v-b, 

where V * b is the ordinary three-divergence of the three-vector b. Note that one 

has to be careful with the signs. Some of the minus signs come from the definition 

of the scalar product, Eq. (25.7); the others are required because the space com¬ 

ponents of are — d/dx, etc, as in Eq. (25.16) The divergence as defined by 

(25 17) is an invariant and gives the same answer in ail coordinate systems which 

differ by a Lorentz transformation. 

Let’s look at a physical example in which the four-divergence shows up 

We can use it to solve the problem of the fields around a moving wire We have 

already seen (Section 13-7) that the electric charge density p and the current 

density j form a four-vector = (p,/). If an uncharged wire carries the current 

yr, then in a frame moving past it with velocity v (along a), the wire will have the 

charge and current density [obtained from the Lorentz transformation Eqs. 

(25.1)] as follows; 

nf — ~vh v Jz 
P - :-> h — —. ’ 

\/T- v* \/l - V* 

These are just what we found in Chapter 13 We can then use these sources 

in Maxwell’s equation m the moving system to find the fields. 

The charge conservation law, Section 13-2, also takes on a simple form in 

the four-vector notation. Consider the four divergence of /M: 

= ft + *-J- 05.18) 

The law of the conservation of charge says that the outflow of current per unit 

volume must equal the negative rate of increase of charge density. In other words, 

that 

V j 
dp 

at 

Putting this into Eq. (25.18), the law of conservation of charge takes on the simple 

form 

VM/M - 0. (25.19) 

Since r^ is an invariant scalar, if it is zero in one frame it is zero in all frames. 

We have the result that if charge is conserved in one coordinate system, it is con¬ 

served in all coordinate systems moving with uniform velocity. 

As our last example we want to consider the scalar product of the gradient 

operator Vp with itself. In three dimensions, such a product gives the Laplacian 

V* = = + + 
dx* ^ dy2 T dz* 

What do we get in four dimensions9 That’s easy Following our rules for dot 

products and gradients, we get 

v. - ft M- 0r I) - (- IX-I) - (- IX-1) 
^2 

This operator, which is the analog of the three-dimensional Laplacian, is called 
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the D'Alembertian and has a special notation: 

□ 2 = V„VM = ^ - V2. (25.20) 

From its definition it is an invariant scalar operator; if it operates on a four-vector 

field, it produces a new four-vector field. (Some people define the D’Alembertian 

with the opposite sign to Eq. (25.20), so you will have to be careful when reading 

the literature.) 

We have now found four-dimensional equivalents of most of the three- 

dimensional quantities we had listed m Table 25-1. (We do not yet have the 

equivalents of the cross product and the curl operation; we won’t get to them until 

the next chapter ) It may help you remember how they go if we put all the impor¬ 

tant definitions and results together in one place, so we have made such a summary 

in Table 25-2. 

Table 25-2 

The important quantities of vector analysis in three and four dimensions. 

Three dimensions 

Vector A ~ (/4Zi Au, A 

Scalar pioduct A * B — AXBX -f- AyB,f T AZB 

Vector operator V = (d/dx, d/dy, d/dz) 

Gradient <
 

xy
. II 

Q
j| 

0>
 

03
 IS

* 
^
 ■ 

xy
^ 

Divergence 
v-A=df + df + *f ox dy dz 

Laplacian and 

D’Alembertian 
w-il + il + il 

dx2 ^ dy* ^ dz^ 

Four dimensions 

= (ctt,aKiau,az) = (at, a) 

tijin = atbi — axbx — ajh, — aj)z = atbt — a ■ b 

(d/dt, — d/dx, — d/dy, — d/'dz) = (d/df, — V) 

25-4 Electrodynamics in four-dimensional notation 

We have already encountered the D'Alembertian operatot, without giving it 

that name, in Section 18-6, the differential equations we found there for the po¬ 

tentials can be written in the new notations as: 

□ 24> = —» □ = J- ■ (25.21) 
e0 

The four quantities on the right-hand side of the two equations in (25.21) are 

Pi Jx, JUi Jz> divided by e0, which is a universal constant which will be the same 

in all coordinate systems if the same unit of charge is used in all frames. So the four 

quantities p/e0, jx/e0, jlf/e{), jz/e0 also transform as a four-vector We can write 

them as j^/e() The D’Alembertian doesn’t change when the coordinate system 

is changed, so the quantities 0, AX1 A,n Az must also transform like a four-vector— 

which means that they are the components of a four-vector. In short. 

Am = (0, A) 

is a four-vector. What we call the scalar and vector potentials are really different 

aspects of the same physical thing. They belong together And if they are kept 

together the relativistic invariance of the world is obvious We call the four- 

potential 
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In the four-vector notation Eqs. (25.21) become simply 

□ % = ^> (25.22) 
€0 

The physics of this equation is just the same as Maxwell's equations. But there is 

some pleasure in being able to rewrite them in an elegant form. The pretty form 

is also meaningful, it shows directly the invariance of electrodynamics under the 

Lorentz transformation. 

Remember that Eqs (25.21) could be deduced from Maxwell’s equations only 

if we imposed the gauge condition 

U + v • A = 0, (25.23) 

which just says = 0; the gauge condition says that the divergence of the 

four-vector Au is zero. This condition is called the Lorentz condition. It is very 

convenient because it is an invariant condition and therefore Maxwell’s equations 

stay in the form of Eq. (25.22) for all frames. 

25-5 The four-potential of a moving charge 

Although it is implicit in what we have already said, let us write down the 

transformation laws which give 0 and A in a moving system in terms of 0 and A 

in a stationary system. Since Ay = (0, A) is a four-vector, the equations must 

look just like Eqs. (25.1), except that t is replaced by 0, and x is replaced by A 

Thus, 

0' - 
0 — vAx 

vr^u^3 A'y = A w> 

Ax — v<f> 
- - 3 
v71 — v2 

A'g = As. 

(25.24) 

This assumes that the primed coordinate system is moving with speed v in the 

positive .v-direction, as measured in the unprimed coordinate system. 

We will consider one example of the usefulness of the idea of the four-potential 

What are the vector and scalar potentials of a charge q moving with speed v along 

the x-axis9 The problem is easy in a coordinate system moving with the charge, 

since in this system the charge is standing still. Let’s say that the charge is at the 

origin of the SMrame, as shown in Fig. 25-2. The scalar potential in the moving 

system is then given by 

0' == 
g 

47re0/*/ * 
(25.25) 

Fig. 25-2. The frame S' moves with 

velocity v (in the x-direction) wifh respect 

to S. A charge at rest at the origin of S' 

is at x = vt in S. The potentials at P can 

be computed in either frame. 

rf being the distance from q to the field point, as measured m the moving system 

The vector potential A* is, of course, zero. 

Now it is straightforward to find 0 and A, the potentials as measured in the 

stationary coordinates. The inverse relations to Eqs. (25 24) are 

Ax 

0' -f- vA'x 

\/l — V2 

Ax + y<j>f 

yj 1 — v2 

A — A' 
Sly Sty, 

A A' 

(25.26) 

Using the 0' given by Eq. (25.25), and A' = 0, we get 

. = _ 1 
47re0 r'\/l - v2 

= _ 3_!_ 

4re0 VI - v*VW+ f2 + z'2’ 
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This gives us the scalar potential <fr we would see in *S, but, unfortunately, expressed 

in terms of the S' coordinates. We can get things in terms of /, x, y, z by substituting 

for t\ x\ y', and z', using (25.1). We get 

47re0 VI - y/[(x _ p/j/vT 
(25.27) 

T + / + 

Following the same procedure for the components of A, you can show that 

A = v4>. (25.28) 

These are the same formulas we derived by a different method in Chapter 21. 

25-6 The invariance of the equations of electrodynamics 

We have found that the potentials 4> and A taken together form a four-vector 

which we call AM, and that the wave equations—the full equations which determine 

the A^ in terms of the—can be written as in Eq. (25 22). This equation, together 

with the conservation of charge, Eq. (25 19), gives us the fundamental law of the 

electromagnetic field: 

□ % = v^; = 0. (25.29) 

There, in one tiny space on the page, are all of the Maxwell equations—beautiful 

and simple. Did we learn anything from writing the equations this way, besides 

that they are beautiful and simple? In the first place, is it anything different from 

what we had before when we wrote everything out in all the various components? 

Can we from this equation deduce something that could not be deduced from the 

wave equations for the potentials in terms of the charges and currents? The answer 

is definitely no. The only thing we have been doing is changing the names of things 

—using a new notation. We have written a square symbol to represent the de¬ 

rivatives, but it still means nothing more nor less than the second derivative with 

respect to /, minus the second derivative with respect to x, minus the second 

derivative with respect to y, minus the second derivative with respect to z. And the 

fjL means that we have four equations, one each for p — /, x, y, or z. What then is 

the significance of the fact that the equations can be written in this simple form? 

From the point of view of deducing anything directly, it doesn’t mean anything. 

Perhaps, though, the simplicity of the equations means that nature also has a 

certain simplicity. 

Let us show you something interesting that we have recently discovered: All 

of the laws of physics can be contained in one equation. That equation is 

U - 0. (25.30) 

What a simple equation! Of course, it is necessary to know what the symbol 

means. U is a physical quantity which we will call the “unworldlmess” of the 

situation. And we have a formula for it. Here is how you calculate the unworld¬ 

liness. You take all of the known physical laws and write them in a special form. 

For example, suppose you take the law of mechanics, F = ma, and rewrite it as 

F — ma = 0 Then you can call (F — ma)—which should, of course, be zero— 

the “mismatch,” of mechanics. Next, you take the square of this mismatch and 

call it U i, which can be called the “unworldlmess of mechanical effects.” In other 

words, you take 

U j = (F - ma)2. (25.31) 

Now you write another physical law, say, V • E = p/e0 and define 

u' 

which you might call “the gaussian unworldliness of electricity.” You continue 

to write Uj, u4, and so on—one for every physical law there is 
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Finally you call the total unworldliness U of the world the sum of the various 

unworldhnesses from all the subphenomena that are involved; that is, U = 

EUt Then the great “law of nature” is 

U = 0. (25 32) 

This “law” means, of course, that the sum of the squares of all the individual 

mismatches is zero, and the only way the sum of a lot of squares can be zero is for 

each one of the terms to be zero 

So the “beautifully simple” law in Eq. (25,32) is equivalent to the whole series 

of equations that you originally wrote down It is therefore absolutely obvious 

that a simple notation that just hides the complexity in the definitions of symbols 

is not real simplicity. It is just a trick. The beauty that appears m Eq. (25 32)— 

just from the fact that several equations are hidden within it—is no more than a 

trick. When you unwrap the whole thing, you get back where you were before 

However, there /v more to the simplicity of the laws of electromagnetism 

written in the form of Eq. (25.29). It means more, just as a theory of vector 

analysis means more. The fact that the electromagnetic equations can be written 

in a very particular notation which was designed for the four-dimensional geometry 

of the Lorentz transformations—in other words, as a vector equation in the four- 

space—means that it is invariant under the Lorentz transformations. It is because 

the Maxwell equations are invariant under those transformations that they can 

be written in a beautiful form. 

It is no accident that the equations of electrodynamics can be written in the 

beautifully elegant form of Eq. (25 29). The theory of relativity was developed 

because it was found experimentally that the phenomena predicted by Maxwell’s 

equations were the same in all inertial systems. And it was precisely by studying 

the transformation properties of Maxwell’s equations that Lorentz discovered 

his transformation as the one which left the equations invariant. 

There is, however, another reason for writing our equations this way. It has 

been discovered—after Einstein guessed that it might be so— that all of the laws 

of physics are invariant under the Lorentz transformation. That is the principle 

of relativity. Therefore, if we invent a notation which shows immediately when a 

law is written down whether it is invariant or not, we can be sure that in trying 

to make new theories we will write only equations which are consistent with the 

principle of relativity. 

The fact that the Maxwell equations are simple in this particular notation is 

not a miracle, because the notation was invented with them m mind. But the 

interesting physical thing is that every law of physics—the propagation of meson 

waves or the behavior of neutrinos in beta decay, and so forth—must have this 

same invariance under the same transformation Then when you are moving at a 

uniform velocity in a spaceship, all of the laws of nature transform together in 

such a way that no new phenomenon will show up. It is because the principle of 

relativity is a fact of nature that in the notation of four-dimensional vectors the 

equations of the world will look simple. 

25-11 



Lorents Transformations of the Fields 

26-1 The four-potential of a moving charge 

We saw in the last chapter that the potential = (</>, A) is a four-vector. 

The time component is the scalar potential 0, and the three space components are 

the vector potential A. We also worked out the potentials of a particle moving with 

uniform speed on a straight line by using the Lorentz transformation (We had 

already found them by another method in Chapter 21.) For a point charge whose 

position at the time t is (vt, 0, 0), the potentials at the point (.x, y, z) are 

4reoV'l - t'2 |(* __ "2 + / + *2]1/2 

A =__£!_ 

47ren\/l - + y2 + z2j'/2 

Ay = Az = 0 

(26.1) 

Equations (26 1) give the potentials at ar, y, and z at the time /, for a charge 

whose “present” position (by which we mean the position at the time t) is at x = vi 

Notice that the equations are in terms of (x — vt), y, and z, which are the coordi¬ 

nates measured from the current position P of the moving charge (see Fig. 26-1) 

The actual influence we know really travels at the speed c, so it is the behavior of 

the charge back at the retarded position P' that really counts, f The point Pf is at 

x = vt' (where, t' = t ~ r'/c is the retarded time). But we said that the charge was 

moving with uniform velocity in a straight line, so naturally the behavior at Pf and 

the current position are directly related. In fact, if we make the added assumption 

that the potentials depend only upon the position and the velocity at the retarded 

moment, we have in equations (26.1) a complete formula for the potentials for a 

charge moving any way. It works this way. Suppose that you have a charge 

moving in some arbitrary fashion, say with the trajectory m Fig. 26-2, and you 

are trying to find the potentials at the point (x, y, z). First, you find the retarded 

position P' and the velocity vf at that point. Then you imgaine that the charge 

would keep on moving with this velocity during the delay time (t' — /), so that 

it would then appear at an imaginary position Pvvu], which we can call the “pro¬ 

jected position,” and would arrive there with the velocity */. (Of course, it doesn't 

do that; its real position at t is at P.) Then the potentials at (x, y, z) are just what 

equations (26 1) would give for the imaginary charge at the projected position 

Pproj. What we are saying is that since the potentials depend only on what the 

charge is doing at the retarded time, the potentials will be the same whether the 

charge continued moving at a constant velocity or whether it changed its velocity 

after t'—that is, after the potentials that were going to appear at (ac, y, z) at the 

time t were already determined. 

You know, of course, that the moment that we have the formula for the po¬ 

tentials from a charge moving in any manner whatsoever, we have the complete 

electrodynamics; we can get the potentials of any charge distribution by super- 

t The primes used here to indicate the retarded positions and times should not be confused 
with the primes referring to a Lorentz-transformed frame in the preceding chapter. 

26-1 The four-potential of a 

moving charge 

26-2 The fields of a point charge 

with a constant velocity 

26-3 Relativistic transformation 

of the fields 

26-4 The equations of motion in 

relativistic notation 

In this chapter: c = 1 

Review: Chapter 20, Vol. II, Solution 

of Maxwells Equations in 

Free Space 

Fig. 26-1. Finding the fields at P due 

to a charge q moving along the x-axis 

with the constant speed v. The field 

"now” at the point (x, y, z) can be ex¬ 

pressed in terms of the "present” position 

P, as well as in terms of P', the "retarded” 

position (at t' = t — r'/c). 
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(x.y.z) 

Ftg. 26-2* A charge moves on an 

arbitrary trajectory. The potentials at 

(x,y, z) at the time t are determined by 

the position Pf and velocity yf at the 

retarded time tf — r'/C. They are con¬ 

veniently expressed in terms of the co¬ 

ordinates from the “pro|ected” position 

Ppr0l. (The actual position at t is P.) 

position. Therefore we can summarize all the phenomena of electrodynamics 

either by writing Maxwell’s equations or by the following series of remarks. 

(Remember them in case you are ever on a desert island. From them, all can be 

reconstructed. You will, of course, know the Lorentz transformation; you will 

never forget that on a desert island or anywhere else ) 

First, is a four-vector. Second, the Coulomb potential for a stationary 

charge is q/^Tre{)r. Third, the potentials produced by a charge moving in any way 

depend only upon the velocity and position at the retarded time With those 

three facts we have everything From the fact that AM is a four-vector, we transform 

the Coulomb potential, which we know, and get the potentials for a constant 

velocity. Then, by the last statement that potentials depend only upon the past 

velocity at the retarded time, we can use the projected position game to find them. 

It is not a particularly useful way of doing things, but it is interesting to show that 

the laws of physics can be put m so many different ways 

It is sometimes said, by people who are careless, that all of electrodynamics 

can be deduced solely from the Lorentz transformation and Coulomb’s law. Of 

course, that is completely false. First, we have to suppose that there is a scalar 

potential and a vector potential that together make a four-vector That tells us 

how the potentials transform Then why is it that the effects at the retarded 

time are the only things that count? Better yet, why is it that the potentials depend 

only on the position and the velocity and not, for instance, on the acceleration7 

The fields E and B do depend on the acceleration. If you try to make the same 

kind of an argument with respect to them, you would say that they depend only 

upon the position and velocity at the retarded time But then the fields from an 

accelerating charge would be the same as the fields from a charge at the projected 

position—which is false. The fields depend not only on the position and the velocity 

along the path but also on the acceleration. So there are several additional tacit 

assumptions in this great statement that everything can be deduced from the 

Lorentz transformation (Whenever you see a sweeping statement that a tremen¬ 

dous amount can come from a very small number of assumptions, you always 

find that it is false. There are usually a large number of implied assumptions that 

are far from obvious if you think about them sufficiently carefully.) 

26-2 The fields of a point charge with a constant velocity 

Now that we have the potentials from a point charge moving at constant 

velocity, we ought to find the fields—for practical reasons There are many cases 

where we have uniformly moving particles—for instance, cosmic rays going through 

a cloud chamber, or even slow-moving electrons m a wire. So let’s at least see 

what the fields actually do look like for any speed—even for speeds nearly that 

of light—assuming only that there is no acceleration. It is an interesting question. 

We get the fields from the potentials by the usual rules1 

E = - V<£ 
dA 

dt 
B V X A. 

First, for Ez 

Ex = 
d<f> dAz 

dz dt 

But Az is zero; so differentiating <p in equations (26 1), we get 

q z 

Similarly, for El 

E* - 

Eu = 

47T6oVT 

47T60V^1 ~ 

(x - v,T + / + z2 
1 — V2 

(x — Vt)2 .2,2 
t + y + z 1 — ^ 

3/2 

S/2 

(26.2) 

(26.3) 

The x-component is a little more work. The derivative of cj> is more complicated 
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and Ax is not zero. First, 

d(f) 

dx 
g 

47TCo\/1 — V2 

(x - vl)/Q - V2) 

(x — Vt)2 
"1 - w2 

+ / + Z' 
3/2 

(26.4) 

Then, differentiating Ax with respect to t, we find 

d/l* 

dt 
g 

47reoVl — 

—t'2(x — t)//(l — /r) 

(x — f/)2 

1 - + r + 
3/2 

And finally, taking the sum. 

(26 5) 

g 

47re0\/l~— y2 

x — vt 

(x — vt)2 

1 — 
+ / + 

[3/2 
(26.6) 

We’ll look at the physics of E in a minute, let’s first find B For the z-compo- 

nent, 

_ dAv dAx 

z dx dy ' 

Since Av is zero, we have just one derivative to get. Notice, however, that Ar 

is just v4>, and d/dy of v<j> is just —vEy. So 

Similarly, 

and 

Bz = vE„. 

, _ dAx dAz _ d(j> 

'v ~ dz dx ~ +'; Tz ’ 

B. = -oE,. 

(26.7) 

(26.8) 

POSITION 

Fig. 26-3. For a charge moving with 

constant speed, the electric field points 

radially from the ‘'present" position of 

the charge. 

Finally, Bx is zero, since Ay and Az are both zero. We can write the magnetic field 

simply as 

B - v X E (26.9) 

Now let’s see what the fields look like. We will try to draw a picture of the 

field at various positions around the present position of the charge. It is true that 

the influence of the charge comes, in a certain sense, from the retarded position, 

but because the motion is exactly specified, the retarded position is uniquely given 

in terms of the present position For uniform velocities, it’s nicer to relate the 

fields to the current position, because the field components at (x, j\ z) depend 

only on {x — vr), y, and z—which are the components of the displacements 

rp from the present position to (x, z) (see Fig. 26-3). 

Consider first a point with z = 0. Then E has only x- and jr-components. 

From Eqs. (26.3) and (26.6), the ratio of these components is just equal to the 

ratio of the x- and ^-components of the displacement. That means that E is in 

the same direction as /*p, as shown m Fig. 26-3. Since Ez is also proportional to z, 

it is clear that this result holds in three dimensions. In short, the electric field is 

radial from the charge, and the field lines radiate directly out of the charge, just 

as they do for a stationary charge. Of course, the field isn’t exactly the same as 

for the stationary charge, because of all the extra factors of (I — v2) But we 

can show something rather interesting. The difference is just what you would get 

if you were to draw the Coulomb field with a peculiar set of coordinates in which 

the scale of x was squashed up by the factor y/T — u2. If you do that, the field 

lines will be spread out ahead and behind the charge and will be squeezed together 

around the sides, as shown in Fig. 26-4. 

If we relate the strength of E to the density of the field lines in the conventional 

way, we see a stronger field at the sides and a weaker field ahead and behind, 

which is just what the equations say. First, if we look at the strength of the field 

at right angles to the line of motion, that is, for (x — vt) = 0, the distance from 
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Fig. 26-4. The elecrric field of a 

charge moving with the constant speed 

v = 0.9c, part (b), compared with the 

field of a charge at rest, part (a). 



the charge is (y2 + z2). Here the total field strength is s/E2 + E‘{, which is 

E = g_1 
47re0v/l - y2 y2 + z2 

(26.10) 

The field is proportional to the inverse square of the distance—just like the Cou¬ 

lomb field except increased by the constant, extra factor \/\/\ — v2, which is 

always greater than one. So at the sides of a moving charge, the electric field is 

stronger than you get from the Coulomb law. In fact, the field in the sidewise 

direction is bigger than the Coulomb potential by the ratio of the energy of the 

particle to its rest mass. 

Ahead of the charge (and behind), y and z are zero and 

g( 1 ~ "2) 
47re0(* — vt)2 

(26.11) 

Fig. 26-5. The magnetic field near 

a moving charge is v X E. (Compare 

with Fig. 26-4.) 

The field again varies as the inverse square of the distance from the charge but is 

now reduced by the factor (1 — v2), in agreement with the picture of the field lines. 

If v/c is small, v2/c2 is still smaller, and the effect of the (1 — v2) terms is very 

small; we get back to Coulomb's law. But if a particle is moving very close to 

the speed of light, the field in the forward direction is enormously reduced, and 

the field in the sidewise direction is enormously increased. 

Our results for the electric field of a charge can be put this way: Suppose 

you were to draw on a piece of paper the field lines for a charge at rest, and then 

set the picture to travelling with the speed v. Then, of course, the whole picture 

would be compressed by the Lorentz contraction; that is, the carbon granules 

on the paper would appear in different places The miracle of it is that the picture 

you would see as the page flies by would still represent the field lines of the point 

charge. The contraction moves them closer together at the sides and spreads them 

out ahead and behind, just in the right way to give the correct line densities. We 

have emphasized before that field lines are not real but are only one way of repre¬ 

senting the field. However, here they almost seem to be real. In this particular 

case, if you make the mistake of thinking that the field lines are somehow really 

there in space, and transform them, you get the correct field. That doesn’t, however, 

make the field lines any more real All you need do to remind yourself that they 

aren’t real is to think about the electric fields produced by a charge together with 

a magnet; when the magnet moves, new electric fields are produced, and destroy 

the beautiful picture So the neat idea of the contracting picture doesn't work in 

general. It is, however, a handy way to remember what the fields from a fast- 

moving charge are like. 

The magnetic field is v X E [from Eq. (26.9)]. If you take the velocity crossed 

into a radial is-field, you get a B which circles around the line of motion, as shown 

in Fig. 26-5. If we put back the c’s, you will see that it’s the same result we had 

for low-velocity charges. A good way to see where the c’s must go is to refer back 

to the force law, 

F - q(E + v X B). 

You see that a velocity times the magnetic field has the same dimensions as an 

electric field. So the right-hand side of Eq (26.9) must have a factor 1/c2: 

(26 12) 

For a slow-moving charge (v « c), we can take for E the Coulomb field; then 

R = v 
47T€nC2 r* (26.13) 

This formula corresponds exactly to equations for the magnetic held of a current 

that we found in Section 14-7. 

26-4 



We would like to point out, in passing, something interesting for you to think 

about. (We will come back to discuss it again later.) Imagine two electrons with 

velocities at right angles, so that one will cross over the path of the other, but in 

front of it, so they don’t collide. At some instant, their relative positions will be 

as in Fig 26-6(a). We look at the force on q \ due to q2 and vice versa. On q2 

there is only the electric force from qu since q\ makes no magnetic field along its 

line of motion. On qu however, there is again the electric force but, in addition, 

a magnetic force, since it is moving in a 5-field made by q2. The forces are as drawn 

in Fig. 26-6(b). The electric forces on qx and q2 are equal and opposite. However, 

there is a sidewise (magnetic) force on q\ and no sidewise force on q2. Does action 

not equal reaction? We leave it for you to worry about. 

26-3 Relativistic transformation of the fields 

In the last section we calculated the electric and magnetic fields from the 

transformed potentials. The fields are important, of course, in spite of the argu¬ 

ments given earlier that there is physical meaning and reality to the potentials. 

The fields, too, are real. It would be convenient for many purposes to have a way 

to compute the fields in a moving system if you already know the fields in some 

“rest” system. We have the transformation laws for <fj and A, because Au is a 

four-vector. Now we would like to know the transformation laws of E and B. 

Given E and B in one frame, how do they look in another frame moving past? 

It is a convenient transformation to have. We could always work back through the 

potentials, but it is useful sometimes to be able to transform the fields directly. 

We will now see how that goes. 

How can we find the transformation laws of the fields? We know the trans¬ 

formation laws of the <£ and A, and we know how the fields are given in terms of 

(f> and A—it should be easy to find the transformation for the B and E. (You 

might think that with every vector there should be something to make it a four- 

vector, so with E there’s got to be something else we can use for the fourth com¬ 

ponent. And also for B. But it’s not so. It’s quite different from what you would 

expect.) To begin with, let’s take just a magnetic field 5, which is, of course 

V X A. Now we know that the vector potential with its x-, v, and z-components 

is only a piece of something; there is also a /-component. Also we know that for 

derivatives like V, besides the x, y, z parts, there is also a derivative with respect to 

/. So let’s try to figure out what happens if we replace a “y" by a “/”, or a “z" 

by a “/,” or something like that. 

First, notice the form of the terms in V X A when we write out the com¬ 

ponents: 

(a) 
q2 

V 2 

t 

q]El ®8, 

Fig. 26-6. The forces between two 

moving charges are not always equal and 

opposite. It appears that "acTion” is not 

equal to “reaction.” 

dAz _ dAy __ dAx __ dAz __ dAy _ dAx 

dy dz y dz dx z dx dy 
(26.14) 

The x-component is equal to a couple of terms that involve only y- and z-com¬ 

ponents. Suppose we call this combination of derivatives and components a 

“zjMhing,” and give it a shorthand name, Fzv. We simply mean that 

1 — 
dAy 

dz 
(26.15) 

Similarly. Bv is equal to the same kind of “thing,” but this time it is an “xz-thing.” 

And Bz is, of course, the corresponding “^x-thing.” We have 

Bx = Fzyt By = Fxz, Bz - Fyx. (26.16) 

Now what happens if we simply try to concoct also some “/’’-type things 

like Fxi and Ftz (since nature should be nice and symmetric in x, y, z, and /)? For 

instance, what is Ftfi It is, of course, 

dAt dAz 

dz dt 
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But remember that A, = 0, so it is also 

Table 26-1 

The components of Fyv 
II *

 -FV(i 

= 0 

Fx„ - -b. Fxt - Ex 

Fv* = -Bx F,„ = E„ 

F zx - -By F zt = Ez 

d<j> dAz 

dz dt 

You’ve seen that before. It is the z-component of E. Well, almost—there is a 

sign wrong But we forgot that in the four-dimensional gradient the /-derivative 

comes with the opposite sign from a, y, and z So we should really have taken the 

more consistent extension of F{z as 

= + (26J7> 
Then it is exactly equal to ~EZ Trying also Fn and F/f/, we find that the three 

possibilities give 

Ft* = -Ex, Fly = -E„, Ftz = ~EZ. (26.18) 

What happens if both subscripts are F Or, for that matter, if both are a? 

We get things like 

F - dAt 

Flt ~ ~dT dt 
and 

p — ^Ax _ yk 
Fx* - xz dx 

which give nothing but zero. 

We have then six of these F-things. There are six more which you get by 

reversing the subscripts, but they give nothing really new, since 

Fr„ = —FtJx. 

and so on. So, out of sixteen possible combinations of the four subscripts taken 

in pairs, we get only six different physical objects; and thev are the components 

of B and E. 

To represent the general term of F, we will use the general subscripts p and i\ 

where each can stand for 0, 1,2, or 3—meaning in our usual four-vector notation 

/, a, y, and z Also, everything will be consistent with our four-vector notation if 

we define F^„ by 

Fyv - VyAv - VvAy, (26 19) 

remembering that VM = (d/d/, — dfdx, — d/dv\ — d/dz) and that AM — (0, Ar, Av, 

A A 

What we have found is that there are six quantities that belong together in 

nature—that are different aspects of the same thing. The electric and magnetic 

fields which we have considered as sepaiate vectors in our slow-moving world 

(where we don’t worry about the speed of fight) are not vectors in four-space. 

They are parts of a new “thing.” Our physical “field” is really the six-component 

object Fyv. That is the way we must look at it for relativity We summanze our 

results on Fyv in Table 26-1 

You see that what we have done here is to generalize the cross product We 

began with the curl operation, and the fact that the transformation properties of 

the curl are the same as the transformation properties of two vectors—the ordinary 

three-dimensional vector A and the gradient operator which we know also behaves 

like a vector Let’s look for a moment at an ordinary cross product in three di¬ 

mensions, for example, the angular momentum of a particle When an object is 

moving in a plane, the quantity (xv,f — yvx) is important. For motion in three 

dimensions, there are three such important quantities, which we call the angular 

momentum; 

L,„ = m(xr,j — yi'c), Ltt: = m(yr- — zr„), LZJ = m{zi\ - arz) 

Then (although you may have forgotten by now) we discovered in Chapter 20 

of Vol I the miracle that these three quantities could be identified with the com- 
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ponents of a vector. In order to do so, we had to make an artificial rule with a 

right-hand convention It was just luck. It was luck because Lt) (with i and ; 

equal to v, y, or z) was an antisymmetric object 

Lij ^ L111 Llt ~ 0 

Of the nine possible quantities, rhere are only three independent numbers. And 

it just happens that when you change coordinate systems these three objects 

transform in exactly the same way as the components of a vector. 

The same thing lets us represent an element of surface as a vector A surface 

element has two parts—say dx and dy—which we can represent by the vector da 

normal to the suiface. But we can’t do that in four dimensions What is the 

“normal” to dx dyl Is it along z or along /? 

In short, for three dimensions it happens by luck that after you’ve taken a 

combination of two vectors like Lih you can represent it again by another vector 

because there are just three terms that happen to transform like the components 

of a vector But in four dimensions that is evidently impossible, because there are 

six independent terms, and you can’t represent si\ things by four things. 

Even in three dimensions it is possible to have combinations of vectors that 

can't be represented by vectors. Suppose we take any two vectors a = (ax, at{, az) 

and b = (/>r, by, />,), and make the various possible combinations of components, 

like cijcbr* (trb,r etc There would be nine possible quantities: 

Ojcbr, Qxby, tfxbz 

(l„br* dl/by, Clyb, 

&zbx. dzby. LI zb?. 

We might call these quantities TtJ. 

If we now go to a rotated coordinate system (say rotated about the z-axis), 

the components of a and b are changed. In the new system, ax, for example, gets 

replaced by 

a'x ~ ax cos 0 + ay sin 0, 

and blf gets replaced by 

b'j = bu cos 6 — bx sin 0. 

And similarly for other components The nine components of the product quantity 

Tu we have invented are all changed too, of course For instance, Txtj = arb,( 

gets changed to 

Txn = aJht(cos2 6) — axbx(cos 6 sin 6) + ayby(sin 6 cos 0) — aybx{sin2 0), 

or 

Vxy = Txtf cos2 0 — Txx cos 0 sin 0 + Tyy sin 0 cos 9 — Tyx sin2 0. 

Each component of Tfu is a linear combination of the components of Tu. 

So we discover that it is not only possible to have a “vector product” like 

a X b which has three components that transform like a vector, but we can— 

artificially—also make another kind of “product” of two vectors TZ) with nine 

components that transform under a rotation by a complicated set of rules that 

we could figure out Such an object which has two indices to describe it, instead 

of one, is called a tensor. It is a tensor of the “second rank,” because you can 

play this game with three vectors too and get a tensor of the third rank,—or with 

four, to get a tensor of the fourth rank, and so on. A tensor of the first rank is a 

vector 

The point of all this is that our electromagnetic quantity Fyv is also a tensor 

of the second rank, because it has two indices in it. It is, however, a tensor m 

four dimensions. It transforms in a special way which we will work out in a mo¬ 

ment—it is just the way a product of vectors transforms. For Fyv it happens 

that if you change the indices around, changes sign. That’s a special case—it is 
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an antisymmetric tensor. So we say: the electric and magnetic fields are both part 

of an antisymmetric tensor of the second rank in four dimensions. 

You’ve come a long way. Remember way back when we defined what a 

velocity meant? Now we are talking about “an antisymmetric tensor of the 

second rank in four dimensions.” 

Now we have to find the law of the transformation of FyV. It isn’t at all 

difficult to do; it’s just laborious—the brains involved are nil, but the work is not. 

What we want is the Lorentz transformation of — V„AM. Since VM is just a 

special case of a vector, we will work with the general antisymmetric vector com¬ 

bination. which we can call Gyv: 

aJov avby. (26.20) 

(For our purposes, ay will eventually be replaced by and will be replaced by 

the potential A^.) The components of aM and bM transform by the Lorentz formulas, 

which are 

a’t 
Qt vax 

M = 
bt — vbx 

vT - V ’ 

a, = 
ax - vat 

VT V‘ 

b’ = 
bx — vbt 

Vl — v2 
(26.21) 

al = a v> 

a'z = az. 

by ~ by, 

b' - bz. 

Now let’s transform the components of GV We start with Gtx\ 

G’tx = a'tb’x - a’xb’t 

at ~ vux 

Vl - V- 

bx ~ vbt 

Vi - 
ax ~ vat 

V1 — v2 

bt - vbx 

vnr^ 

- atbx - axbt. 

But that is just Gtx; so we have the simple result 

G'tx — Gtv 

We will do one more 

at ~ vax , bt - vbx (atbu - aybt) - v(arb„ - at,bx) 
Gty — r_-. bu ay 

VT Vi - v2 VI -‘o'2 

So we get that 

V _ G ty l'GXy 
GL = 

Vi v- 

And, of course, in the same way. 

Gtz — vG3 

vr V- 

ft is clear how the rest will go. Let’s make a table of all six terms, only now we 

may as well write them for Fyv\ 

F[x = Ftr, 

Ft (>/ 

ty vF xy 

V\ 
zrt   Ftz l'Fxz 
b tz — _ .. 

Vl — v2 

rxy 

Fxy — vFt 

\A ~ V2 

F’vz = Fyz, (26.22) 

F' — 
1 zr. — 

vFzf 

Vl — v2 

Of course, we still have F£p = —F^ and Fyfi = 0. 
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So we have the transformation of the electric and magnetic fields. All we have 
to do is look at Table 26-1 to find out what our grand notation in terms of F^ 
means in terms of E and B. It's just a matter of substitution. So that we can see 
how it looks in the ordinary symbols, well rewrite our transformation of the 
field components m Table 26-2. 

Table 26-2 

The Lorentz transformation of the electric and magnetic fields (Note: c = 1) 

E’x - 

K = 

El = 

Ex Bfx = Bx 

Ey — vBz 
By 

By + vEz 

\/\ — v‘2 \/l — V2 

Ez + vBy 
K 

Bz vEy 

Vl - V2 \/l - V2 

The equations in Table 26-2 tell us how E and B change if we go from one inertial 
frame to another. If we know E and B m one system, we can find what they are 
in another that moves by with the speed r. 

We can write these equations in a form that is easier to remember if we notice 
that since v is in the ^-direction, all the terms with v are components of the cross 
products v X E and v X B. So we can rewrite the transformations as shown in 
Table 26-3 

Table 26-3 

An alternative form for the field transformations (Note: c = 1) 

B'x = Bx 

_ (B - v X E)„ 
By —- 

\/i — v2 

nz (.B v X E)z 
Bz - -—=— 

\/T~ v2 

El = Ex 

7 (E v X B)y F' — 

El = 

\A — v2 

(E + v X B) 

It is now easier to remember which components go where In fact, the transforma¬ 
tion can be written even more simply if we define the field components along 
as the “parallel" components Eu and B\\ (because they are parallel to the relative 
velocity of S and 5'), and the total transverse components—the vector sums of 
the y- and z-components—as the “perpendicular11 components E± and B± Then 
we get the equations in Table 26-4. (We have also put back the c’s, so it will be 
more convenient when we want to refer back later) 

Table 26-4 

Still another form for the Lorentz transformation of E and B 

E}\ = E B'}] = B 

(r __ » X A 
(E + y X B)X n, V ^ )L 

El = —==_— B1 = - 

v l - V*lc* \A - f*/c2 

The field transformations give us another way of solving some problems we 
have done before—for instance, for finding the fields of a moving point charge. 
We have worked out the fields before by differentiating the potentials. But we 
could now do it by transforming the Coulomb field. If we have a point charge 
at rest in the S-frame, then there is only the simple radial E-field In the S'-frame 
we will see a point charge moving with the velocity //, if the S'-frame moves by the 
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Fig. 26-7. The coordinate frame S' 

moving through a static electric field. 

5-frame with the speed v = —u. We will let you show that the transformations 

of Tables 26-3 and 26-4 give the same electric and magnetic fields we got in Section 

26-2. 

The transformation of Table 26-2 gives us an interesting and simple answer 

for what we see if we move past any system of fixed charges. For example, suppose 

we want to know the fields in our frame Sr if we are moving along between the 

plates of a condenser, as shown in Fig. 26-7. (It is, of course, the same thing if 

we say that a charged condenser is moving past us.) What do we see9 The trans¬ 

formation is easy in this case because the 5-field in the original system is zero. 

Suppose, first, that our motion is perpendicular to £, then we will see an E' = 

E/yJ1 ~ vVc2 which is still completely transverse. We will see, in addition, a 

magnetic field B' = — v X Ef /c2. (The y/T — v2 doesn’t appear in our formula 

for B' because we wrote it in terms of E' rather than E; but it’s the same thing.) 

So when we move along perpendicular to a static electric field, we see a reduced 

E and an added transverse B. If our motion is not perpendicular to 5, we break 

E into E\| and E±. The parallel part is unchanged, E[\ = E\\, and the perpendicular 

component does as just described. 

Let’s take the opposite case, and imagine we are moving through a pure 

static magnetic field. This time we would see an electric field E' equal to v X B', 

and the magnetic field changed by the factor \fyj\ — r2/c2 (assuming it is trans¬ 

verse). So long as v is much less than c, we can neglect the change in the magnetic 

field, and the main effect is that an electric field appears. As one example of this 

effect, consider this once famous problem of determining the speed of an airplane. 

It’s no longer famous, since radar can now be used to determine the air speed 

from ground reflections, but for many years it was very hard to find the speed of 

an airplane in bad weather. You could not see the ground and you didn’t know 

which way was up, and so on. Yet it was important to know how fast you were 

moving relative to the earth. FTow can this be done without seeing the earth? 

Many who knew the transformation formulas thought of the idea of using the fact 

that the airplane moves in the magnetic field of the earth Suppose that an airplane 

is flying where there is a magnetic field more or less known. Let’s just take the 

simple case where the magnetic field is vertical. If we were flying through it with 

a horizontal velocity v, then, according to our formula, we should see an electric 

field which is v X 5, i.e , perpendicular to the line of motion If we hang an 

insulated wire across the airplane, this electric field will induce charges on the ends 

of the wire. That is nothing new. From the point of view of someone on the ground, 

we are moving a wire through a field, and the v X B force causes charges to move 

to the ends of the wire The transformation equations just say the same thing in 

a different way. (The fact that we can say the thing more than one way doesn’t 

mean that one way is better than another We are getting so many different 

methods and tools that we can usually get the same result in 65 different ways*) 

So to measure v, all we have to do is measure the voltage between the ends of 

the wire. We can’t do it with a voltmeter because the same fields will act on the 

wires in the voltmeter, but there are ways of measuring such fields. We talked 

about some of them when we discussed atmospheric electricity in Chapter 9 So 

it should be possible to measure the speed of the airplane. 

This important problem was, however, never solved this way. The reason is 

that the electric field that is developed is of the order of millivolts per meter. It 

is possible to measure such fields, but the trouble is that these fields are, unfortun¬ 

ately, not any different from any other electric fields. The field that is produced 

by motion through the magnetic field can’t be distinguished from some electric 

field that was already in the air from another cause, say from electrostatic charges 

in the air, or on the clouds We described in Chapter 9 that there are, typically, 

electric fields above the surface of the earth with strengths of about 100 volts per 

meter But they are quite irregular. So as the airplane flies through the air, it 

sees fluctuations of atmospheric electric fields which are enormous in comparison 

to the tiny fields produced by the v X B term, and it turns out for practical reasons 

to be impossible to measure speeds of an airplane by its motion through the earth’s 

magnetic field. 
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26-4 The equations of motion in relativistic notation * 

It doesn't do much good to find electric and magnetic fields from Maxwell's 

equations unless we know what the fields do when we have them. You may re¬ 

member that the fields are required to find the forces on charges, and that those 

forces determine the motion of the charge. So, of course, part of the theory of 

electrodynamics is the relation between the motion of charges and the forces. 

For a single charge in the fields E and B, the force is 

F = q(E + y X B). (26 23) 

This force is equal to the mass times the acceleration for low velocities, but the 

correct law for any velocity is that the force is equal to dp/dt. Writing p = 

m{]v/\r\ — v-/cz, we find that the relativistically correct equation of motion is 

d 

dt 

m{)v 

— v2/c2 
= F = q(E + V X B). (26.24) 

We would like now to discuss this equation from the point of view of relativity. 

Since we have put our Maxwell equations in relativistic form, it would be interesting 

to see what the equations of motion would look like in relativistic form Let’s see 

whether we can rewrite the equation m a four-vector notation. 

We know that the momentum is part of a four-vector whose time com¬ 

ponent is the energy m0/\/i — r2/c2. So we might think to replace the left-hand 

side of Eq. (26 24) by dpjdt Then we need only find a fourth component to go 

with F. This fourth component must equal the rate-of-change of the energy, or the 

rate of doing work, which is F ■ v. We would then like to write the right-hand 

side of Eq (26.24) as a four-vector like (F ■ i\ Fx, F,r Fz). But this does not make 

a four-vector. 

The time derivative of a four-vector is no longer a four-vector, because the 

d/dt requires the choice of some special frame for measuring t. We got into that 

trouble before when we tried to make v into a four-vector. Our first guess was 

that the time component would be cdt/dt = c. But the quantities 

<“-25) 

are not the components of a four-vector We found that they could be made into 

one by multiplying each component by l/\/l — vz/c2. The “four-velocity" 

is the four-vector 

tin = (— -> — V —) • (26.26) 
\Vl - v2/c2 \/l - V2/C2) 

So it appears that the trick is to multiply d/dt by l/\/T 

derivatives to make a four-vector. 

Our second guess then is that 

1 d ( . 
V l - ^ dt W 

r2/c2, if we want the 

(26.27) 

should be a four-vector. But what is v? It is the velocity of the particle—not of a 

coordinate frame! Then the quantity/M defined by 

/, = F-v F 

Vl - t'Vc2 Vl - v2/c2 

(26.28) 

is the extension into four dimensions of a force—we can call it the “four-force." 

It is indeed a four-vector, and its space components are not the components of 

F but of F/\/l — r2/c2. 

* In this section we will put back all of the c's. 
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The question is—why is/M a four-vector9 It would be nice to get a little under¬ 

standing of that 1/\71 — v2/c2 factor Since it has come up twice now, it is time 

to see why the d/dt can always be fixed by the same factor. The answer is in the 

following: When we take the time derivative of some function x, we compute the 

increment Ax in a small interval At in the variable t. But in another frame, the 

interval At might correspond to a change in both tf and x', so if we vary only ?, 

the change in x will be different. We have to find a variable for our differentiation 

that is a measure of an “interval" in space-time, which will then be the same in 

all coordinate systems. When we take Ax for that interval, it will be the same for 

all coordinate frames. When a particle “moves” in four-space, there are the changes 

At, Ax, Ay, Az. Can we make an invariant interval out of them? Well, they are 

the components of the four-vector xM = (ct, x, y, z) so if we define a quantity 

As by 

(As)2 = ~ Ax„ Ax„ = ~ (c2 At2 - Ax2 - Ay2 - Az2) (26.29) 

—which is a four-dimensional dot product—we then have a good four-scalar to 

use as a measure of a four-dimensional interval. From As—or its limit ds—we 

can define a parameter s = jds. And a derivative with respect to s, d/ds, is a 

nice four-dimensional operation, because it is invariant with respect to a Lorentz 

transformation. 

It is easy to relate ds to dt for a moving particle. For a moving point particle, 

dx = vx dt, dy = vy dt, dz = vz dt, (26 30) 
and 

* = \(dt2/c2)(c2 - vl - vl - V2) = dtV 1 - I'7c2. (26.31) 

So the operator 
1 d 

is an invariant operator. If we operate on any four-vector with it, we get another 

four-vector. For instance, if we operate on (ct< x, y, z), we get the four-velocity uy: 

dXp, 
ds 

We see now why the factor \/l — v2/c2 fixes things up. 

The invariant variable s is a useful physical quantity. It is called the “proper 

time” along the path of a particle, because ds is always an interval of time in a 

frame that is moving with the particle at any particluar instant. (Then, Ax = 

Ay = Az = 0, and As = At.) If you can imagine some “clock” whose rate 

doesn’t depend on the acceleration, such a clock carried along with the particle 

would show the time s 

We can now go back and write Newton’s law (as corrected by Einstein) in 

the neat form 

$ = fa, (26.32) 

where/M is given in Eq. (26.28). Also, the momentum can be written as 

dx 
Pn = = wt> ’ (26.33) 

where the coordinates xu = (ct, x, y, z) now describe the trajectory of the particle. 

Finally, the four-dimensional notation gives us this very simple form of the equa¬ 

tions of motion: 

fa = m0 . (26.34) 

which is reminiscent of F — ma It is important to notice that Eq. (26.34) is not 

the same as F — ma, because the four-vector formula Eq. (26.34) has in it the 
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relativistic mechanics which are different from Newton’s law for high velocities. 

It is unlike the case of Maxwell’s equations, where we were able to rewrite the 

equations in the relativistic form without any change in the meaning at all—but with 

just a change of notation. 

Now let’s return to Eq. (26.24) and see how we can write the right-hand side 

in four-vector notation. The three components—when divided by \/l — v2/c2— 

are the components of so 

j' _ q(F + v X E)x   ^_Ex_ VyBz_ _ vzBy 

\f\ “ V2/c2 VT — V2 fc2 Vl— V^Jc2 \/l -~^v2fc2 

(26.35) 

Now we must put all quantities in their relativistic notation. First, c/\/l — v2/c2 

and vJ\/\ — v2/c2 and r»/\/f — v2/c2 are the y-, and z-components of the 

four-velocity And the components of E and B are components of the second- 

rank tensor of the fields Eyv Looking back in Table 26-1 for the components of 

that correspond to Ex, Bz, and Bu, we get 

fx ~~ q(utFxt UyFXy MzExz)i 

which begins to look interesting. Every term has the subscript x, which is reason¬ 

able, since we’re finding an x-component. Then all the others appear in pairs: 

tU yy, zz—except that the xx-term is missing. So we just stick it in, and write 

fx — qiMtFxt uxExx MyEXy nzFxf). (26 36) 

We haven’t changed anything because FyV is antisymmetric, and Fxx is zero. The 

reason for wanting to put in the xx-term is so that we can write Eq. (26.36) in 

the short-hand form 

/„ = qUyF^. (26.37) 

This equation is the same as Eq (26.36) if we make the rule that whenever any 

subscript occurs twice (as v does here), you automatically sum over terms in the 

same way as for the scalar product, using the same convention for the signs. 

You can easily believe that (26.37) works equally well for fx = y or g = z. 

but what about /jl = /? Let’s see, for fun, what it says: 

ft q(utFtt uxF tx UyFfy uzFiz) 

Now we have to translate back to E's and Z?’s. We get 

'(° 
ft — q( 0 + ~ Es -j-- a . - 

vT — v2/c2 x/T — v2/c2 vT — v2Jc 
Bu + 

or 

ft = 
qv • E 

(26.38) 

\/\ — 

But from Eq. (26.28), /, is supposed to be 

F • v _ q(E + v X B) • v 

V\ — v2/c2 \/l — v2/(F 

This is the same thing as Eq. (26.38), since (u X B) - v is zero. So everything comes 

out all right. 

Summarizing, our equation of motion can be written in the elegant form 

m° % = f»= qu'F>*- (2639) 

Although it is nice to see that the equations can be written that way, this form 

is not particularly useful It’s usually more convenient to solve for particle motions 

by using the original equations (26.24), and that's what we will usually do. 
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27 

Field Energy and Field Momentum 

27-1 Local conservation 

It is clear that the energy of matter is not conserved. When an object radiates 

light it loses energy. However, the energy lost is possibly describable in some other 

form, say in the light. Therefore the theory of the conservation of energy is 

incomplete without a consideration of the energy which is associated with the light 

or, in general, with the electromagnetic field. We take up now the law of conserva¬ 

tion of energy and, also, of momentum for the fields. Certainly, we cannot treat 

one without the other, because in the relativity theory they are different aspects of 

the same four-vector. 

Very early in Volume I, we discussed the conservation of energy; we said 

then merely that the total energy in the world is constant. Now we want to extend 

the idea of the energy conservation law in an important way—in a way that says 

something in detail about how energy is conserved. The new law will say that if 

energy goes away from a region, it is because it flows away through the boundaries 

of that region. It is a somewhat stronger law than the conservation of energy 

without such a restriction. 

To see what the statement means, let’s look at how the law of the conservation 

of charge works. We described the conservation of charge by saying that there is 

a current density j and a charge density p, and that when the charge decreases at 

some place there must be a flow of charge away from that place. We call that the 

conservation of charge. The mathematical form of the conservation law is 

V j 
dp 

dt 
(27.1) 

This law has the consequence that the total charge in the world is always constant— 

there is never any net gain or loss of charge. However, the total charge in the 

world could be constant in another way. Suppose that there is some charge Q\ 

near some point (1) while there is no charge near some point (2) some distance 

away (Fig. 27-1). Now suppose that, as time goes on, the charge 0i were to 

gradually fade away and that simultaneously with the decrease of 0i some charge 

02 would appear near point (2), and in such a way that at every instant the sum of 

0i and 02 was a constant. In other words, at any intermediate state the amount 

of charge lost by 0i would be added to 02. Then the total amount of charge in 

the world would be conserved. That’s a “world-wide” conservation, but not what 

we will call a “local” conservation, because in order for the charge to get from 

(1) to (2). it didn’t have to appear anywhere in the space between point (1) and 

point (2). Locally, the charge was just “lost.” 

There is a difficulty with such a “world-wide” conservation law in the theory 

of relativity. The concept of “simultaneous moments” at distant points is one which 

is not equivalent in different systems. Two events that are simultaneous in one 

system are not simultaneous for another system moving past. For “world-wide” 

conservation of the kind described, it is necessary that the charge lost from 0i 

should appear simultaneously in 02. Otherwise there would be some moments 

when the charge was not conserved. There seems to be no way to make the 

law of charge conservation relativistically invariant without making it a “local” 

conservation law. As a matter of fact, the requirement of the Lorentz relativistic 

invariance seems to restrict the possible laws of nature in surprising ways. In 

modern quantum field theory, for example, people have often wanted to alter the 

theory by allowing what we call a “nonlocal” interaction—where something here 
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has a direct effect on something there—but we get in trouble with the relativity 

principle. 

“Local” conservation involves another idea. It says that a charge can get 

from one place to another only if there is something happening in the space between. 

To describe the law we need not only the density of charge, p, but also another 

kind of quantity, namely j, a vector giving the rate of flow of charge across a 

surface. Then the flow is related to the rate of change of the density by Eq. (27.1). 

This is the more extreme kind of a conservation law. It says that charge is con¬ 

served in a special way—conserved “locally.” 

It turns out that energy conservation is also a local process. There is not only 

an energy density in a given region of space but also a vector to represent the rate 

of flow of the energy through a surface. For example, when a light source radiates, 

we can find the light energy moving out from the source. If we imagine some mathe¬ 

matical surface surrounding the light source, the energy lost from inside the surface 

is equal to the energy that flows out through the surface. 

27-2 Energy conservation and electromagnetism 

We want now to write quantitatively the conservation of energy for electro¬ 

magnetism. To do that, we have to describe how much energy there is in any 

volume element of space, and also the rate of energy flow. Suppose we think first 

only of the electromagnetic field energy. We will let u represent the energy density 

in the field (that is, the amount of energy per unit volume in space) and let the 

vector S represent the energy flux of the field (that is, the flow of energy per unit 

time across a unit area perpendicular to the flow). Then, in perfect analogy with 

the conservation of charge, Eq (27 1), we can write the “local” Jaw of energy 

conservation in the field as 

~=-V-S. (27.2) 
dt 

Of course, this law is not true in general; it is not true that the field energy is 

conserved. Suppose you are in a dark room and then turn on the light switch. All 

of a sudden the room is full of light, so there is energy in the field, although there 

wasn’t any energy there before. Equation (27.2) is not the complete conservation 

law, because the field energy alone is not conserved, only the total energy in the 

world—there is also the energy of matter. The field energy will change if there is 

some work being done by matter on the field or by the field on matter 

However, if there is matter inside the volume of interest, we know how much 

energy it has: Each particle has the energy m{)c2/\/1 — v2/c2. The total energy 

of the matter is just the sum of all the particle energies, and the flow of this energy 

through a surface is just the sum of the energy carried by each particle that crosses 

the surface We want now to talk only about the energy of the electromagnetic 

field. So we must write an equation which says that the total field energy in a given 

volume decreases either because field energy flows out of the volume or because 

the field loses energy to matter (or gains energy, which is just a negative loss). 

The field energy inside a volume V is 

[ u dV, 

and its rate of decrease is minus the time derivative of this integral. The flow of 

field energy out of the volume V is the integral of the normal component of S over 

the surface 2 that encloses V, 

Lsn da. 

So 

f. J V 
. . „dV = / S • n da + (work done on matter inside V). (27.3) 
dt J v J 2 
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We have seen before that the field does work on each unit volume of matter 

at the rate E j. [The force on a particle is F ~ q(E + v X B), and the rate of 

doing work is F * v ~ qE * v. If there are N particles per unit volume, the rate of 

doing work per unit volume is NqE • u, but Nqv ~ j ] So the quantity E • j must 

be equal to the loss of energy per unit time and per unit volume by the field. 

Equation (27.3) then becomes 

- ~ / u dV = / S ■ n da + / E jdV. (27.4) 
otJv Jz Jv 

This is our conservation law for energy in the field. We can convert it into a 

differential equation like Eq. (27.2) if we can change the second term to a volume 

integral That is easy to do with Gauss’ theorem. The surface integral of the 

normal component of S is the integral of its divergence over the volume inside. 

So Eq. (27.3) is equivalent to 

-Ldi,‘iv-LTsdv+LE'idr• 

where we have put the time derivative of the first term inside the integral. Since 

this equation is true for any volume, we can take away the integrals and we have 

the energy equation for the electromagnetic fields: 

-%}= V-S+E-J- (27.5) 

Now this equation doesn’t do us a bit of good unless we know what u and S 

are. Perhaps we should just tell you what they are in terms of E and B, because 

all we really want is the result. However, we would rather show you the kind of 

argument that was used by Poynting in 1884 to obtain formulas for S and w, so 

you can see where they come from. (You won’t, however, need to learn this de¬ 

rivation for our later work.) 

27-3 Energy density and energy flow in the electromagnetic field 

The idea is to suppose that there is a field energy density u and a flux S that 

depend only upon the fields E and B. (For example, we know that in electrostatics, 

at least, the energy density can be written Je0jE ■ E.) Of course, the u and S might 

depend on the potentials or something else, but let’s see what we can work out 

We can try to rewrite the quantity E j in such a way that it becomes the sum of 

two terms, one that is the time derivative of one quantity and another that is the 

divergence of a second quantity. The first quantity would then be u and the second 

would be S (with suitable signs). Both quantities must be written in terms of the 

fields only; that is, we want to write our equality as 

E-i= -ft- V-S. (27.6) 

The left-hand side must first be expressed in terms of the fields only. How 

can we do that7 By using Maxwell’s equations, of course. From Maxwell’s 

equation for the curl of B, 

j = e0c2V X B - to • 

Substituting this in (27 6) we will have only E’s and B’s: 

E j = e0c2E .(VX8)-f»£-~ (27.7) 

We are already partly finished. The last term is a time derivative—it is 

(d/d/)Qe0F * E). So %t0E • E is at least one part of w. It’s the same thing we 

found in electrostatics. Now, all we have to do is to make the other term into the 

divergence of something. 
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Notice that the first term on the right-hand side of (27.7) is the same as 

(V X B) ■ E. (27.8) 

And, as you know from vector algebra, (a X b) c is the same as a * {b X c); 

so our term is also the same as 

V * (B X E) (27.9) 

and we have the divergence of ‘'something,” just as we wanted. Only that’s 

wrong' We warned you before that V is “like” a vector, but not “exactly” the 

same. The reason it is not is because there is an additional convention from cal¬ 

culus: when a derivative operator is in front of a product, it works on everything 

to the right. In Eq (27.7), the V operates only on B, not on E But in the form 

(27 9), the normal convention would say that V operates on both B and E So 

it’s not the same thing In fact, if we work out the components of V • (B X E) 

we can see that it is equal to E • (V X B) plus some other terms. It’s like what 

happens when we take a derivative of a product in algebra For instance. 

d 
dx Us) = 

df 

dx g + / 
dg. 
dx 

Rather than working out all the components of V ■ (B X E), we would like 

to show you a trick that is very useful for this kind of problem. It is a trick that 

allows you to use all the rules of vector algebra on expressions with the V operator, 

without getting into trouble The trick is to throw out—for a while at least—the 

rule of the calculus notation about what the derivative operator works on You 

see, ordinarily, the order of terms is used for two separate purposes. One is for 

calculus: f(d/dx)g is not the same as g(d/dx)f; and the other is for vectors: 

a X b is different from b X a. We can, if we want, choose to abandon momentarily 

the calculus rule. Instead of saying that a derivative operates on everything to the 

right, we make a new rule that doesn’t depend on the order in which terms are writ¬ 

ten down Then we can juggle terms around without worrying 

Here is our new convention, we show, by a subscript, what a differential op¬ 

erator works on; the order has no meaning. Suppose we let the operator D stand 

for d/dx. Then Df means that only the derivative of the variable quantity / is 

taken. Then 

But if we have Dffg, it means 

Dff = <11. 
dx 

Dffg g- 

But notice now that according to our new rule,/D,g means the same thing We 

can write the same thing any which way. 

Dffg = gD/f = fDfg = fg Df. 

You see, the Df can even come after everything. (It’s surprising that such a handy 

notation is never taught in books on mathematics or physics.) 

You may wonder: What if I want to write the derivative of fgl I want the 

derivative of both terms. That’s easy, you just say so; you write Dffg) + Dffg). 

That is just g(df/dx) -j- /(dg/dx), which is what you mean in the old notation by 

d(fg)/dx. 

You will see that it is now going to be very easy to work out a new expression 

for V ■ (B X E). We start by changing to the new notation; we write 

V • (B X E) = • (B X E) + VE - (B X E). (27.10) 

The moment we do that we don’t have to keep the order straight any more We 

always know that VK operates on E only, and Voperates on B only In these 

circumstances, we can use V as though it were an ordinary vector. (Of course, 
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when we are finished, we will want to return to the “standard” notation that 

everybody usually uses ) So now we can do the various things like interchanging 

dots and crosses and making other kinds of rearrangements of the terms. For 

instance, the middle term of Eq. (27.10) can be rewritten as E • Vj? X B. (You 

remember that abXc = bcX a.) And the last term is the same as BE X 

Ve* It looks freakish, but it is all right. Now if we try to go back to the ordinary 

convention, we have to arrange that the V operates only on its “own” variable. 

The first one is already that way, so we can just leave off the subscript. The second 

one needs some rearranging to put the V in front of the E, which we can do by 

reversing the cross product and changing sign: 

B - (E X VE) = ~B (VE X E). 

Now it is in a conventional order, so we can return to the usual notation. Equation 

(27.10) is equivalent to 

V • (B X £■)-£• (V X B) - B ■ (V X E). (27.11) 

(A quicker way would have been to use components in this special case, but it 

was worth taking the time to show you the mathematical trick. You probably 

won’t see it anywhere else, and it is very good for unlocking vector algebra from 

the rules about the order of terms with derivatives.) 

We now return to our energy conservation discussion and use our new result, 

Eq. (27.11), to transform the V X B term of Eq. (27.7). That energy equation 

becomes 

E j = e0c2V (BX £)+ e0c2B ■ (V X E) - (ie0E ■ E) (27.12) 
dl 

Now you see we’re almost finished. We have one term which is a nice derivative 

with respect to t to use for u and another that is a beautiful divergence to represent 

S, Unfortunately, there is the center term left over, which is neither a divergence 

nor a derivative with respect to t. So we almost made it, but not quite. After 

some thought, we look back at the differential equations of Maxwell and discover 

that V X E is, fortunately, equal to —dB/dt, which means that we can turn the 

extra term into something that is a pure time derivative: 

,.(TX 
Now we have exactly what we want. Our energy equation reads 

E j = V ■ (€0c2« X E) — ~ B-B+^E-e)' (27.13) 

which is exactly like Eq. (27.6), if we make the definitions 

u = ^E-E + ^-B-B (27.14) 

and 

S = €0C2E X B. (27.15) 

(Reversing the cross product makes the signs come out right.) 

Our program was successful. We have an expression for the energy density 

that is the sum of an “electric” energy density and a “magnetic” energy density, 

whose forms are just like the ones we found in statics when we worked out the 

energy in terms of the fields. Also, we have found a formula for the energy flow 

vector of the electromagnetic field. This new vector, S = eQc2E X B, is called 

“Poynting’s vector,” after its discoverer. It tells us the rate at which the field 

energy moves around m space. The energy which flows through a small area da 

per second is S • n day where n is the unit vector perpendicular to da. (Now that 

we have our formulas for u and 5, you can forget the derivations if you want.) 
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27-4 The ambiguity of the field energy 

Before we take up some applications of the Poynting formulas [Eqs. (27.14) 

and (27.15)], we would like to say that we have not really “proved” them. All 

we did was to find a possible “w” and a possible “5.” How do we know that by 

juggling the terms around some more we couldn't find another formula for “w” 

and another formula for ”5”? The new S and the new u would be different, but 

they would still satisfy Eq. (27.6). It’s possible. It can be done, but the forms that 

have been found always involve various derivatives of the field (and always with 

second-order terms like a second derivative or the square of a first derivative). 

There are, in fact, an infinite number of different possibilities for u and 5, and 

so far no one has thought of an experimental way to tell which one is right! People 

have guessed that the simplest one is probably the correct one, but we must say 

that we do not know for certain what is the actual location in space of the electro¬ 

magnetic field energy. So we too will take the easy way out and say that the field 

energy is given by Eq. (27.14). Then the flow vector S must be given by Eq. (27.15). 

It is interesting that there seems to be no unique way to resolve the indefinite¬ 

ness in the location of the field energy. It is sometimes claimed that this problem 

can be resolved by using the theory of gravitation in the following argument. 

In the theory of gravity, all energy is the source of gravitational attraction. There¬ 

fore the energy density of electricity must be located properly if we are to know in 

which direction the gravity force acts. As yet, however, no one has done such a 

delicate experiment that the precise location of the gravitational influence of 

electromagnetic fields could be determined. That electromagnetic fields alone can 

be the source of gravitational force is an idea it is hard to do without. It has, in 

fact, been observed that light is deflected as it passes near the sun—we could 

say that the sun pulls the light down toward it. Do you not want to allow that the 

light pulls equally on the sun? Anyway, everyone always accepts the simple 

expressions we have found for the location of electromagnetic energy and its flow. 

And although sometimes the results obtained from using them seem strange, 

noboby has ever found anything wrong with them—that is, no disagreement with 

experiment. So we will follow the rest of the world—besides, we believe that it is 

probably perfectly right. 

We should make one further remark about the energy formula. In the first 

place, the energy per unit volume in the field is very simple: It is the electrostatic 

energy plus the magnetic energy, if we write the electrostatic energy in terms of 

E2 and the magnetic energy as B2. We found two such expressions as possible 

expressions for the energy when we were doing static problems. We also found a 

number of other formulas for the energy in the electrostatic field, such as p</>, 

which is equal to the integral of E • E in the electrostatic case However, in an 

electrodynamic field the equality failed, and there was no obvious choice as to 

which was the right one. Now we know which is the right one. Similarly, we have 

found the formula for the magnetic energy that is correct in general The right 

formula for the energy density of dynamic fields is Eq (27.14) 

Fig. 27-2. The vectors E, B, and $ 

for a light wave. 

27-5 Examples of energy flow 

Our formula for the energy flow vector S is something quite new. We want 

now to see how it works m some special cases and also to see whether it checks 

out with anything that we knew before. The first example we will take is light. 

In a light wave we have an E vector and a B vector at right angles to each other 

and to the direction of the wave propagation. (See Fig 27-2.) In an electromag¬ 

netic wave, the magnitude of B is equal to 1/c times the magnitude of 2s, and since 

they are at right angles, 

|E X B\ = ~~ 
c 

Therefore, for light, the flow of energy per unit area per second is 

5 = e0cE2. 
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For a light wave in which E = E0 cos w(/ — x/c), the average rate of energy 

flow per unit area, (S)av—which is called the “intensity” of the light—is the mean 

value of the square of the electric field times e0c: 

Intensity = (S)av = e0c(£2}av. (27.17) 

Believe it or not, we have already derived this result in Section 31-3 of Vol. I, 

when we were studying light. We can believe that it is right because it also checks 

against something else When we have a light beam, there is an energy density in 

space given by Eq. (27.14). Using cB = E for a light wave, we get that 

«- ¥ +¥ (S) - 
But E varies in space, so the average energy density is 

<«>av = e0<£2)av. (27.18) 

Now the wave travels at the speed c, so we should think that the energy that goes 

through a square meter in a second is c times the amount of energy in one cubic 

meter. So we would say that 

(S) av = «0 C<£2}.,y 

And it’s right; it is the same as Eq. (27.17). 

Now we take another example. Here is a rather curious one. We look at the 

energy flow in a capacitor that we are charging slowly. (We don’t want frequencies 

so high that the capacitor is beginning to look like a resonant cavity, but we don’t 

want DC either.) Suppose we use a circular parallel plate capacitor of our usual 

kind, as shown in Fig. 27-3. There is a nearly uniform electric field inside which is 

changing with time. At any instant the total electromagnetic energy inside is u 

times the volume. If the plates have a radius a and a separation /z, the total energy 

between the plates is 

u = (~ E2^J(ira2h). (27.19) 

This energy changes when E changes. When the capacitor is being charged, the 

volume between the plates is receiving energy at the rate 

^ = e0ira2hEE. (27.20) 
at 

Fig. 27-3. Near a charging capaci¬ 

tor, the Poynting vector S points inward 

toward the axis. 

So there must be a flow of energy into that volume from somewhere. Of course 

you know that it must come in on the charging wires—not at all! It can’t enter 

the space between the plates from that direction, because E is perpendicular to 

the plates; E X B must be parallel to the plates. 

You remember, of course, that there is a magnetic field that circles around 

the axis when the capacitor is charging. We discussed that in Chapter 23. Using 

the last of Maxwell’s equations, we found that the magnetic field at the edge of the 

capacitor is given by 

2ttac2B — E * ira2, 

or 

Its direction is shown in Fig. 27-3. So there is an energy flow proportional 

to E X B that comes in all around the edges, as shown in the figure. The 

energy isn’t actually coming down the wires, but from the space surrounding the 

capacitor. 

Let’s check whether or not the total amount of flow through the whole surface 

between the edges of the plates checks with the rate of change of the energy inside— 

it had better; we went through all that work proving Eq. (27.15) to make sure, 
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but let's see. The area of the surface is 2wah, and S = enc2E X B is in magnitude 

Fig. 27-4. The fields outside a capacitor 

when it is being charged by bringing two 

charges from a large distance. 

Fig. 27-5 The Poynting vector S near 

a wire carrying a current. 

Fig. 27-6. A charge and a magnet 

produce a Poynfing vector that circulates 

in closed loops. 

e°c2£fe e) , 

so the total flux of energy is 

Ta2h€oEE. 

It does check with Eq. (27.20). But it tells us a peculiar thing: that when we are 

charging a capacitor, the energy is not coming down the wires; it is coming in 

through the edges of the gap. That’s what this theory says! 

How can that be? That’s not an easy question, but here is one way of thinking 

about it. Suppose that we had some charges above and below the capacitor and 

far away. When the charges are far away, there is a weak but enormously spread- 

out field that surrounds the capacitor. (See Fig. 27-4.) Then, as the charges 

come together, the field gets stronger nearer to the capacitor. So the field energy 

which is way out moves toward the capacitor and eventually ends up between the 

plates. 

As another example, we ask what happens in a piece of resistance wire when it 

is carrying a current. Since the wire has resistance, there is an electric field along it, 

driving the current. Because there is a potential drop along the wire, there is also 

an electric field just outside the wire, parallel to the surface. (See Fig. 27-5.) 

There is, in addition, a magnetic field which goes around the wire because of the 

current. The E and B are at right angles; therefore there is a Poynting vector 

directed radially inward, as shown in the figure. There is a flow of energy into the 

wire all around. It is, of course, equal to the energy being lost in the wire in the 

form of heat. So our “crazy” theory says that the electrons are getting their 

energy to generate heat because of the energy flowing into the wire from the field 

outside. Intuition would seem to tell us that the electrons get their energy from 

being pushed along the wire, so the energy should be flowing down (or up) along 

the wire. But the theory says that the electrons are really being pushed by an electric 

field, which has come from some charges very far away, and that the electrons get 

their energy for generating heat from these fields. The energy somehow flows 

from the distant charges into a wide area of space and then inward to the wire. 

Finally, in order to really convince you that this theory is obviously nuts, 

we will take one more example—an example in which an electric charge and a 

magnet are at rest near each other—both sitting quite still. Suppose we take the 

example of a point charge sitting near the center of a bar magnet, as shown in 

Fig. 27-6 Everything is at rest, so the energy is not changing with time. Also, 

E and B are quite static. But the Poynting vector says that there is a flow of energy, 

because there is an E X B that is not zero. If you look at the energy flow, you find 

that it just circulates around and around. There isn’t any change in the energy 

anywhere—everything which flows into one volume flows out again It is like 

incompressible water flowing around. So there is a circulation of energy in this 

so-called static condition. How absurd it gets! 

Perhaps it isn’t so terribly puzzling, though, when you remember that what 

we called a “static” magnet is really a circulating permanent current. In a perma¬ 

nent magnet the electrons are spinning permanently inside. So maybe a circulation 

of the energy outside isn’t so queer after all. 

You no doubt begin to get the impression that the Poynting theory at least 

partially violates your intuition as to where energy is located in an electromagnetic 

field. You might believe that you must revamp all your intuitions, and, therefore 

have a lot of things to study here. But it seems really not necessary You don’t 

need to feel that you will be in great trouble if you forget once in a while that the 

energy in a wire is flowing into the wire from the outside, rather than along the 

wire. It seems to be only rarely of value, when using the idea of energy conserva¬ 

tion, to notice in detail what path the energy is taking. The circulation of energy 

around a magnet and a charge seems, in most circumstances, to be quite unimpor¬ 

tant. It is not a vital detail, but it is clear that our ordinary intuitions are quite 

wrong. 
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27-6 Field momentum 

Next we would like to talk about the momentum in the electromagnetic field. 

Just as the field has energy, it will have a certain momentum per unit volume. 

Let us call that momentum density g, Of course, momentum has various possible 

directions, so that g must be a vector. Let’s talk about one component at a time; 

first, we take the x-component. Since each component of momentum is conserved 

we should be able to write down a law that looks something like this: 

d /momentum\ _ dgx /momentum 

dt \ of matter )x dt \ outflow 

The left side is easy. The rate-of-change of the momentum of matter is just the 

force on it. For a particle, it is F = q(E + v X B) ; for a distribution of charges, 

the force per unit volume is (pE -f j X B). The “momentum outflow” term, 

however, is strange. It cannot be the divergence of a vector because it is not a 

scalar; it is, rather, an x-component of some vector. Anyway, it should probably 

look something like 

da db dc 

dx + dy + dz* 

because the x-momentum could be flowing in any one of the three directions. 

In any case, whatever a, b, and c are, the combination is supposed to equal the 

outflow of the x-momentum. 

Now the game would be to write pE + j X B in terms only of E and B— 

eliminating p an j by using Maxwell’s equations—and then to juggle terms and make 

substitutions to get it into a form that looks like 

dgx fa I db i 

dt "h d* dy "i" dz' 

Then, by identifying terms, we would have expressions for gx, a, b9 and c. It’s a 

lot of work, and we are not going to do it. Instead, we are only going to find an 

expression for g, the momentum density—and by a different route. 

There is an important theorem in mechanics which is this: whenever there is 

a flow of energy in any circumstance at all (field energy or any other kind of energy), 

the energy flowing through a unit area per unit Fme, when multiplied by 1/c2, is 

equal to the momentum per unit volume in the space In the special case of elec¬ 

trodynamics, this theorem gives the result that g is 1 /c2 times the Poynting vector 

g = ~s. (27.21) 

So the Poynting vector gives not only energy flow but, if you divide by c2, also the 

momentum density. The same result would come out of the other analysis we 

suggested, but it is more interesting to notice this more general result. We will 

now give a number of interesting examples and arguments to convince you that 

the general theorem is true. 

First example: Suppose that we have a lot of particles in a box—let’s say N 

per cubic meter—and that they are moving along with some velocity v. Now let’s 

consider an imaginary plane surface perpendicular to v. The energy flow through 

a unit area of this surface per second is equal to Nv, the number which flow through 

the surface per second, times the energy carried by each one. The energy in each 

particle is m0c2/\/i — v2/c2. So the energy flow per second is 

Nv 
m0c2 

vT^V^ 

But the momentum of each particle is mQv/y/1 — v2/c2 

mentum is 

N 
VI 

m pv 

— v2/c2 

so the density of mo- 
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which is just 1/c2 times the energy flow—as the theorem says. So the theorem is 

true for a bunch of particles. 

It is also true for light. When we studied light in Volume I, we saw that when 

the energy is absorbed from a light beam, a certain amount of momentum is de¬ 

livered to the absorber. We have, in fact, shown in Chapter 36 of Vol. I that the 

momentum is 1/c times the energy absorbed [Eq. (36.24) of Vol. I]. If we let U0 

be the energy arriving at a unit area per second, then the momentum arriving at a 

unit area per second is U0/c. But the momentum is travelling at the speed c, so its 

density in front of the absorber must be Uq/c2. So again the theorem is right. 

Finally we will give an argument due to Einstein which demonstrates the 

same thing once more. Suppose that we have a railroad car on wheels (assumed 

frictionless) with a certain big mass M. At one end there is a device which will 

shoot out some particles or light (or anything, it doesn’t make any difference what 

it is), which are then stopped at the opposite end of the car. There was some 

energy originally at one end—say the energy U indicated in Fig. 27-7(a)—and then 

later it is at the opposite end, as shown in Fig. 27-7(c). The energy U has been 

displaced the distance L, the length of the car. Now the energy U has the mass 

U/c2, so if the car stayed still, the center of gravity of the car would be moved. 

Einstein didn’t like the idea that the center of gravity of an object could be moved 

by fooling around only on the inside, so he assumed that it is impossible to move 

the center of gravity by doing anything inside. But if that is the case, when we 
moved the energy U from one end to the other, the whole car must have recoiled 

some distance x, as shown in part (c) of the figure. You can see, in fact, that the 

total mass of the car, times x, must equal the mass of the energy moved, U/c2 

times L (assuming that U/c2 is much less than M): 

Mx = tL l. (27.22) 
c1 

Let’s now look at the special case of the energy being carried by a light flash. 

(The argument would work as well for particles, but we will follow Einstein, who 

was interested in the problem of light ) What causes the car to be moved9 Einstein 

argued as follows: When the light is emitted there must be a recoil, some unknown 

recoil with momentum p. It is this recoil which makes the car roll backward. 

The recoil velocity v of the car will be this momentum divided by the mass of the 

car: 

Fig. 27-7. The energy U in motion at 

the speed c carries the momentum U/c. 

The car moves with this velocity until the light energy U gets to the opposite end. 

Then, when it hits, it gives back its momentum and stops the car. If x is small, 

then the time the car moves is nearly equal to L/c; so we have that 

x = vt 
L 

v — 
c 

P_ L 
M c * 

Putting this x in Eq. (27.22), we get that 

U 

p = T‘ 

Again we have the relation of energy and momentum for light. Dividing by c to 

get the momentum density g = p/c, we get once more that 

g = (27.23) 

You may well wonder: What is so important about the center-of-gravity 

theorem? Maybe it is wrong. Perhaps, but then we would also lose the conserva¬ 

tion of angular momentum. Suppose that our boxcar is moving along a track at 

some speed v and that we shoot some light energy from the top to the bottom of 

the car—say, from A to B in Fig. 27-8. Now we look at the angular momentum of 

the system about the point P Before the energy U leaves A, it has the mass 
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m = U2/c and the velocity i\ so it has the angular momentum mvra When it 

arrives at B, it has the same mass and, if the linear momentum of the whole boxcar 

is not to change, it must still have the velocity v. It’s angular momentum about P 

is then mvrs. The angular momentum will be changed unless the right recoil 

momentum was given to the car when the light was emitted—that is, unless the 

light carries the momentum U/c. It turns out that the angular momentum con¬ 

servation and the theorem of center-of-gravity are closely related in the relativity 

theory. So the conservation of angular momentum would also be destroyed if our 

theorem were not true At any rate, it does turn out to be a true general law, and 

in the case of electrodynamics we can use it to get the momentum in the field. 

We will mention two further examples of momentum in the electromagnetic 

field. We pointed out in Section 26-2 the failure of the law of action and reaction 

when two charged particles were moving on orthogonal trajectories. The forces 

on the two particles don’t balance out, so the action and reaction are not equal, 

therefore the net momentum of the matter must be changing. It is not conserved 

But the momentum m the field is also changing in such a situation. If you work 

out the amount of momentum given by the Poynting vector, it is not constant. 

However, the change of the particle momenta is just made up by the field momen¬ 

tum, so the total momentum of particles plus field is conserved. 

Finally, another example is the situation with the magnet and the charge, 

shown in Fig. 27-6. We were unhappy to find that energy was flowing around in 

circles, but now, since we know that energy flow and momentum are proportional, 

we know also that there is momentum circulating in the space. But a circulating 

momentum means that there is angular momentum. So there is angular momentum 

in the field. Do you remember the paradox we described in Section 17-4 about a 

solenoid and some charges mounted on a disc? It seemed that when the current 

turned off, the whole disc should start to turn The puzzle was: Where did the 

angular momentum come from ? The answer is that if you have a magnetic field and 

some charges, there will be some angular momentum in the field. It must have 

been put there when the field was built up. When the field is turned off, the angular 

momentum is given back. So the disc in the paradox would start rotating. 

This mystic circulating flow of energy, which at first seemed so ridiculous, is ab¬ 

solutely necessary. There is really a momentum flow. It is needed to maintain the 

conservation of angular momentum in the whole world. 

Fig. 27-8. The energy U must carry 

the momentum L/ c if the angular mo¬ 

mentum about P is to be conserved. 
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20 

Electromagnetic Mass 

28-1 The field energy of a point charge 

In bringing together relativity and Maxwell’s equations, we have finished our 

main work on the theory of electromagnetism. There are, of course, some details 

we have skipped over and one large area that we will be concerned with m the future 

—the interaction of electromagnetic fields with matter. But we want to stop for a 

moment to show you that this tremendous edifice, which is such a beautiful 

success in explaining so many phenomena, ultimately falls on its face. When 

you follow any of our physics too far, you find that it always gets into some kind 

of trouble. Now we want to discuss a serious trouble—the failure of the classical 

electromagnetic theory. You can appreciate that there is a failure of all classical 

physics because of the quantum-mechanical effects. Classical mechanics is a mathe¬ 

matically consistent theory; it just doesn’t agree with experience. It is interesting, 

though, that the classical theory of electromagnetism is an unsatisfactory theory 

all by itself. There are difficulties associated with the ideas of Maxwell’s theory 

which are not solved by and not directly associated with quantum mechanics. 

You may say, “Perhaps there’s no use worrying about these difficulties. Since the 

quantum mechanics is going to change the laws of electrodynamics, we should 

wait to see what difficulties there are after the modification.” However, when 

electromagnetism is joined to quantum mechanics, the difficulties remain. So it 

will not be a waste of our time now to look at what these difficulties are. Also, 

they are of great historical importance. Furthermore, you may get some feeling 

of accomplishment from being able to go far enough with the theory to see every¬ 

thing—including all of its troubles. 

The difficulty we speak of is associated with the concepts of electromagnetic 

momentum and energy, when applied to the electron or any charged particle. 

The concepts of simple charged particles and the electromagnetic field are in some 

way inconsistent. To describe the difficulty, we begin by doing some exercises 

with our energy and momentum concepts. 

First, we compute the energy of a charged particle. Suppose we take a simple 

model of an electron in which all of its charge q is uniformly distributed on the 

surface of a sphere of radius a, which we may take to be zero for the special case of 

a point charge. Now let’s calculate the energy in the electromagnetic field. If 

the charge is standing still, there is no magnetic field, and the energy per unit 

volume is proportional to the square of the electric field. The magnitude of the 

electric field is q/Atre^r2, and the energy density is 

u = 4? E2 = 
327T260 rA 

To get the total energy, we must integrate this density over all space. Using the 

volume element 4?rr2 dr, the total energy, which we will call U0i,.c, is 

f^elec 
87T€or2 

dr. 
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This is readily integrated. The lower limit is n, and the upper limit is oo, so 

Uelcc 
1 g2 1 
2 47re0 a 
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(28.2) 

If we use the electronic charge qe for q and the symbol e2 for q2/47t€0, then 

t^elec 
1 £ 
2 a 

It is all fine until we set a equal to zero for a point charge—there’s the great 

difficulty. Because the energy of the field varies inversely as the fourth power of 

the distance from the center, its volume integral is infinite. There is an infinite 

amount of energy in the field surrounding a point charge. 

What’s wrong with an infinite energy? If the energy can’t get out, but must 

stay there forever, is there any real difficulty with an infinite energy? Of course, a 

quantity that comes out infinite may be annoying, but what really matters is only 

whether there are any observable physical effects. To answer that question, we 

must turn to something else besides the energy. Suppose we ask how the energy 

changes when we move the charge. Then, if the changes are infinite, we will be 

m trouble. 

Fig. 28-1. The fields £ and 8 and the 

momentum density g for a positive elec¬ 

tron. For a negative electron, £ and 6 

are reversed but g is not. 

f*'dr 

28-2 The field momentum of a moving charge 

Suppose an electron is moving at a uniform velocity through space, assuming 

for a moment that the velocity is low compared with the speed of light. Associated 

with this moving electron there is a momentum—even if the electron had no mass 

before it was charged—because of the momentum in the electromagnetic field. 

We can show that the field momentum is in the direction of the velocity v of the 

charge and is, for small velocities, proportional to v. For a point P at the distance 

r from the center of the charge and at the angle 0 with respect to the line of motion 

(see Fig. 28-1) the electric field is radial and, as we have seen, the magnetic field 

is v X E/c2. The momentum density, Eq. (27.21), is 

g = €0E X B. 

It is directed obliquely toward the line of motion, as shown in the figure, and has 

the magnitude 

g = f £2 sine. 

The fields are symmetric about the line of motion, so when we integrate over 

space, the transverse components will sum to zero, giving a resultant momentum 

parallel to v. The component of g m this direction is g sin 0, which we must inte¬ 

grate over all space. We take as our volume element a ring with its plane per¬ 

pendicular to v, as shown in Fig. 28-2. Its volume is lirr2 sin 0 dB dr. The total 

momentum is then 

P — j E2 sin2 0 27rr2 sin 6 dB dr. 

Since E is independent of B (for v « c), we can immediately integrate over 0; the 

integral is 

sin3 B dB = — (1 — cos2 B) d(cos B) — —cos 0 + 
cos3 0 

Fig. 28-2. The volume element 

27rr2 sin 6 dB dr used for calculating the 

field momentum. 

The limits of B are 0 and w, so the 0-integral gives merely a factor of 4/3, and 

'-T 

The integral (for v « c) is the one we have just evaluated to find the energy; it is 

q2/\6ir2ela, and 

_ 2 q2 v 

P 3 47re0 ac2 ’ 
or 

P = 3 ac2 
v. (28.3) 
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The momentum in the field—the electromagnetic momentum—is proportional to 

v. It is just what we should have for a particle with the mass equal to the coefficient 

of v. We can, therefore, call this coefficient the electromagnetic mass, mvand 

write it as 

2 e* 

~ 3 ac* 
(28.4) 

28-3 Electromagnetic mass 

Where does the mass come from? In our laws of mechanics we have supposed 

that every object “carries” a thing we call the mass—which also means that it 

“carries” a momentum proportional to its velocity. Now we discover that it is 

understandable that a charged particle carries a momentum proportional to its 

velocity. It might, in fact, be that the mass is just the effect of electrodynamics. 

The origin of mass has until now been unexplained. We have at last in the theory 

of electrodynamics a grand opportunity to understand something that we never 

understood before. It comes out of the blue—or rather, from Maxwell and 

Poynting—that any charged particle will have a momentum proportional to its 

velocity just from electromagnetic influences. 

Let’s be conservative and say, for a moment, that there are two kinds of mass— 

that the total momentum of an object could be the sum of a mechanical momentum 

and the electromagnetic momentum. The mechanical momentum is the “mechan¬ 

ical” mass, mm(Tii, times v. In experiments where we measure the mass of a particle 

by seeing how much momentum it has, or how it swings around in an orbit, we 

are measuring the total mass. We say generally that the momentum is the total 

mass (mnu,cfl + times the velocity. So the observed mass can consist of two 

pieces (or possibly more if we include other fields): a mechanical piece plus an 

electromagnetic piece. We know that there is definitely an electromagnetic piece, 

and we have a formula for it. And there is the thrilling possibility that the me¬ 

chanical piece is not there at all—that the mass is all electromagnetic. 

Let’s see what size the electron must have if there is to be no mechanical mass. 

We can find out by setting the electromagnetic mass of Eq. (28.4) equal to the 

observed mass me of an electron. We find 

2 e2 3 
a - T-9 

3 mec2 
The quantity 

is called the “classical electron radius”; it has the numerical value 2.82 X 10~13 

cm, about one one-hundred-thousandth of the diameter of an atom. 

Why is r0 called the electron radius, rather than our al Because we could 

equally well do the same calculation with other assumed distributions of charges— 

the charge might be spread uniformly through the volume of a sphere or it might 

be smeared out like a fuzzy ball. For any particular assumption the factor 2/3 

would change to some other fraction. For instance, for a charge uniformly dis¬ 

tributed throughout the volume of a sphere, the 2/3 gets replaced by 4/5. Rather 

than to argue over which distribution is correct, it was decided to define r0 as the 

“nominal” radius. Then different theories could supply their pet coefficients. 

Let’s pursue our electromagnetic theory of mass. Our calculation was for 

v « c; what happens if we go to high velocities? Early attempts led to a certain 

amount of confusion, but Lorentz realized that the charged sphere would contract 

into a ellipsoid at high velocities and that the fields would change in accordance 

with the formulas (26 6) and (26.7) we derived for the relativistic case in Chapter 26. 

If you carry through the integrals for p in that case, you find that for an arbitrary 

velocity v, the momentum is altered by the factor I/n/1 — v2/c2: 

(28.5) 

(28.6) 

P = 
2 e2 _v 

3 ac‘2 v/J _ V2/^ 
(28.7) 
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In other words, the electromagnetic mass rises with velocity inversely as 

\/T — v2/c2—a discovery that was made before the theory of relativity. 

Early experiments were proposed to measure the changes with velocity in the 

observed mass of a particle in order to determine how much of the mass was 

mechanical and how much was electrical. It was believed at the time that the elec¬ 

trical part would vary with velocity, whereas the mechanical part would not. But 

while the experiments were being done, the theorists were also at work. Soon the 

theory of relativity was developed, which proposed that no matter what the origin 

of the mass, it all should vary as m^/sj 1 — v2/c2. Equation (28.7) was the 

beginning of the theory that mass depended on velocity. 

Let’s now go back to our calculation of the energy in the field, which led to 

Eq. (28.2). According to the theory of relativity, the energy U will have the mass 

U/c2; Eq. (28.2) then says that the field of the electron should have the mass 

= = (28-8) 

which is not the same as the electromagnetic mass, mv]vv, of Eq. (28.4). In fact, if 

we just combine Eqs. (28.2) and (28.4), we would write 

jj _ 3 2 
t^elec • 

This formula was discovered before relativity, and when Einstein and others began 

to realize that it must always be that U — me2, there was great confusion. 

28-4 The force of an electron on itself 

The discrepancy between the two formulas for the electromagnetic mass is 

especially annoying, because we have carefully proved that the theory of electro¬ 

dynamics is consistent with the principle of relativity. Yet the theory of relativity 

implies without question that the momentum must be the same as the energy 

times v/c2. So we are in some kind of trouble; we must have made a mistake. 

We did not make an algebraic mistake in our calculations, but we have left some¬ 

thing out. 

In deriving our equations for energy and momentum, we assumed the con¬ 

servation laws. We assumed that all forces were taken into account and that any 

work done and any momentum carried by other “nonelectrical” machinery was 

included. Now if we have a sphere of charge, the electrical forces are all repulsive 

and an electron would tend to fly apart. Because the system has unbalanced forces, 

we can get all kinds of errors in the laws relating energy and momentum. To get a 

consistent picture, we must imagine that something holds the electron together. 

The charges must be held to the sphere by some kind of rubber bands—something 

that keeps the charges from flying off. It was first pointed out by Poincare that the 

rubber bands—or whatever it is that holds the electron together—must be included 

in the energy and momentum calculations. For this reason the extra nonelectrical 

forces are also known by the more elegant name “the Poincare stresses.” If the 

extra forces are included in the calculations, the masses obtained in two ways are 

changed (in a way that depends on the detailed assumptions). And the results are 

consistent with relativity; i.e., the mass that comes out from the momentum cal¬ 

culation is the same as the one that comes from the energy calculation. However, 

both of them contain two contributions: an electromagnetic mass and contribution 

from the Poincare stresses. Only when the two are added together do we get a 

consistent theory. 

It is therefore impossible to get all the mass to be electromagnetic in the way 

we hoped. It is not a legal theory if we have nothing but electrodynamics. Some¬ 

thing else has to be added. Whatever you call them—“rubber bands,” or “Poincare 

stresses,” or something else—there have to be other forces in nature to make a 

consistent theory of this kind. 
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Clearly, as soon as we have to put forces on the inside of the electron, the 

beauty of the whole idea begins to disappear. Things get very complicated. You 

would want to ask: How strong are the stresses? How does the electron shake? 

Does it oscillate? What are all its internal properties? And so on. It might be 

possible that an electron does have some complicated internal properties. If we 

made a theory of the electron along these lines, it would predict odd properties, 

like modes of oscillation, which haven't apparently been observed. We say “ap¬ 

parently” because we observe a lot of things in nature that still do not make sense. 

We may someday find out that one of the things we don't understand today (for 

example, the muon) can, in fact, be explained as an oscillation of the Poincare 

stresses. It doesn’t seem likely, but no one can say for sure. There are so many 

things about fundamental particles that we still don’t understand. Anyway, the 

complex structure implied by this theory is undesirable, and the attempt to explain 

all mass in terms of electromagnetism—at least in the way we have described—has 

led to a blind alley. 

We would like to think a little more about why we say we have a mass when 

the momentum in the field is proportional to the velocity. Easy! The mass is the 

coefficient between momentum and velocity. But we can look at the mass in another 

way: a particle has mass if you have to exert a force in order to accelerate it. So 

it may help our understanding if we look a little more closely at where the forces 

come from. How do we know that there has to be a force? Because we have 

proved the law of the conservation of momentum for the fields. If we have a 

charged particle and push on it for awhile, there will be some momentum in the 

electromagnetic field. Momentum must have been poured into the field somehow. 

Therefore there must have been a force pushing on the electron in order to get it 

going—a force in addition to that required by its mechanical inertia, a force due 

to its electromagnetic interaction. And there must be a corresponding force back 

on the “pusher.” But where does that force come from? 

(a) (b) (c) 

Fig. 28—3. The self-force on an accelerating electron is not zero because of the 

retardation. (By dF we mean the force on a surface element c/a; by d2F we mean the 

force on the surface element daa from the charge on the surface element dap.) 

The picture is something like this. We can think of the electron as a charged 

sphere. When it is at rest, each piece of charge repels electrically each other piece, 

but the forces all balance m pairs, so that there is no net force. [See Fig. 28-3(a).] 

However, when the electron is being accelerated, the forces will no longer be in 

balance because of the fact that the electromagnetic influences take time 10 go 

from one piece to another. For instance, the force on the piece a in Fig. 28-3(b) 

from a piece (3 on the opposite side depends on the position of j3 at an earlier time, 

as shown. Both the magnitude and direction of the force depend on the motion 

of the charge. If the charge is accelerating, the forces on various parts of the 

electron might be as shown in Fig. 28-3(c). When all these forces are added up, 

they don’t cancel out. They would cancel for a uniform velocity, even though 

it looks at first glance as though the retardation would give an unbalanced force 

even for a uniform velocity. But it turns out that there is no net force unless the 

electron is being accelerated. With acceleration, if we look at the forces between 
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the various parts of the electron, action and reaction are not exactly equal, and 

the electron exerts a force on itself that tries to hold back the acceleration. It holds 

itself back by its own bootstraps. 

It is possible, but difficult, to calculate this self-reaction force; however, we 

don’t want to go into such an elaborate calculation here. We will tell you what 

the result is for the special case of relatively uncomplicated motion in one dimension, 

say x. Then, the self-force can be written in a series. The first term in the series 

depends on the acceleration x, the next term is proportional to x, and so on.* 

The result is 

2 -I 2 2 
~ e l e . , e a. ,~0 
F = a —,x-^-^x + T—- x + * • ’ (28.9) 

ac2 3 ci c4 

where a and y are numerical coefficients of the order of 1. The coefficient a of 

the x term depends on what charge distribution is assumed; if the charge is dis¬ 

tributed uniformly on a sphere, then a = 2/3. So there is a term, proportional 

to the acceleration, which varies inversely as the radius a of the electron and agrees 

exactly with the value we got in Eq. (28.4) for meiec. If the charge distribution is 

chosen to be different, so that a is changed, the fraction 2/3 in Eq. (28.4) would 

be changed in the same way The term in x is independent of the assumed radius 

a, and also of the assumed distribution of the charge; its coefficient is always 2/3. 

The next term is proportional to the radius a, and its coefficient y depends on the 

charge distribution. You will notice that if we let the electron radius a go to zero, 

the last term (and all higher terms) will go to zero; the second term remains con¬ 

stant, but the first term—the electromagnetic mass—goes to infinity. And we can 

see that the infinity arises because of the force of one part of the electron on another 

—because we have allowed what is perhaps a silly thing, the possibility of the 

“point” electron acting on itself. 

28-5 Attempts to modify the Maxwell theory 

We would like now to discuss how it might be possible to modify Maxwell’s 

theory of electrodynamics so that the idea of an electron as a simple point charge 

could be maintained. Many attempts have been made, and some of the theories 

were even able to arrange things so that all the electron mass was electromagnetic. 

But all of these theories have died. It is still interesting to discuss some of the 

possibilities that have been suggested—to see the struggles of the human mind. 

We started out our theory of electricity by talking about the interaction of 

one charge with another. Then we made up a theory of these interacting charges 

and ended up with a field theory. We believe it so much that we allow it to tell 

us about the force of one part of an electron on another. Perhaps the entire diffi¬ 

culty is that electrons do not act on themselves; perhaps we are making too great 

an extrapolation from the interaction of separate electrons to the idea that an 

electron interacts with itself. Therefore some theories have been proposed in which 

the possibility that an electron acts on itself is ruled out. Then there is no longer 

the infinity due to the self-action. Also, there is no longer any electromagnetic 

mass associated with the particle; all the mass is back to being mechanical, but 

there are new difficulties in the theory. 

We must say immediately that such theories require a modification of the 

idea of the electromagnetic field. You remember we said at the start that the force 

on a particle at any point was determined by just two quantities—E and B. If 

we abandon the “self-force” this can no longer be true, because if there is an elec¬ 

tron in a certain place, the force isn’t given by the total E and B, but by only those 

parts due to other charges. So we have to keep track always of how much of E 

and B is due to the charge on which you are calculating the force and how much 

is due to the other charges. This makes the theory much more elaborate, but it 

gets rid of the difficulty of the infinity. 

* We are using the notation: x = dx/dt, x = d2x/dt2i x = d3x/dt3, etc. 
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So we can, if we want to, say that there is no such thing as the electron acting 

upon itself, and throw away the whole set of forces in Eq. (28.9). However, we 

have then thrown away the baby with the bath! Because the second term in Eq. 

(28.9), the term in x, is needed. That force does something very definite. If you 

throw it away, you’re in trouble again. When we accelerate a charge, it radiates 

electromagnetic waves, so it loses energy. Therefore, to accelerate a charge, we 

must require more force than is required to accelerate a neutral object of the same 

mass; otherwise energy wouldn’t be conserved. The rate at which we do work on 

an accelerating charge must be equal to the rate of loss of energy per second by 

radiation. We have talked about this effect before—it is called the radiation re¬ 

sistance. We still have to answer the question: Where does the extra force, against 

which we must do this work, come from? When a big antenna is radiating, the 

forces come from the influence of one part of the antenna current on another. 

For a single accelerating electron radiating into otherwise empty space, there 

would seem to be only one place the force could come from—the action of one 

part of the electron on another part. 

We found back in Chapter 32 of VoL I that an oscillating charge radiates 

energy at the rate 

dW = 2 e2(Jc)2 

dt 3 c3 
(28.10) 

Let’s see what we get for the rate of doing work on an electron against the boot¬ 

strap force of Eq. (28.9). The rate of work is the force times the velocity, or F x: 

dW e2 2 e2 
= a —^ x x — -z xx + • - - (28.11) 

dt ac2 3 c3 

The first term is proportional to dx2/dt, and therefore just corresponds to the rate 

of change of the kinetic energy \ mv2 associated with the electromagnetic mass. 

The second term should correspond to the radiated power in Eq. (28.10). But it 

is different. The discrepancy comes from the fact that the term in Eq. (28.11) is 

generally true, whereas Eq. (28.10) is right only for an oscillating charge. We can 

show that the two are equivalent if the motion of the charge is periodic. To do 

that, we rewrite the second term of Eq. (28.11) as 

2e^d_ 
3 c3 dt 

(xx) + 2 £_ 
3 c3 (xY 

which is just an algebraic transformation. If the motion of the electron is periodic, 

the quantity xx returns periodically to the same value, so that if we take the 

average of its time derivative, we get zero. The second term, however, is always 

positive (it's a square), so its average is also positive This term gives the net work 

done and is just equal to Eq. (28.10). 

The term in x of the bootstrap force is required in order to have energy 

conservation in radiating systems, and we can’t throw it away. It was, in fact, one 

of the triumphs of Lorentz to show that there is such a force and that it comes from 

the action of the electron on itself. We must believe in the idea of the action of the 

electron on itself, and we need the term in x. The problem is how we can get that 

term without getting the first term in Eq. (28.9), which gives all the trouble. We 

don’t know how. You see that the classical electron theory has pushed itself 

into a tight corner. 

There have been several other attempts to modify the laws in order to straighten 

the thing out. One way, proposed by Born and Infeld, is to change the Maxwell 

equations in a complicated way so that they are no longer linear. Then the electro¬ 

magnetic energy and momentum can be made to come out finite. But the laws 

they suggest predict phenomena which have never been observed. Their theory 

also suffers from another difficulty we will come to later, which is common to all 

the attempts to avoid the troubles we have described. 

The following peculiar possibility was suggested by Dirac. He said: Let’s 

admit that an electron acts on itself through the second term in Eq. (28.9) but not 

through the first. He then had an ingenious idea for getting rid of one but not the 
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other. Look, he said, we made a special assumption when we took only the 

retarded wave solutions of Maxwell’s equations; if we were to take the advanced 

waves instead, we would get something different. The formula for the self-force 

would be 

2 ? 2 2 

F = a ~ x + ~~ X + 7 ~ X. (28.12) 
ac2 3 cA c4 

This equation is just like Eq. (28.9) except for the sign of the second term—and 

some higher terms—of the series [Changing from retarded to advanced waves 

is just changing the sign of the delay which, it is not hard to see, is equivalent to 

changing the sign of / everywhere. The only effect on Eq. (28.9) is to change the 

sign of all the odd time derivatives.] So, Dirac said, let’s make the new rule that 

an electron acts on itself by one-half the difference of the retarded and advanced 

fields which it produces. The difference of Eqs. (28.9) and (28.12), divided by two, 

is then 

F = 
2 e2 
j — x + higher terms. 

In all the higher terms, the radius a appears to some positive power in the numera¬ 

tor. Therefore, when we go to the limit of a point charge, we get only the one 

term—just what is needed. In this way, Dirac got the radiation resistance force 

and none of the inertial forces. There is no electromagnetic mass, and the classical 

theory is saved—but at the expense of an arbitrary assumption about the self-force. 

The arbitrariness of the extra assumption of Dirac was removed, to some ex¬ 

tent at least, by Wheeler and Feynman, who proposed a still stranger theory 

They suggest that point charges interact only with other charges, but that the inter¬ 

action is half through the advanced and half through the retarded waves. It turns 

out, most surprisingly, that in most situations you won’t see any effects of the 

advanced waves, but they do have the effect of producing just the radiation re¬ 

action force. The radiation resistance is not due to the electron acting on itself, 

but from the following peculiar effect. When an electron is accelerated at the 

time /, it shakes all the other charges in the world at a later time t’ = t + r/c 

(where r is the distance to the other charge), because of the retarded waves. But 

then these other charges react back on the original electron through their advanced 

waves, which will arrive at the time t", equal to f minus r/c, which is, of course, 

just t. (They also react back with their retarded waves too, but that just corre¬ 

sponds to the normal “reflected” waves.) The combination of the advanced and 

retarded waves means that at the instant it is accelerated an oscillating charge 

feels a force from all the charges that are “going to” absorb its radiated waves. 

You see what tight knots people have gotten into in trying to get a theory of the 

electron! 

We’ll describe now still another kind of theory, to show the kind of things 

that people think of when they are stuck. This is another modification of the laws 

of electrodynamics, proposed by Bopp. You realize that once you decide to change 

the equations of electromagnetism you can start anywhere you want. You can 

change the force law for an electron, or you can change the Maxwell equations 

(as we saw in the examples we have described), or you can make a change some¬ 

where else. One possibility is to change the formulas that give the potentials in 

terms of the charges and currents. One of our formulas has been that the potentials 

at some point are given by the current density (or charge) at each other point at an 

earlier time Using our four-vector notation for the potentials, we write 

a-(i-0 - fm'rur^ <*i3) 

Bopp’s beautifully simple idea is that: Maybe the trouble is in the l/r factor m 

the integral. Suppose we were to start out by assuming only that the potential at 

one point depends on the charge density at any other point as some function of 

the distance between the points, say as f(r12). The total potential at point (1) 

28-8 



will then be given by the integral ofyM times this function over all space: 

4.(1) = [U2)f(r12)dV2. 

That’s all. No differential equation, nothing else. Well, one more thing. We also 

ask that the result should be relativistically invariant. So by “distance” we should 

take the invariant “distance” between two points m space-time. This distance 

squared (within a sign which doesn’t matter) is 

& = c2(<i - H)2 - r\2 

= c2(/i - t2)2 - (x1 - x2)2 - (ji - y2)2 - (zx - z2)2. (28.14) 

So, for a relativistically invariant theory, we should take some function of the 

magnitude of $12, or what is the same thing, some function of s\2. So Bopp’s 

theory is that 

40. *i) = /M2, h)F(sh) dV2 dt2. (28.15) 

(The integral must, of course, be over the four-dimensional volume dt2dx2 dy2 dz2) 

All that remains is to choose a suitable function for F. We assume only one 

thing about F— that it is very small except when its argument is near zero—so that a 

graph of F would be a curve like the one in Fig. 28-4. It is a narrow spike with a 

finite area centered at s2 ~ 0, and with a width which we can say is roughly a2. 

We can say, crudely, that when we calculate the potential at point (1), only those 

points (2) produce any appreciable effect if sX2 ~ c2{t2 — h)2 ~ A2 is within 

±n2 of zero. We can indicate this by saying that Fis important only for 

*12 = c2(t\ - h)2 — r'\2 » ±a'2. (28.16) 

You can make it more mathematical if you want to, but that’s the idea. 

Now suppose that a is very small in comparison with the size of ordinary 

objects like motors, generators, and the like so that for normal problems rX2 » a. 

Then Eq. (28.16) says that charges contribute to the integral of Eq. (28.15) only 

when tx — 12 is in the small range 

C{ti - «2> » Vr2l2 ± a2 « ri2Jl ± • 
^ ri2 

Since a2/r\2 « 1, the square root can be approximated by 1 =*= a2/2r\2, so 

2 \ 2 
a \ = ri2 ± a . 

2r\A c 2r12c ' 

Fig. 28-4. The function F(s2) used in 

the nonlocal theory of Bopp. 

What is the significance? This result says that the only times t2 that are im¬ 

portant in the integral of are those which differ from the time tXi at which we 

want the potential, by the delay r12/c—with a negligible correction so long as 

ri2 a. In other words, this theory of Bopp approaches the Maxwell theory—so 

long as we are far away from any particular charge—in the sense that it gives the 

retarded wave effects. 

We can, in fact, see approximately what the integral of Eq. (28.15) is going 

to give. If we integrate first over t2 from —00 to +00—keeping r 12 fixed—then 

$12 is also going to go from — oc to +00. The integral will all come from t2 s in 

a small interval of width At2 = 2 X a2/2r12c, centered at tx — rX2/c. Say 

that the function F(s2) has the value K at s2 = 0; then the integral over t2 gives 

approximately KjllAt2, or 

Ka2 

c rl2 

We should, of course, take the value of j^ at t2 = tx — rX2/c, so that Eq. (28.15) 

becomes 

4(1. /1) = — f h{2'h- - -lg/c) dv2. 
C J r 12 
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If we pick K = q2c/4weoa2, we are right back to the retarded potential solution 
of Maxwell’s equations—including automatically the 1 fr dependence! And it 
all came out of the simple proposition that the potential at one point in space- 
time depends on the current density at all other points in space-time, but with 
a weighting factor that is some narrow function of the four-dimensional distance 
between the two points. This theory again predicts a finite electromagnetic mass 
for the electron, and the energy and mass have the right relation for the relativity 
theory They must, because the theory is relativistically invariant from the start, 
and everything seems to be all right 

There is, however, one fundamental objection to this theory and to all the 
other theories we have described. All particles we know obey the laws of quantum 
mechanics, so a quantum-mechanical modification of electrodynamics has to be 
made Light behaves like photons It isn’t 100 percent like the Maxwell theory. 
So the electrodynamic theory has to be changed. We have already mentioned that 
it might be a waste of time to work so hard to straighten out the classical theory, 
because it could turn out that in quantum electrodynamics the difficulties will 
disappear or may be resolved in some other fashion. But the difficulties do not 
disappear in quantum electrodynamics. That is one of the reasons that people 
have spent so much effort trying to straighten out the classical difficulties, hoping 
that if they could straighten out the classical difficulty and then make the quantum 
modifications, everything would be straightened out The Maxwell theory still 
has the difficulties after the quantum mechanics modifications are made. 

The quantum effects do make some changes—the formula for the mass is 
modified, and Planck’s constant h appears—but the answer still comes out infinite 
unless you cut off an integration somehow—just as we had to stop the classical 
integrals at r = a. And the answers depend on how you stop the integrals. We 
cannot, unfortunately, demonstrate for you here that the difficulties are really 
basically the same, because we have developed so little of the theory of quantum 
mechanics and even less of quantum electrodynamics. So you must just take our 
word that the quantized theory of Maxwell’s electrodynamics gives an infinite 
mass for a point electron. 

It turns out, however,that nobody has ever succeeded in making a self-consistent 
quantum theory out of any of the modified theories. Born and Infeld's ideas have 
never been satisfactorily made into a quantum theory The theories with the ad¬ 
vanced and retarded waves of Dirac, or of Wheeler and Feynman, have never 
been made into a satisfactory quantum theory The theoiy of Bopp has never been 
made into a satisfactory quantum theory. So today, there is no known solution 
to this problem. We do not know how to make a consistent theory—including 
the quantum mechanics—which does not produce an infinity for the self-energy of 
an electron, or any point charge. And at the same time, there is no satisfactory 
theory that describes a non-point charge. It’s an unsolved problem 

In case you are deciding to rush off to make a theory m which the action of an 
electron on itself is completely removed, so that electromagnetic mass is no longer 
meaningful, and then to make a quantum theory of it, you should be warned that 
you are certain to be in trouble. There is definite experimental evidence of the 
existence of electromagnetic inertia—there is evidence that some of the mass of 
charged particles is electromagnetic in origin 

It used to be said in the older books that since Nature will obviously not pre¬ 
sent us with two particles—one neutral and the other charged, but otherwise the 
same—we will never be able to tell how much of the mass is electromagnetic and 
how much is mechanical But it turns out that Nature has been kind enough to 
present us with just such objects, so that by comparing the observed mass of the 
charged one with the observed mass of the neutral one, we can tell whether there 
is any electromagnetic mass. For example, there are the neutrons and protons. 
They interact with tremendous forces—the nuclear forces—whose origin is un¬ 
known Ffowever, as we have already described, the nuclear forces have one re¬ 
markable property. So far as they are concerned, the neutron and proton are 
exactly the same The nuclear forces between neutron and neutron, neutron and 
proton, and proton and proton are all identical as far as we can tell Only the little 
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electromagnetic forces are different; electrically the proton and neutron are as 

different as night and day. This is just what we wanted There are two particles, 

identical from the point of view of the strong interactions, but different electrically. 

And they have a small difference in mass. The mass difference between the proton 

and the neutron—expressed as the difference in the rest-energy me2 in units of 

Mev—is about 1.3 Mev, which is about 2.6 times the electron mass. The classical 

theory would then predict a radius of about ^ to J the classical electron radius, 

or about cm. Of course, one should really use the quantum theory, but by 

some strange accident, all the constants—2ts and Ks, etc.—come out so that the 

quantum theory gives roughly the same radius as the classical theory. The only 

trouble is that the sign is wrong! The neutron is heavier than the proton. 

Table 28-1 

Particle Masses 

Particle 
Charge 

(electronic) 

Mass 
(Mev) 

Am* 

(Mev) 

n (neutron) 0 939.5 
p(proton) + 1 938.2 -1.3 

7r (7T-meson) 0 135.0 
±1 139.6 +4.6 

K (K-meson) 0 497.8 
±1 493.9 -3.9 

2 (sigma) 0 1191.5 

+1 1189.4 -2.1 
-1 1196.0 +4.5 

* Am — (mass of charged) — (mass of neutral). 

Nature has also given us several other pairs—or triplets—of particles which 

appear to be exactly the same except for their electrical charge. They interact with 

protons and neutrons, through the so-called “strong” interactions of the nuclear 

forces. In such interactions, the particles of a given kind—say the 7r-mesons— 

behave in every way like one object except for their electrical charge. In Table 

28-1 we give a list of such particles, together with their measured masses. The 

charged 7r-mesons—positive or negative—have a mass of 139.6 Mev, but the 

neutral 7r-meson is 4 6 Mev lighter. We believe that this mass difference is electro¬ 

magnetic; it would correspond to a particle radius of 3 to 4 X 10-14 cm. You will 

see from the table that the mass differences of the other particles are usually of the 

same general size. 

Now the size of these particles can be determined by other methods, for in¬ 

stance by the diameters they appear to have in high-energy collisions. So the 

electromagnetic mass seems to be in general agreement with electromagnetic 

theory, if we stop our integrals of the field energy at the same radius obtained by 

these other methods. That’s why we believe that the differences do represent 

electromagnetic mass. 

You are no doubt worried about the different signs of the mass differences in 

the table. It is easy to see why the charged ones should be heavier than the neutral 

ones. But what about those pairs like the proton and the neutron, where the mea¬ 

sured mass comes out the other way? Well, it turns out that these particles are 

complicated, and the computation of the electromagnetic mass must be more 

elaborate for them. For instance, although the neutron has no net charge, it does 

have a charge distribution inside it—it is only the net charge that is zero In fact, 

we believe that the neutron looks—at least sometimes—like a proton with a nega¬ 

tive 7r-meson in a “cloud" around it, as shown in Fig. 28-5. Although the neutron 

is “neutral,” because its total charge is zero, there are still electromagnetic energies 

-Negative 
tt - meson 

"PROTON 

Fig. 28-5. A neutron may exist, at 
times, as a proton surrounded by a 
negative 7T-nieson. 
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(for example, it has a magnetic moment), so it’s not easy to tell the sign of the 

electromagnetic mass difference without a detailed theory of the internal structure. 

We only wish to emphasize here the following points* (1) the electromagnetic 

theory predicts the existence of an electromagnetic mass, but it also falls on its 

face in doing so, because it does not produce a consistent theory—and the same is 

true with the quantum modifications; (2) there is experimental evidence for the 

existence of electromagnetic mass; and (3) all these masses are roughly the same 

as the mass of an electron. So we come back again to the original idea of Lorentz— 

maybe all the mass of an electron is purely electromagnetic, maybe the whole 

0 511 Mev is due to electrodynamics Is it or isn’t it? We haven’t got a theory, so 

we cannot say. 

We must mention one more piece of information, which is the most annoying 

There is another particle in the world called a muon—or fx-meson—which, so far 

as we can tell, differs in no way whatsoever from an electron except for its mass. It 

acts m every way like an electron: it interacts with neutrinos and with the electro¬ 

magnetic field, and it has no nuclear forces. It does nothing different from what 

an electron does—at least, nothing which cannot be understood as merely a con¬ 

sequence of its higher mass (206 77 times the electron mass). Theief'ore, whenever 

someone finally gets the explanation of the mass of an electron, he will then have 

the puzzle of where a muon gets its mass. Why? Because whatever the electron 

does, the muon does the same—so the mass ought to come out the same There 

are those who believe faithfully in the idea that the muon and the electron are the 

same particle and that, in the final theory of the mass, the formula for the mass 

will be a quadratic equation with two roots—one for each particle There are also 

those who propose it will be a transcendental equation with an infinite number of 

roots, and who are engaged in guessing what the masses of the other particles in 

the series must be, and why these particles haven't been discovered yet 

28-6 The nuclear force field 

We would like to make some further remarks about the part of the mass of 

nuclear particles that is not electromagnetic Where does this other large fraction 

come from'7 There are other forces besides electrodynamics—like nuclear forces— 

that have their own field theories, although no one knows whether the current 

theories are right These theories also predict a field energy which gives the 

nuclear particles a mass term analogous to electromagnetic mass; we could call 

it the “7r-mesic-field-mass." It is presumably very large, because the forces are 

great, and it is the possible origin of the mass of the heavy particles. But the 

meson field theories are still in a most rudimentary state Even with the well- 

developed theory of electromagnetism, we found it impossible to get beyond first 

base in explaining the electron mass. With the theory of the mesons, we strike out 

We may take a moment to outline the theory of the mesons, because of its 

interesting connection with electrodynamics. In electrodynamics, the field can be 

described in terms of a four-potential that satisfies the equation 

□ 2Am = sources. 

Now we have seen that pieces of the field can be radiated away so that they exist 

separated from the sources. These are the photons of light, and they are described 

by a differential equation without sources: 

D% = 0. 

People have argued that the field of nuclear forces ought also to have its own 

“photons”—they would presumably be the 7r-mesons—and that they should be 

described by an analogous differential equation. (Because of the weakness of ihe 

human brain, we can’t think of something really new, so we argue by analogy 

with what we know.) So the meson equation might be 

□ 20 = 0, 
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where d> could be a different four-vector or perhaps a scalar. It turns out that the 

pion has no polarization, so <j> should be a scalar. With the simple equation 

02<j> = 0, the meson field would vary with distance from a source as \jr2, just 

as the electric field does. But we know that nuclear forces have much shorter dis¬ 

tances of action, so the simple equation won’t work. There is one way we can 

change things without disrupting the relativistic invariance: we can add or subtract 

from the D’AIembertian a constant, times <j>. So Yukawa suggested that the free 

quanta of the nuclear force field might obey the equation 

□ 20 — fi24> — 0, (28 17) 

where fx2 is a constant—that is, an invariant scalar. (Since □ 2 is a scalar differ¬ 

ential operator in four dimensions, its invariance is unchanged if we add another 

scalar to it.) 

Let’s see what Eq. (28.17) gives for the nuclear force when things are not 

changing with time. We want a spherically symmetric solution of 

V20 — jUL2(f> ~ 0 

around some point source at, say, the origin. If <f> depends only on r, we know that 

So we have the equation 

or 

v20 = 7 la 

~r ^2 - H2<f> = 0 

^5 (r<j>) = /J.2(r<t>). 

Thinking of (r4>) as our dependent variable, this is an equation we have seen many 

times. It’s solution is 

r<f> = Ke±tlT. 

Clearly, (f> cannot become infinite for large r, so the + sign in the exponent is 

ruled out. The solution is 
—\ir 

(j> = K^r- (28.18) 

This function is called the Yukawa potential. For an attractive force, /Cis a negative 

number whose magnitude must be adjusted to fit the experimentally observed 

strength of the forces. 

The Yukawa potential of the nuclear forces dies off more rapidly than 1 jr 

by the exponential factor. The potential—and therefore the force—falls to'zero 

much more rapidly than 1 jr for distances beyond 1/ju, as shown in Fig. 28-6 

The “range” of nuclear forces is much less than the “range” of electrostatic forces 

It is found experimentally that the nuclear forces do not extend beyond about 

10“1A cm, so fj, ~ 1015 m“1 

Finally, let’s look at the free-wave solution of Eq (28 17) If we substitute 

Fig. 28-6. The 

e~fir/rt compared 

potential 1/r. 

Yukawa potential 

with the Coulomb 

<f> = 4> o? 
,l(b) t—kz) 

into Eq. (28 17), we get that 

— k‘ = 0. 

Relating frequency to energy and wave number to momentum, as we did at the 

end of Chapter 36 of Vol. I, we get that 

p2hd 

which says that the Yukawa “photon” has a mass equal to ph/c. If we use for p 
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the estimate 1015 m-1, which gives the observed range of the nuclear forces, the 

mass comes out to 3 X 10~25 gm, or 170 Mev, which is roughly the observed mass 

of the 7r-meson. So, by an analogy with electrodynamics, we would say that the 

7r-meson is the “photon” of the nuclear force field But now we have pushed the 

ideas of electrodynamics into regions where they may not really be valid—we have 

gone beyond electrodynamics to the problem of the nuclear forces. 
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29 

The Motion of Charges in Eleetrie 

and Magnetic Fields 

29-1 Motion in a uniform electric or magnetic field 

We want now to describe—mainly in a qualitative way—the motions of 

charges in various circumstances. Most of the interesting phenomena m which 

charges are moving in fields occur in very complicated situations, with many, 

many charges all interacting with each other For instance, when an electromagne¬ 

tic wave goes through a block of material or a plasma, billions and billions of 

charges are interacting with the wave and with each other. We will come to such 

problems later, but now we just want to discuss the much simpler problem of the 

motions of a single charge in a given field. We can then disregard all other charges 

—except, of course, those charges and currents which exist somewhere to produce 

the fields we will assume. 

We should probably ask first about the motion of a particle m a uniform elec¬ 

tric field At low velocities, the motion is not particularly interesting—it is just a 

uniform acceleration in the direction of the field. However, if the particle picks 

up enough energy to become relativistic, then the motion gets more complicated. 

But we will leave the solution for that case for you to play with 

Next, we consider the motion in a uniform magnetic field with zero electric 

field. We have already solved this problem—one solution is that the particle goes 

in a circle The magnetic force qv X B is always at right angles to the motion, 

so dp/dt is perpendicular to p and has the magnitude vp/R, where R is the radius 

of the circle. 

f — q»B = ■ 

The radius of the circular orbit is then 

(29.1) 

That is only one possibility. If the particle has a component of its motion 

along the field direction, that motion is constant, since there can be no component 

of the magnetic force in the direction of the field. The general motion of a particle 

in a uniform magnetic field is a constant velocity parallel to B and a circular motion 

at right angles to B—the trajectory is a cylindrical helix (Fig. 29-1). The radius 

of the helix is given by Eq (29 1) if we replace p by p±, the component of mo¬ 

mentum at right angles to the field- 

29-2 Momentum analysis 

A uniform magnetic field is often used in making a ‘‘momentum analyzer," 

or “momentum spectrometer,” for high-energy charged particles. Suppose that 

charged particles are shot into a uniform magnetic field at the point A in Fig. 

29-2(a), the magnetic field being perpendicular to the plane of the drawing. Each 

particle will go into an orbit which is a circle whose radius is proportional to its 

momentum. If all the particles enter perpendicular to the edge of the field, they 

will leave the field at a distance x (from A) which is proportional to their momentum 

p. A counter placed at some point such as C will detect only those particles whose 

momentum is in an interval Ap near the momentum p = qBx/2 

It is, of course, not necessary that the particles go through 180° before they 

are counted, but the so-called “180° spectrometer” has a special property It is not 

29-1 Motion in a uniform electric 

or magnetic field 

29-2 Momentum analysis 

29-3 An electrostatic lens 

29-4 A magnetic lens 

29-5 The electron microscope 

29-6 Accelerator guide fields 

29-7 Alternating-gradient focusing 

29-8 Motion in crossed electric 

and magnetic fields 

Review Chapter 30, Vol I, Diffraction 

B 

(0) (b) 

Fig. 29-1. Motion of □ particle in a 

uniform magnetic field. 
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(b) 

Fig. 29-2. A uniform-field, momen¬ 

tum spectrometer with 180° focusing: 

(a) different momenta; (b) different 

angles. (The magnetic field is directed 

perpendicular to the plane of the figure.) 

Fig. 29-3. An axial-field spectrom¬ 

eter. 

Fig. 29-4. An ellipsoidal coil with 

equal currents in each axial interval Ax 

produces a uniform magnetic field inside. 

necessary that all the particles enter at right angles to the field edge. Figure 29-2(b) 

shows the trajectories of three particles, all with the same momentum but entering 

the field at different angles. You see that they take different trajectories, but all 

leave the field very close to the point C. We say that there is a “focus.” Such a 

focusing property has the advantage that larger angles can be accepted at A— 

although some limit is usually imposed, as shown in the figure. A larger angular 

acceptance usually means that more particles are counted in a given time, decreasing 

the time required for a given measurement. 

By varying the magnetic field, or moving the counter along in x, or by using 

many counters to cover a range of x, the “spectrum” of momenta in the incoming 

beam can be measured. [By the “momentum spectrum”/(p), we mean that the 

number of particles with momenta between p and (p + dp) is f(p) dp.] Such 

measurements have been made, for example, to determine the distribution of 

energies in the d-decay of various nuclei. 

There are many other forms of momentum spectrometers, but we will describe 

just one more, which has an especially large solid angle of acceptance. It is based 

on the helical orbits in a uniform field, like the one shown in Fig. 29-1. Let’s 

think of a cylindrical coordinate system—p, 0, z—set up with the z-axis along the 

direction of the field. If a particle is emitted from the origin at some angle a. 

with respect to the z-axis, it will move along a spiral whose equation is 

p = a sin kz, 6 = bz, 

where a, b, and k are parameters you can easily work out in terms of p, a, and the 

magnetic field B. If we plot the distance p from the axis as a function of z for a 

given momentum, but for several starting angles, we will get curves like the solid 

ones drawn in Fig. 29-3. (Remember that this is just a kind of projection of a 

helical trajectory.) When the angle between the axis and the starting direction 

is larger, the peak value of p is large but the longitudinal velocity is less, so the 

trajectories for different angles tend to come to a kind of “focus” near the point 

A in the figure. If we put a narrow aperture of A, particles with a range of initial 

angles can still get through and pass on to the axis, where they can be counted by 

the long detector D. 

Particles which leave the source at the origin with a higher momentum but 

at the same angles, follow the paths shown by the broken lines and do not get 

through the aperture at A. So the apparatus selects a small interval of momenta 

The advantage over the first spectrometer described is that the aperture A—and 

the aperture A'—can be an annulus, so that particles which leave the source in a 

rather large solid angle are accepted. A large fraction of the particles from the 

source are used—an important advantage for weak sources or for very precise 

measurements. 

One pays a price for this advantage, however, because a large volume of 

uniform magnetic field is required, and this is usually only practical for low-energy 

particles One way of making a uniform field, you remember, is to wind a coil on 

a sphere, with a surface current density proportional to the sine of the angle 

You can also show that the same thing is true for an ellipsoid of rotation. So such 

spectrometers are often made by winding an elliptical coil on a wooden (or alumi¬ 

num) frame. All that is required is that the current in each interval of axial distance 

Ax be the same, as shown in Fig 29-4 

29-3 An electrostatic lens 

Particle focusing has many applications. For instance, the electrons that leave 

the cathode in a TV picture tube are brought to a focus at the screen—to make a 

fine spot. In this case, one wants to take electrons all of the same energy but with 

different initial angles and bring them together in a small spot. The problem is 

like focusing light with a lens, and devices which do the corresponding job for 

particles are also called lenses. 
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Fig. 29-5. An electrostatic lens. The field lines shown are “lines of 

force,” that is, of q£. 

One example of an electron lens is sketched in Fig 29-5. It is an “electro¬ 

static” lens whose operation depends on the electric field between two adjacent 

electrodes. Its operation can be understood by considering what happens to a 

parallel beam that enters from the left. When the electrons arrive at the region a, 

they feel a force with a sidewise component and get a certain impulse that bends them 

toward the axis You might think that they would get an equal and opposite im¬ 

pulse in the region b, but that is not so. By the time the electrons reach b they have 

gained energy and so spend less time in the region b. The forces are the same, but 

the time is shorter, so the impulse is less. In going through the regions a and 6, 

there is a net axial impulse, and the electrons are bent toward a common point 

In leaving the high-voltage region, the particles get another kick toward the axis 

The force is outward m region c and inward in region d, but the particles stay longer 

m the latter region, so there is again a net impulse For distances not too far from 

the axis, the total impulse through the lens is proportional to the distance from the 

axis (Can you see why9), and this is just the condition necessary for lens-type 

focusing. 

You can use the same arguments to show that there is focusing if the 

potential of the middle electrode is either positive or negative with respect to the 

other two. Electrostatic lenses of this type are commonly used in cathode-ray 

tubes and in some electron microscopes. 

Fig. 29-6. A magnetic lens. 

29-4 A magnetic lens 

Another kind of lens—often found in electron microscopes—is the magnetic 

lens sketched schematically in Fig. 29-6. A cylmdrically symmetric electromagnet 

has very sharp circular pole tips which produce a strong, nonuniform field in a 

small region. Electrons which travel vertically through this region are focused 

You can understand the mechanism by looking at the magnified view of the pole-tip 

region drawn in Fig. 29-7. Consider two electrons a and b that leave the source 

5 at some angle with respect to the axis. As electron a reaches the beginning of the 

field, it is deflected away from you by the horizontal component of the field But 

then it will have a lateral velocity, so that when it passes through the strong vertical 

field, it will get an impulse toward the axis. Its lateral motion is taken out by the 

magnetic force as it leaves the field, so the net effect is an impulse toward the 

axis, plus a “rotation" about the axis. All the forces on particle b are opposite, 

so it also is deflected toward the axis. In the figure, the divergent electrons are 

brought into parallel paths. The action is like a lens with an object at the focal 

point. Another similar lens upstream can be used to focus the electrons back to a 

single point, making an image of the source S. 

29-5 The electron microscope 

Fig. 29-7. Electron motion in the 

magnetic lens. 

You know that electron microscopes can “see” objects too small to be seen 

by optical microscopes. We discussed in Chapter 30 of Vol. I the basic limitations 

of any optical system due to diffraction of the lens opening If a lens opening sub- 
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LENS 

Fig, 29-8. The resolution of a micro¬ 

scope is limited by the angle subtended 

from the source. 

Fig. 29-9. Spherical aberration of 

a lens. 

tends the angle 2d from a source (see Fig. 29-8), two neighboring spots at the source 

cannot be seen as separate if they are closer than about 

where X is the wavelength of the light. With the best optical microscope, 6 ap¬ 

proaches the theoretical limit of 90°, so 5 is about equal to X, or approximately 

5000 angstroms. 

The same limitation would also apply to an electron microscope, but there 

the wavelength is—for 50-kilovolt electrons—about 0.05 angstrom. If one could 

use a lens opening of near 30°, it would be possible to see objects only ^ of an 

angstrom apart. Since the atoms in molecules are typically 1 or 2 angstroms apart, 

we could get photographs of molecules. Biology would be easy; we would have 

a photograph of the DNA structure. What a tremendous thing that would be! 

Most of present-day research in molecular biology is an attempt to figure out the 

shapes of complex organic molecules. If we could only see them! 

Unfortunately, the best resolving power that has been achieved in an electron 

microscope is more like 20 angstroms. The reason is that no one has yet designed 

a lens with a large opening. All lenses have “spherical aberration,” which means 

that rays at large angles from the axis have a different point of focus than the rays 

nearer the axis, as shown in Fig. 29-9 By special techniques, optical microscope 

lenses can be made with a negligible spherical aberration, but no one has yet 

been able to make an electron lens which avoids spherical aberration. 

In fact, one can show that any electrostatic or magnetic lens of the types we 

have described must have an irreducible amount of spherical aberration. This 

aberration—together with diffraction—limits the resolving power of electron 

microscopes to their present value. 

The limitation we have mentioned does not apply to electric and magnetic 

fields which are not axially symmetric or which are not constant in time. Perhaps 

some day someone will think of a new kind of electron lens that will overcome the 

inherent aberration of the simple electron lens. Then we will be able to photograph 

atoms directly. Perhaps one day chemical compounds will be analyzed by looking 

at the positions of the atoms rather than by looking at the color of some pre¬ 

cipitate! 

Fig. 29-10. Particle motion in a 

slightly nonuniform field. 

29-6 Accelerator guide fields 

Magnetic fields are also used to produce special particle trajectories in high- 

energy particle accelerators. Machines like the cyclotron and synchrotron bring 

particles to high energies by passing the particles repeatedly through a strong 

electric field. The particles are held in their cyclic orbits by a magnetic field. 

We have seen that a particle in a uniform magnetic field will go in a circular 

orbit. This, however, is true only for a perfectly uniform field. Imagine a field 

B which is nearly uniform over a large area but which is slightly stronger in one 

region than in another. If we put a particle of momentum p in this field, it will go 

in a nearly circular orbit with the radius R = p/qB. The radius of curvature will, 

however, be slightly smaller in the region where the field is stronger. The orbit is 

not a closed circle but will “walk” through the field, as shown m Fig. 29-10. 

We can, if we wish, consider that the slight “error” in the field produces an extra 

angular kick which sends the particle off on a new track. If the particles are to make 

millions of revolutions in an accelerator, some kind of “radial focusing” is needed 

which will tend to keep the trajectories close to some design orbit. 

Another difficulty with a uniform field is that the particles do not remain in a 

plane If they start out with the slightest angle—or are given a slight angle by 

any small error in the field—they will go in a helical path that will eventually take 

them into the magnet pole or the ceiling or floor of the vacuum tank Some 

arrangement must be made to inhibit such vertical drifts; the field must provide 

“vertical focusing” as well as radial focusing. 
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Fig. 29-11. Radial motion of a par¬ 

ticle in a magnetic field with a large 

positive slope. 

Fig. 29-12. Radial motion of a par¬ 

ticle in a magnetic field with a small 

negative slope. 

Fig. 29-13. Radial motion of a par¬ 

ticle in a magnetic field with a large 

negative slope. 

One would, at first, guess that radial focusing could be provided by making a 

magnetic field which increases with increasing distance from the center of the design 

path Then if a particle goes out to a large radius, it will be in a stronger field which 

will bend it back toward the correct radius. If it goes to too small a radius, the 

bending will be less, and it will be returned toward the design radius. If a particle 

is once started at some angle with respect to the ideal circle, it will oscillate about 

the ideal circular orbit, as shown in Fig. 29-11. The radial focusing would keep the 

particles near the circular path. 

Actually there is still some radial focusing even with the opposite field slope 

This can happen if the radius of curvature of the trajectory does not increase more 

rapidly than the increase in the distance of the particle from the center of the field. 

The particle orbits will be as drawn in Fig 29-12. If the gradient of the field is too 

large, however, the orbits will not return to the design radius but will spiral inward 

or outward, as shown in Fig. 29-13. 

We usually describe the slope of the field in terms of the “relative gradient” 

or field index, n: 

= dB/B 

dr/r 
(29.2) 

A guide field gives radial focusing if this relative gradient is greater than — 1. 

A radial field gradient will also produce vertical forces on the particles 

Suppose we have a field that is stronger nearer to the center of the orbit and weaker 

at the outside. A vertical cross section of the magnet at right angles to the orbit 

might be as shown in Fig. 29-14. (For protons the orbits would be coming out of 

the page ) If the field is to be stronger to the left and weaker to the right, the lines 

of the magnetic field must be curved as shown . We can see that this must be so 

by using the law that the circulation of B is zero in free space. If we take coordinates 

as shown in the figure, then 

(V X B)y = 

or 

dBx 

dz 

dBx 
dz 

dBz 

dx 
0, 

dBz 

dx 
(29.3) 

Fig. 29-14. A vertical guide field as 

seen in a cross section perpendicular to 

the orbits. 

Since we assume that dBjdx is negative, there must be an equal negative dBx/dz. 
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If the “nominal” plane of the orbit is a plane of symmetry where Bx = 0, then the 

radial component Bx will be negative above the plane and positive below The lines 

must be curved as shown. 

Such a field will have vertical focusing properties. Imagine a proton that is 

travelling more or less parallel to the central orbit but above it. The horizontal 

component of B will exert a downward force on it. If the proton is below the central 

orbit, the force is reversed. So there is an effective “restoring force” toward the 

central orbit. From our arguments there will be vertical focusing, provided that 

the vertical field decreases with increasing radius; but if the field gradient is positive, 

there will be “vertical defocusing.” So for vertical focusing, the field index n must 

be less than zero. We found above that for radial focusing n had to be greater 

than — 1. The two conditions together give the condition that 

— 1 < n < 0 

if the particles are to be kept in stable orbits. In cyclotrons, values very near zero 

are used; in betatrons and synchrotrons, the value n — —0.6 is typically used. 

29-7 Alternating-gradient focusing 

Such small values of n give rather “weak” focusing. It is clear that much more 

effective radial focusing would be given by a large positive gradient (n » 1), but 

then the vertical forces would be strongly defocusing Similarly, large negative 

slopes {n « —1) would give stronger vertical forces but would cause radial de¬ 

focusing. It was realized about 10 years ago, however, that a force that alternates 

between strong focusing and strong defocusing can still have a net focusing force 

To explain how alternating-gradient focusing works, we will first describe the 

operation of a quadrupole lens, which is based on the same principle. Imagine that 

a uniform negative magnetic field is added to the field of Fig 29-14, with the 

strength adjusted to make zero field at the orbit. The resulting field—for small 

displacements from the neutral point—would be like the field shown in Fig 29-15 

Such a four-pole magnet is called a “quadrupole lens.'1 A positive particle that 

enters (from the reader) to the right or left of the center is pushed back toward 

the center. If the particle enters above or below, it is pushed away from the center. 

This is a horizontal focusing lens If the horizontal gradient is reversed—as can 

be done by reversing all the polarities—the signs of all the forces are reversed 

and we have a vertical focusing lens, as in Fig. 29-16 For such lenses, the field 

strength—and therefore the focusing forces—increase linearly with the distance 

of the lens from the axis. 

Fig. 29-15. A horizontal focusing 

quadrupole lens. 

Fig. 29-16. A vertical focusing quad¬ 

rupole lens. 
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Fig. 29-17. HorizonTal and vertical focusing with a pair of quadrupole lenses. 

Now imagine that two such lenses are placed in series. If a particle enters with 

some horizontal displacement from the axis, as shown in Fig. 29-17(a), it will be 

deflected toward the axis in the first lens. When it arrives at the second lens it is 

closer to the axis, so the force outward is less and the outward deflection is less 

There is a net bending toward the axis; the average effect is horizontally focusing 

On the other hand, if we look at a particle which enters off the axis in the vertical 

direction, the path will be as shown in Fig, 29-17(b). The particle is first deflected 

away from the axis, but then it arrives at the second lens with a larger displacement, 

feels a stronger force, and so is bent toward the axis. Again the net effect is focusing. 

Thus a pair of quadrupole lenses acts independently for horizontal and vertical 

motion—very much like an optical lens. Quadrupole lenses are used to form and 

control beams of particles in much the same way that optical lenses are used for 

light beams. 

We should point out that an alternating-gradient system does not always 

produce focusing. If the gradients are too large (in relation to the particle momen¬ 

tum or to the spacing between the lenses), the net effect can be a defocusing one. 

You can see how that could happen if you imagine that the spacing between the 

two lenses of Fig, 29-17 were increased, say, by a factor of three or four. 

Let’s return now to the synchrotron guide magnet. We can consider that it 

consists of an alternating sequence of “positive” and “negative” lenses with a 

superimposed uniform field. The uniform field serves to bend the particles, on the 

average, in a horizontal circle (with no effect on the vertical motion), and the 

alternating lenses act on any particles that might tend to go astray—pushing them 

always toward the central orbit (on the average). 

There is a nice mechanical analog which demonstrates that a force which 

alternates between a “focusing” force and a “defocusing” force can have a net 

“focusing" effect. Imagine a mechanical “pendulum” which consists of a solid 

rod with a weight on the end, suspended from a pivot which is arranged to be moved 

rapidly up and down by a motor driven crank. Such a pendulum has two equili¬ 

brium positions. Besides the normal, downward-hanging position, the pendulum 

is also in equilibrium “hanging upward”—with its “bob” above the pivot! Such a 

pendulum is drawn in Fig. 29-18. 

By the following argument you can see that the vertical pivot motion is 

equivalent to an alternating focusing force. When the pivot is accelerated down¬ 

ward, the “bob” tends to move inward, as indicated in Fig. 29-19. When the 

pivot is accelerated upward, the effect is reversed. The force restoring the “bob” 

toward the axis alternates, but the average effect is a force toward the axis. So the 

pendulum will swing back and forth about a neutral position which is just opposite 

the normal one. 

There is, of course, a much easier way of keeping a pendulum upside down, 

and that is by balancing it on your finger* But try to balance two independent 

sticks on the same finger\ Or one stick with your eyes closed! Balancing involves 

making a correction for what is going wrong. And this is not possible, in general, 

if there are several things going wrong at once. In a synchrotron there are billions 

of particles going around together, each one of which may start out with a different 

“error.” The kind of focusing we have been describing works on them all. 

Fig. 29-18. A pendulum with an 

oscillating pivot can have a stable posi¬ 

tion with the bob above the pivot. 

Fig. 29-19. A downward accelera¬ 

tion of the pivot causes the pendulum to 

move toward the vertical. 
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29-8 Motion in crossed electric and magnetic fields 

Fig. 29-20. Path of a particle in 

crossed electric and magnetic fields. 

So far we have talked about particles in electric fields only or in magnetic 

fields only. There are some interesting effects when there are both kinds of fields 

at the same time. Suppose we have a uniform magnetic field B and an electric 

field E at right angles. Particles that start out perpendicular to B will move in a 

curve like the one in Fig 29-20 (The figure is a plane curve, not a helix!) We can 

understand this motion qualitatively. When the particle (assumed positive) moves 

in the direction of E, it picks up speed, and so it is bent less by the magnetic field. 

When it is going against the £'-field, it loses speed and is continually bent more by 

the magnetic field. The net effect is that it has an average “drift” in the direction 

of E X B. 

We can. in fact, show that the motion is a uniform circular motion super¬ 

imposed on a uniform sidewise motion at the speed vd = E/B—the trajectory in 

Fig. 29-20 is a cycloid. Imagine an observer who is moving to the right at a con¬ 

stant speed. In his frame our magnetic field gets transformed to a new magnetic 

field plus an electric field in the downward direction. If he has just the right speed, 

his total electric field will be zero, and he will see the electron going in a circle. So 

the motion we see is a circular motion, plus a translation at the drift speed 

i\i = E/B The motion of electrons in crossed electric and magnetic fields is the 

basis of the magnetron tubes, i e., oscillators used for generating microwave energy. 

There are many other interesting examples of particle motions in electric and 

magnetic fields—such as the orbits of the electrons and protons trapped in the 

Van Allen belts—but we do not, unfortunately, have the time to deal with them here 

29-8 



30 

The Internal Geometry of Crystals 

30-1 The internal geometry of crystals 

We have finished the study of the basic laws of electricity and magnetism, and 

we are now going to study the electromagnetic properties of matter. We begin 

by describing solids—that is, crystals. When the atoms of matter are not moving 

around very much, they get stuck together and arrange themselves in a configura¬ 

tion with as low an energy as possible. If the atoms in a certain place have found a 

pattern which seems to be of low energy, then the atoms somewhere else will 

probably make the same arrangement. For these reasons, we have in a solid ma¬ 

terial a repetitive pattern of atoms 

In other words, the conditions in a crystal are this way: The environment of a 

particular atom in a crystal has a certain arrangement, and if you look at the same 

kind of an atom at another place farther along, you will find one whose surround¬ 

ings are exactly the same. If you pick an atom farther along by the same distance, 

you will find the conditions exactly the same once more. The pattern is repeated 

over and over again—and, of course, in three dimensions. 

Imagine the problem of designing a wallpaper—or a cloth, or some geometric 

design for a plane area—in which you are supposed to have a design element which 

repeats and repeats and repeats, so that you can make the area as large as you want. 

This is the two-dimensional analog of a problem which a crystal solves in three 

dimensions. For example, Fig. 30-1 (a) shows a common kind of wallpapei design. 

There is a single element repeated m a pattern that can go on forever. The geometric 

characteristics of this wallpaper design, considering only its repetition properties 

and not worrying about the geometry of the flower itself or its artistic merit, are 

contained in Fig. 30-1 (b). If you start at any point, you can find the corresponding 

point by moving the distance a along the direction of arrow 1 You can also get 

to a corresponding point if you move the distance b in the direction of the other 

arrow. There are, of course, many other directions. You can go, for example, 

from point a to point (3 and reach a corresponding position, but such a step 

can be considered as a combination of a step along direction 1, followed by a step 

along direction 2. One of the basic properties of the pattern can be described by 

the two shortest steps to nearby equal positions. By “equal” positions we mean that 

if you were to stand in any one of them and look around you, you would see exactly 

the same thing as if you were to stand in another one. That’s the fundamental 

property of a crystal. The only difference is that a crystal is a three-dimensional 

arrangement instead of a two-dimensional arrangement; and naturally, instead of 

flowers, each element of the lattice is some kind of an arrangement of atoms— 

perhaps six hydrogen atoms and two carbon atoms—in some kind of pattern 

The pattern of atoms m a crystal can be found out experimentally by x-ray diffrac¬ 

tion. We have mentioned this method briefly before, and won't say any more now 

except that the precise arrangement of the atoms in space has been worked out for 

most simple crystals and also for some fairly complex ones. 

The internal pattern of a crystal shows up in several ways. First, the binding 

strength of the atoms in certain directions is usually stronger than in other direc¬ 

tions. This means that there are certain planes through the crystal where it is more 

easily broken than others. They are called the cleavage planes. If you crack a 

crystal with a knife blade it will often split apart along such a plane. Second, the 

internal structure often appears at the surface because of the way the crystal was 

formed. Imagine a crystal being deposited out of a solution. There are the atoms 

floating around in the solution and finally settling down when they find a position 

30-1 The internal geometry of 

crystals 

30-2 Chemical bonds in crystals 

30-3 The growth of crystals 

30-4 Crystal lattices 

30-5 Symmetries in two dimensions 

30-6 Symmetries in three dimensions 
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Fig. 30-1. A repeating pattern in 

two dimensions. 
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Fig. 30-2. Natural crystals: (a) 

quartz, (b) sodium chloride, (c) mica. 

Fig. 30-3. The lattice of a molecular 

crystal. 

of lowest energy. (It’s as if the wallpaper got made by flowers drifting around 

until one drifted accidentally into place and got stuck, and then the next, and the 

next so that the pattern gradually grows.) You can appreciate that there will be 

certain directions in which it will grow at a different speed than in other directions, 

thereby growing into some kind of geometrical shape. Because of such effects, the 

outside surfaces of many crystals show some of the character of the internal 

arrangement of the atoms 

For example, Fig. 30-2(a) shows the shape of a typical quartz crystal whose 

internal pattern is hexagonal. If you look closely at such a crystal, you will notice 

that the outside does not make a very good hexagon because the sides are not all 

of equal length—they are, in fact, often very unequal. But in one respect it is a 

very good hexagon: the angles between the faces are exactly 120°. Clearly, the size 

of any particular face is an accident of the growth, but the angles are a representa¬ 

tion of the internal geometry So every crystal of quartz has a different shape, 

even though the angles between corresponding faces are always the same. 

The internal geometry of a crystal of sodium chloride is also evident from its 

external shape Figure 30-2(b) shows the shape of a typical grain of salt. Again 

the crystal is not a perfect cube, but the faces are exactly at right angles to one 

another 

A more complicated crystal is mica, which has the shape shown in Fig 30-2(c) 

It is a highly anisotropic crystal, as is easily seen from the fact that it is very tough 

if you try to pull it apart in one direction (horizontally in the figure), but very easy 

to split by pulling apart in the other direction (vertically) It has commonly been 

used to obtain very tough, thin sheets Mica and quartz are two examples of 

natural minerals containing silica. A third example of a mineral with silica is 

asbestos, which has the interesting property that it is easily pulled apart in two 

directions but not in the third. It appears to be made of very strong, linear fibers. 

30-2 Chemical bonds in crystals 

The mechanical properties of crystals clearly depend on the kind of chemical 

bindings between the atoms. The strikingly different strength of mica along differ¬ 

ent directions depends on the kinds of interatomic binding in the different directions. 

You have already learned in chemistry, no doubt, about the different kinds of 

chemical bonds First, there are ionic bonds, as we have already discussed for 

sodium chloride Roughly speaking, the sodium atoms have lost an electron and 

become positive ions, the chlorine atoms have gained an electron and become 

negative ions. The positive and negative ions are arranged in a three-dimensional 

checkerboard and are held together by electrical forces. 

The covalent bond—in which electrons are shared between two atoms—is 

more common and is usually very strong. In a diamond, for example, the carbon 

atoms have covalent bonds in all four directions to the nearest neighbors, so the 

crystal is very hard indeed. There is also covalent bonding between silicon and 

oxygen m a quartz crystal, but there the bond is really only partially covalent. 

Because there is not complete sharing of the electrons, the atoms are partly charged, 

and the crystal is somewhat ionic Nature is not as simple as we try to make it; 

there are really all possible gradations between covalent and ionic bonding 

A sugar crystal has still another kind of binding In it there are large molecules 

in which the atoms are held strongly together by covalent bonds, so that the mole¬ 

cule is a tough structure. But since the strong bonds are completely satisfied, there 

are only relatively weak attractions between the separate, individual molecules 

In such molecular crystals the molecules keep their individual identity, so to speak, 

and the internal arrangement might be as shown in Fig. 30-3. Since the molecules 

are not held strongly to each other, the crystals are easy to break They are quite 

different from something like diamond, which is really one giant molecule that 

cannot be broken anywhere without disrupting strong covalent bonds. Panffin 

is another example of a molecular crystal. 

An extreme example of a molecular crystal occurs in a substance like solid 

argon. There is very little attraction between the atoms—each atom is a completely 
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saturated monatomic molecule. But at very low temperatures, the thermal motion 

is very small, so the slight interatomic forces can cause the atoms to settle down into 

a regular array like a pile of closely packed spheres. 

The metals form a completely different class of substances The bonding is 

of an entirely different kind. In a metal the bonding is not between adjacent atoms 

but is a property of the whole crystal. The valence electrons are not attached to 

one atom or to a pair of atoms but are shared throughout the crystal. Each atom 

contributes an electron to a universal pool of electrons, and the atomic positive 

ions reside in the sea of negative electrons. The electron sea holds the ions together 

like some kind of glue. 

In the metals, since there are no special bonds in any particular direction, there 

is no strong directionality in the binding. They are still crystalline, however, be¬ 

cause the total energy is lowest when the atomic ions are arranged in some definite 

array—although the energy of the preferred arrangement is not usually much lower 

than other possible ones. To a first approximation, the atoms of many metals are 

like small spheres packed in as tightly as possible. 

30-3 The growth of crystals 

Try to imagine the natural formation of crystals in the earth. In the earth’s 

surface there is a big mixture of all kinds of atoms. They are being continually 

churned about by volcanic action, by wind, and by water—continually being moved 

about and mixed. Yet, by some trick, silicon atoms gradually begin to find each 

other, and to find oxygen atoms, to make silica. One atom at a time is added to 

the others to build up a crystal—the mixture gets unmixed. And somewhere 

nearby, sodium and chlorine atoms are finding each other and building up a crystal 

of salt- 

How does it happen that once a crystal is started, it permits only a particular 

kind of atom to join on*7 It happens because the whole system is working toward 

the lowest possible energy. A growing crystal will accept a new atom if it is going 

to make the energy as low as possible. But how does it know that a silicon—or 

an oxygen—atom at some particular spot is going to result in the lowest possible 

energy? It does it by trial and error. In the liquid, all of the atoms are in perpetual (a) 

motion. Each atom bounces against its neighbors about 1013 times every second. 

If it hits against the right spot of growing crystal, it has a somewhat smaller chance 

of jumping off again if the energy is low. By continually testing over periods of 

millions of years at a rate of 1013 tests per second, the atoms gradually build up 

at the places where they find their lowest energy. Eventually they grow into big 

crystals. 

30-4 Crystal lattices 

The arrangement of the atoms in a crystal—the crystal lattice—can take on 

many geometric forms. We would like to describe first the simplest lattices, which 

are characteristic of most of the metals and of the solid form of the inert gases. 

They are the cubic lattices which can occur in two forms: the body-centered cubic, 

shown in Fig. 30-4(a), and the face-centered cubic shown in Fig. 30-4(b). The 

drawings show, of course, only one cube of the lattice; you are to imagine that the 

pattern is repeated indefinitely in three dimensions. Also, to make the drawing 

clearer, only the “centers” of the atoms are shown. In an actual crystal, the atoms 

are more like spheres in contact with each other. The dark and light spheres in 

the drawings may, in general, stand for different kinds of atoms or may be the 

same kind. For instance, iron has a body-centered cubic lattice at low temperatures, 

but a face-centered cubic lattice at higher temperatures. The physical properties 

are quite different in the two crystalline forms. 

How do such forms come about? Imagine that you have the problem of 

packing spherical atoms together as tightly as possible. One way would be to start 

by making a layer in a “hexagonal close-packed array,” as shown in Fig. 30-5(a) 

Then you could build up a second layer like the first, but displaced horizontally, 

Fig. 30—4. The unit cell of cubic 

crystals: (a) body-centered, (b) face- 

centered. 
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Fig. 30-5. Building up a hexagonal close-packed lattice. 

Fig. 30-6. 

seen from one 

Is this a hexagon or a cube 

corner2 

as shown in Fig. 30-5(b) Next, you can put on the third layer. But notice' 

There are two distinct ways of placing the third layer If you start the third layer 

by placing an atom at A in Fig 30-5(b), each atom in the third layer is directly 

above an atom of the bottom layer On the other hand, if you start the third layer 

by putting an atom at the position B, the atoms of the third layer will be centered 

at points exactly in the middle of a triangle formed by three atoms of the bottom 

layer. Any other starting place is equivalent to A or B, so there are only two ways 

of placing the third layer. 

If the third layer has an atom at point B, the crystal lattice is a face-centered 

cubic—but seen at an angle It seems funny that starting with hexagons you can 

end up with cubes. But notice that a cube looked at from a corner has a hexagonal 

outline For instance, Fig. 30-6 could represent a plane hexagon or a cube seen in 

perspective! 

If a third layer is added to Fig. 30-5(b) by starting with an atom at A, there is 

no cubical structure, and the lattice has instead only a hexagonal symmetry. It is 

clear that both possibilities we have described are equally close-packed 

Some metals—for example, copper and silver—choose the first alternative, 

the face-centered cubic. Others—for example, beryllium and magnesium—choose 

the other alternatives; they form hexagonal crystals. Clearly, which crystal lattice 

appears cannot depend only on the packing of little spheres, but must also be deter¬ 

mined in part by other factors In particular, it depends on the slight remaining 

angular dependence of the interatomic forces (or, in the case of the metals, on the 

energy of the electron pool) You will, no doubt, learn all about such things in 

your chemistry courses. 

30-5 Symmetries in two dimensions 

We would now like to discuss some of the properties of crystals from the point 

of view of their internal symmetries. The main feature of a crystal is that if you 

start at one atom and move to a corresponding atom one lattice unit away, you 

are again in the same kind of an environment. That’s the fundamental proposition. 

But if you were an atom, there would be another kind of change that could take 

you again to the same environment—that is, another possible “symmetry.” 

Figure 30-7(a) shows another possible “wallpaper-type” design (though one you 

have probably never seen). Suppose we compare the environments for points 

A and B You might, at first, think that they are the same—but not quite Points 

C and D are equivalent to 4, but the environment of B is like that of A only if the 

surroundings are reversed, as in a mirror reflection. 
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Fig. 30-7. A pattern of high symmetry. 

There are other kinds of “equivalent” points in the pattern. For instance, 

the points E and F have the “same” environments except that one is rotated 90° 

with respect to the other. The pattern is quite special. A rotation of 90°—or any 

multiple of it—about a vertex such as A gives the same pattern all over again. A 

crystal with such a structure would have square corners on the outside, but inside 

it is more complicated than a simple cube. 

Now that we have described some special examples, let's try to figure out all 

the possible symmetries a crystal can have. First, we consider what happens in a 

plane. A plane lattice can be defined by the two so-called primitive vectors that go 

from one point of the lattice to the two nearest equivalent points. The two vectors 

1 and 2 are the primitive vectors of the lattice of Fig. 30-1. The two vectors a and 

b of Fig 30-7(a) are the primitive vectors of the pattern there We could, of course, 

equally well replace a by — a, or b by —b. Since a and b are equal in magnitude 

and at right angles, a rotation of 90° turns a into 6, and b into — a, giving the same 

lattice once again. 

We see that there are lattices which have a “four-sided” symmetry. And we 

have described earlier a close-packed array based on a hexagon which could have 

a six-sided symmetry. A rotation of the array of circles in Fig. 30-5(a) by an angle 

of 60° about the center of any circle brings the pattern back to itself. 

What other kinds of rotational symmetry are there? Can we have, for example, 

a fivefold or an eightfold rotational symmetry9 It is easy to see that they are 

impossible. The only symmetry with more sides than four is a six-sided symmetry. 

First, let's show that more than sixfold symmetry is impossible. Suppose we try to 

imagine a lattice with two equal primitive vectors with an enclosed angle less than 

60°, as in Fig. 30-8 (a). We are to suppose that points B and C are equivalent 

to A, and that a and b are the two shortest vectors from A to its equivalent neighbors 

But that is clearly wrong, because the distance between B and C is shorter than from 

either one to A. There must be a neighbor at D equivalent to A which is closer 

than B or C. We should have chosen bf as one of our primitive vectors. So the 

angle between the two primitive vectors must be 60° or larger. Octagonal symmetry 

is not possible. 

What about fivefold symmetry? If we assume that the primitive vectors a 

and b have equal lengths and make an angle of 2w/5 = 72°, as in Fig. 30-8(b), 

then there should also be an equivalent lattice point at D, at 72° from C. But the 

vector W from E to D is then less than b, so b is not a primitive vector. There can 

be no fivefold symmetry. The only possibilities that do not get us into this kind 

of difficulty are 8 ~ 60°, 90°, or 120°. Zero or 180° are also clearly possible. 

One way of stating our result is that the pattern can be left unchanged by a rotation 

of one full turn (no change at all), one-half of a turn, one-third, one-fourth, or 

one-sixth of a turn And those are all the possible rotational symmetries in a 

plane—a total of five. If 8 = lir/n, we speak of an “/7-fold” symmetry. We say 

/ 

/ 

/ 
D / C 

to) 

C 

Fig. 30-8. (a) Rotational symmetries 

greater than sixfold are not possible, 

(bl Fivefold rotational symmetry is not 

possible. 
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Fig. 30-9. Symmetry under inversion. Pattern (b) is unchanged if R —> —R, but pattern 

(a) is changed. In three dimensions pattern (d) is symmetric under an inversion but (c) is not. 

that a pattern with n equal to 4 or to 6 has a ‘‘higher symmetry” than one with 

n equal to 1 or to 2. 

Returning to Fig. 30-7(a), we see that the pattern has a fourfold rotational 

symmetry. We have drawn in Fig. 30-7(b) another design which has the same 

symmetry properties as part (a). The little comma-like figures are asymmetric 

objects which serve to define the symmetry of the design inside of each square 

Notice that the commas are reversed in alternate squares, so that the unit cell is 

larger than one of the small squares. If there were no commas, the pattern would 

still have fourfold symmetry, but the unit cell would be smaller. The patterns of 

Fig. 30-7 also have other symmetry properties. For instance, a reflection about any 

of the broken lines R-R reproduces the same pattern 

The patterns of Fig. 30-7 have still another kind of symmetiy. If the pattern 

is reflected about the line Y-Y and shifted one square to the right (or left), we get 

back the original pattern The line Y-Y is called a "glide" line. 

These are all the possible symmetries in two dimensions There is one more 

spatial symmetry operation which is equivalent in two dimensions to a 180° rotation, 

but which is a quite distinct operation in three dimensions. It is inversion. By an 

inversion we mean that any point at the vector displacement R from some origin 

[for instance, the point A in Fig. 30—9(b)] is moved to the point at — R 

An inversion of pattern (a) of Fig. 30-9 produces a new pattern, but an in¬ 

version of pattern (b) reproduces the same pattern. Fot a two-dimensional pattern 

(as you can see from the figure), an inversion of the pattern (b) through the point 

A is equivalent to a rotation of 180° about the same point Suppose, however, 

we make the pattern in Fig. 30-9(b) three dimensional by imagining that the little 

6’s and 9’s each have an “arrow” pointing out of the page. After an inversion in 

three dimensions all the arrows will be reversed, so the pattern is not leproduced. 

If we indicate the heads and tails of the arrows by dots and crosses, respectively, 

we can make a ihree-dimensional pattern, as in Fig 30-9(c), which is not symmetric 

under an inversion, or we can make a pattern like the one shown in (d), which 

does have such a symmetry. Notice that it is not possible to imitate a three- 

dimensional inversion by any combination of rotations. 

If we characterize the “symmetry” of a pattern—or lattice—by the kinds of 

symmetry operations we have been describing, it turns out that for two dimensions 

17 distinct patterns are possible We have drawn one pattern of the lowest possible 
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symmetry in Fig. 30-1, and one of high symmetry in Fig. 30-7. We will leave you 

with the game of trying to figure out all of the 17 possible patterns. 

It is peculiar how few of the 17 possible patterns are used in making wall¬ 

paper and fabrics. One always sees the same three or four basic patterns. Is this 

because of a lack of imagination of designers, or because many of the possible 

patterns are not pleasing to the eye? 

30-6 Symmetries in three dimensions 

So far we have talked only about patterns m two dimensions. What we are 

really interested in, however, are patterns of atoms in three dimensions. First, 

it is clear that a three-dimensional crystal will have three primitive vectors. If 

we then ask about the possible symmetry operations in three dimensions, we find 

that there are 230 different possible symmetries! For some purposes, these 230 

types can be grouped into seven classes, which are drawn in Fig. 30-10. The lattice 

with the least symmetry is called the triclinic. Its unit cell is a parallelepiped. The 

primitive vectors are of different lengths, and no two of the angles between them are 

equal. There is no possibility of any rotational or reflection symmetry. There are, 

however, still two possible symmetries—the unit cell is, or is not, changed by an 

inversion through the vertex. (By an inversion in three dimensions, we again mean 

that spatial displacements R are replaced by — R—in other words, that (x, y, z) 

goes into ( — x, —y, — z) So the triclimc lattice has only two possible symmetries, 

unless there is some special relation among the primitive vectors. For example, if 

all the vectors are equal and are separated by equal angles, one has the trigonal 

lattice shown in the figure. This figure can have an additional symmetry, it may 

be unchanged by a rotation about the long, body diagonal. 

If one of the primitive vectors, say c, is at right angles to the other two, we 

get a monoclinic unit cell. A new symmetry is possible—a rotation by 180° about c 

The hexagonal cell is a special case in which the vectors a and b are equal and the 

angle between them is 60°, so that a rotation of 60°, or 120°, or 180° about the vector 

c repeats the same lattice (for certain internal symmetries). 

If all three primitive vectors are at right angles, but of different lengths, we 

get the orthorhombic cell. The figure is symmetric for rotations of 180° about the 

three axes. Higher-order symmetries are possible with the tetragonal cell, which 

has all right angles and two equal primitive vectors Finally, there is the cubic 

cell, which is the most symmetric of all. 

The point of all this discussion about symmetries is that the internal symmetries 

of the crystals show up—sometimes in subtle ways—in the macroscopic physical 

properties of the crystal For instance, a crystal will, in general, have a tensor 

electric polarizability. If we describe the tensor in terms of the ellipsoid of polari¬ 

zation, we should expect that some of the crystal symmetries should show up 

also in the ellipsoid. For example, a cubic crystal is symmetric with respect to 

a rotation of 90° about any one of three orthogonal directions. Clearly, the 

only ellipsoid with this property is a sphere. A cubic crystal must be an isotropic 

dielectric. 

On the other hand, a tetragonal crystal has a fourfold rotational symmetry 

Its ellipsoid must have two of its principal axes equal, and the third must be 

parallel to the axis of the crystal. Similarly, since the orthorhombic crystal has 

twofold rotational symmetry about three orthogonal axes, its axes must coincide 

with the axes of the polarization ellipsoid. In a like manner, one of the axes of a 

monoclinic crystal must be parallel to one of the principal axes of the ellipsoid, 

though we can’t say anything about the other axes. Since a trichnic crystal has no 

rotational symmetry, the ellipsoid can have any orientation at all. 

As you can see, we can make a big game of figuring out the possible sym¬ 

metries and relating them to the possible physical tensors. We have considered 

only the polarization tensor, but things get more complicated for others—for 

instance, for the tensor of elasticity. There is a branch of mathematics called 

“group theory” that deals with such subjects, but usually you can figure out what 

you want with common sense. 
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Fig. 30-1 1. Slippage of crystal planes. 

30-7 The strength of metals 

Fig. 30-12. A photograph of a small 

crystal of copper after stretching. [Cour¬ 

tesy of S. S. Brenner, Senior Scientist, 

United States Steel Research Center, 

Monroeville, Pa ] 

stal. 

We have said that metals usually have a simple cubic crystal structure; we 

want now to discuss their mechanical properties—which depend on this structure. 

Metals are, generally speaking, very “soft,” because it is easy to slide one layer 

of the crystal over the next. You may think: “That’s ridiculous; metals are strong.” 

Not so, a single crystal of a metal can be distorted very easily. 

Suppose we look at two layers of a crystal subjected to a shear force, as shown 

in the diagram of Fig. 30-11(a). You might at first think the whole layer would 

resist motion until the force was big enough to push the whole layer “over the 

hump,” so that it shifted one notch to the left. Although slipping does occur along 

a plane, it doesn’t happen that way (If it did, you would calculate that the metal 

is much stronger than it really is.) What happens is more like one atom going at a 

time; first the atom on the left makes its jump, then the next, and so on, as indicated 

in Fig. 30-11(b). In effect it is the vacant space between two atoms that quickly 

travels to the right, with the net result that the whole second layer has moved 

over one atomic spacing. The slipping goes this way because it takes much less 

energy to lift one atom at a time over the hump than to lift a whole row. Once 

the force is enough to start the process, it goes the rest of the way very fast 

It turns out that in a real crystal, slipping will occur repeatedly at one plane, 

then will stop there and start at some other plane. The details of why it starts and 

stops are quite mysterious. It is, in fact, quite strange that successive regions of 

slip are often fairly evenly spaced. Figure 30-12 shows a photograph of a tiny, 

thm copper crystal that has been stretched. You can see the various planes where 

slipping has occurred. 

The sudden slipping of individual crystal planes is quite apparent if you take 

a piece of tin wire that has large crystals in it and stretch it while holding it next 

to your ear. You can hear a rush of “ticks” as the planes snap to their new posi¬ 

tions, one after the other. 

The problem of having a “missing” atom in one row is somewhat more difficult 

than it might appear from Fig. 30-11. When there are more layers, the situation 

must be something like that shown in Fig. 30-13. Such an imperfection in a crystal 

is called a dislocation. It is presumed that such dislocations are either present 

when the crystal was formed or are generated at some notch or crack at the surface 

Once they are produced, they can move relatively freely through the crystal The 

gross distortions result from the motions of many of such dislocations. 

Dislocations can move freely—that is, they require little extia energy—so 

long as the rest of the crystal has a perfect lattice. But they may get “stuck” if they 

encounter some other kind of imperfection in the crystal. If it takes a lot of energy 

for them to pass the imperfection, they will be stopped. This is precisely the 

mechanism that gives strength to imperfect metal crystals. Pure iron crystals are 

quite soft, but a small concentration of impurity atoms may cause enough imper¬ 

fections to effectively immobilize the dislocations. As you know, steel, which is 

primarily iron, is very hard. To make steel, a small amount of carbon is dissolved 

in the iron melt; if the melt is cooled rapidly, the carbon precipitates out in little 

grams, making many microscopic distortions in the lattice. The dislocations can 

no longer move about, and the metal is hard. 

Pure copper is very soft, but can be “work-hardened.” This is done by ham¬ 

mering on it or bending it back and forth. In this case, many new dislocations of 

various kinds are made which interfere with one another, cutting down their 
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mobility. Perhaps you’ve seen the trick of taking a bar of “dead soft” copper 

and gently bending it around someone’s wrist as a bracelet. In the process, it 

becomes work-hardened and cannot easily be unbent again’ A work-hardened 

metal like copper can be made soft again by annealing at a high temperature. 

The thermal motion of the atoms “irons out” the dislocations and makes large 

single crystals again. We have, so far, described only the so-called slip dislocation. 

There are many other kinds, one of which is the screw dislocation shown in Fig. 

30-14. Such dislocations often play an important part in crystal growth. 

30-8 Dislocations and crystal growth 

One of the great puzzles for a long time was how crystals can possibly grow. 

We have described how it is that each atom might, by repeated testing, determine 

whether it was better to be in the crystal or not. But that means that each atom 

must find a place of low energy. However, an atom put on a new surface is only 

bound by one or two bonds from below, and doesn’t have the same energy it 

would have if it were placed in a corner, where it would have atoms on three sides 

Suppose we imagine a growing crystal as a stack of blocks, as shown in Fig. 30-15 

If we try a new block at, say, position A, it will have only one of the six neighbors 

it should ultimately get. With so many bonds lacking, its energy is not very low. 

It would be better off at position B, where it already has one-half of its quota of 

bonds. Crystals do indeed grow by attaching new atoms at places like B. 

What happens, though, when that line is finished? To start a new line, an 

atom must come to rest with only two sides attached, and that is again not very 

likely. Even if it did, what would happen when the layer was finished? How 

could a new layer get started? One answer is that the crystal prefers to grow at a 

dislocation, for instance around a screw dislocation like the one shown in Fig. 

30-14. As blocks are added to this crystal, there is always some place where there 

are three available bonds. The crystal prefers, therefore, to grow with a dislocation 

built in. Such a spiral pattern of growth is shown in Fig. 30-16, which is a photo¬ 

graph of a single crystal of paraffin. 

Fig. 30-14. A screw dislocation. 

[From Charles Kittel, Introduction to 

Solid State Physics, John Wiley and Sons, 

Inc., New York, 2nd ed., 1956.] 

Fig. 30-16. A paraffin crystal which 

has grown around a screw dislocation. 

[From Charles Kittel, Introduction to Solid 

State Physics, John Wiley and Sons, Inc., 

New York, 2nd ed., 1956.] 

30-9 The Bragg-Nye crystal model 

We cannot, of course, see what goes on with the individual atoms in a crystal. 

Also, as you realize by now, there are many complicated phenomena that are not 

easy to treat quantitatively. Sir Lawrence Bragg and J. F. Nye have devised a 

scheme for making a model of a metallic crystal which shows in a striking way 

many of the phenomena that are believed to occur in a real metal. In the following 

pages we have reproduced their original article, which describes their method and 

shows some of the results they obtained with it. (The article is reprinted from the 

Proceedings of the Royal Society of London, Vol. 190, September 1947, pp. 474-481 

—with the permission of the authors and of the Royal Society.) 
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A dynamical model of a crystal structure 

By Sib Lawrence Bbagg, FRS. and J. F. Nye 

Cavendish Laboratory, University of Cambridge 

(Received 9 January 1947—Read 19 June 1947) 

[Plates 8 to 21] 

The crystal structure of a metal is represented by an assemblage of bubbles, a millimetre or 

lees in diameter, floating on the surface of a soap solution The bubbles are blown from a fine 

pipette beneath the surface with a constant air pressure, and are remarkably uniform in size 

They are held together by surface tension, either m a single layer on the surface or m a three- 

dimensional mass An assemblage may contain hundreds of thousands of bubbles and persists 

for an hour or more The assemblages show structures wtncti nave been supposed to exist 

in metals, and simulate effects which have been observed, such as gram boundaries, disloca¬ 

tions and other types of fault, slip, recrystallization, annealing, and strains due to ‘foreign’ 
atoms 

1 The bubble model 

Models of crystal structure have been described from rime to time in which the 

atoms are represented by small floating or suspended magnets, or by circular disks 

floating on a water surface and held together by the forces of capillary attraction 

These models have certain disadvantages, for instance, m the case of floating objects 

in contact, factional forces impede their free relative movement A more senous 

disadvantage is that the number of components is limited for a large number of 

components is required in order to approach the state of affairs in a real crystal 

The present paper describes the behaviour of a model m which the atoms are repre¬ 

sented by small bubbles from 2 0 to 0 1 mm m diameter floating on the surface of 

a soap solution These small bubbles are sufficiently persistent for experiments 

lasting an hour or more, they slide past each other without friction, and they can 

be produced in large numbers Some of the illustrations in this paper were taken 

from assemblages of bubbles numbering 100,000 or more The model most nearly 

represents the behaviour of a metal structure, because the bubbles are of one type 

only and are held together by a general capillary attraction which represents the 

binding force of the free electrons in the metal A brief description of the model has 

been given in the Journal of Scientific Instruments (Bragg 19426) 

The bubbles are blown from a fine orifice, beneath the surface of a soap solution. 

We have had the best results with a solution the formula of which was given to us 

by Mr Green of the Royal Institution 15 2 c c of oleic acid (pure redistilled) is well 

shaken in 50 c c of distilled water This is mixed thoroughly with 73 c c of 10 % 

solution of tn-ethanolamme and the mixture made up to 200 c c To this is added 

164 c c of pure glycerine It is left to stand and the clear liquid is drawn off from 

below In some experiments this was diluted m three times its volume of water to 

Teduce viscosity The orifice of the jet is about 5 mm below the surface A constant 

air pressure of 50 to 200 cm of water is supplied by means of two Winchester 

flasks Normally the bubbles are remarkably uniform in size Occasionally they 

issue m an irregular manner, but this can be corrected by a change of jet or of pres¬ 

sure Unwanted bubbles can easdy be destroyed by playing a small flame over the 

surface Figure 1 shows the apparatus We have found it of advantage to blacken 

the bottom of the vessel, because details of structure, such as gram boundaries and 

dislocations, then show up more clearly 

Figure 2, plate 8, shows a portion of a raft ’ or two-dimensional crystal of bubbles 

Its regularity can be judged by looking at the figure in a glancing direction The 

size of the bubbles vanes with the aperture, but does not appear to vary to any 

marked degree with the pressure or the depth of the orifice beneath the surface 

The main effect of increasing the pressure is to increase the rate of issue of the 

bubbles As an example, a thick-walled jet of 49/i bore with a pressure of 100 cm 

produced bubbles of 1-2 mm in diameter A thin-walled jet of 27ft diameter and 

a pressure of 180 cm produced bubbles of 0 6 mm diameter It is convenient to 

refer to bubbles of 2 0 to 1 0mm diameter as ‘large1 bubbles, those from 0 8 to 

0-6mm diameter as ‘medium’ bubbles, and those from 0*3 to O'1mm diameter 

as small' bubbles, since their behaviour vanes with their size 

Figure 3 Apparatus for producing bubbles of small size 

With this apparatus we have not found it possible to reduce the size of the jet 

and so produce bubbles of smaller diameter than 0 6 mm As it was desired to expen- 

ment with very small bubbles, we had recourse to placmg the soap solution m a 

rotating vessel and introducing a fine jet as nearly as possible parallel to a stream 

line The bubbles are swept away as they form, and under steady conditions are 

reasonably uniform They issue at a rate of one thousand or more per second, giving 

a high-pitched note The soap solution mounts up in a steep wall around the pen- 

meter of the vessel whde it is rotating but carries back most of the bubbles with it 

when rotation ceases With this device, illustrated in figure 3, bubbles down to 

0*12 mm m diameter can be obtained As an example, an orifice 38 ji across m a 

thin-walled jet, with a pressure of 190 cm of water, and a speed of the fluid of 

180 cm /sec past the orifice, produced bubbles of 0 14 mm diameter. In this case 

a dish of diameter 9*5 cm and speed of 6 rev /sec was used Figure 4, plate 8, is an 

enlarged picture of these ‘small’ bubbles and shows their degree of regularity, the 

pattern is not as perfect with a rotating as with a stationary vessel, the rows being 

seen to be slightly irregular when viewed in a glancing direction 

These two-dimensional crystals show structures which have been supposed to 

exist in metals, and simulate effects which have been observed, such as grain 

boundaries, dislocations and other types of fault, slip, recrystalhzation, annealing, 

and strains due to ‘foreign’ atoms. 

3 Grain boundaries 

Figures 5a, 5b and 5c, plates 9 and 10, show typical gram boundaries for bubbles 

of 1*87, 0 76 and 0*30 mm diameter respectively The width of the disturbed area 

at the boundary, where the bubbles have an irregular distribution, is m general 

greater the smaller the bubbles In figure 5a, which shows portions of several 

adjacent grams, bubbles at a boundary between two grams adhere definitely to one 

crystalline arrangement or the other In figure 5c there is a marked ‘Beilby layer’ 

between the two grains The small babbles, as will be seen, have a greater rigidity 

than the large ones, and this appears to give nse to more irregularity at the interface 

Separate gramB snow up distinctly when photographs of polycrystalline rafts 

such as figures 5a to 5c, plates 9 and 10, and figures 12a to 12«, plates 14 to 16, 

are viewed obliquely. With suitable bghting, the floating raft of bubbles itself when 

viewed obliquely resembles a polished and etched metal in a remarkable way 

It often happens that some ‘impunty atoms’, or bubbles which are markedly 

larger or smaller than the average, are found in a polycrystalline raft, and when this 

is so a large proportion of them are situated at the gram boundanes It would be 

incorrect to say that the irregular babbles make their way to the boundaries, it is 

a defect of the model that no diffusion of bubbles through the structure can take 

place, mutual adjustments of neighbours alone being possible It appears that the 

boundanes tend to readjust themselves by the growth of one crystal at the expense 

of another till they pass through the irregular atoms 

4 Dislocations 

When a single crystal or polycrystalline raft is compressed, extended, or other¬ 

wise deformed it exhibits a behaviour very similar to that which has been pictured 

for metals subjected to strain Up to a certain limit the model is within its elastic 

range Beyond that point it yields by slip along one of the three equally inclined 

directions of closely packed rows Slip takes place by the bubbles in one row moving 

forward over those in the next row by an amount equal to the distance between 

neighbours. It is very interesting to watch this process taking place The 

movement is not simultaneous along the whole row but begins at one end with 

the appearance of a ‘dislocation’, where there is locally one more bubble in the 

rows on one side of the slip line as compared with those on the other This dis¬ 

location then runs along the sbp line from one side of the crystal to the other, the 

final result bemg a slip by one ‘ inter-atomic ’ distance Such a process has been 

mvoked by Orowan, by Polanyi and by Taylor to explain the small forces required 

to produce plastic gliding m metal structures The theory put forward by Taylor 

(1934) to explain the mechanism of plastic deformation of crystals considers the 

mutual action and equilibnum of such dislocations The bubbles afford a very 

striking picture of what has been supposed to take place in the metal Sometimes 
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the dislocations run along quite slowly, taking a matter of seconds to cross a crystal, 

stationary dislocations also are to be seen in crystals which are not homogeneously 

strained They appear as short black lines, and can be seen in the senes of photo¬ 

graphs, figures 12a to 12 e, plates 14 to 16. When a polycrystalline raft is compressed, 

these dark lmes are seen to be dashing about in all directions across the crystals. 

Figures 6a, 66 and 6c, plates 10 and 11, show examples of dislocations In 

figure 6a, where the diameter of the bubbles is 1 9 mm , tue dislocation is very 

local, extending over about six bubbles In figure 66 (diameter 0 76 mm ) it extends 

over twelve bubbles, and m figure 6c (diameter 0 30 mm ) its influence can be 

traoed for a length of about fifty bubbles The greater ngidity of the small bubbles 

feflda to longer dislocations. The study of any mass of bubbles shows, however, 

that there is not a standard length of dislocation for each size The length depends 

upon the nature of the strain in the crystal A boundary between two crystals with 

corresponding axes at approximately 30° (the maximum angle which can occur) 

may be regarded as a senes of dislocations in alternate rows, and in this case the 

dislocations are very short As the angle between the neighbouring crystals decreases, 

the dislocations occur at wider intervals and at the same time become longer, till 

one finally has single dislocations in a large body of perfect structure as shown m 

figures 6a, 66 and 6c 

Figure 7, plate 11, shows three parallel dislocations If we call them positive and 

negative (following Taylor) they are positive, negative, positive, reading from left 

to right The strip between the last two has three bubbles in excess, as can be seen 

by looking along the rows in a horizontal direction Figure 8, plate 12, shows a 

dislocation projecting from a gram boundary, an effect often observed. 

Figure 9, plate 12, shows a place where two bubbles take the place of one This 

may be regarded as a limiting case of positive and negative dislocations on neigh¬ 

bouring rows, with the compressive sides of the dislocations facmg each other. The 

contrary case would lead to a hole m the structure, one bubble being missing at the 

point where the dislocations met 

5. Other types of fault 

Figure 10, plate 12, shows a narrow stnp between two crystals of parallel orien¬ 

tation, the stnp being crossed by a number of fault lines where the bubbles are not 

in close packmg It is in such places as these that recrystallization may be expected 

The boundaries approach and the stnp is absorbed into a wider area of perfect 

crystal 

Figures 11 a to 11 g, plates 13 and 14 are examples of arrangements which frequently 

appear in places where there is a local deficiency of bubbles While a dislocation is 

as a dark stripe in a general view, these structures show up in the shape of the 

letter V or as tnangles A typical V structure is Been in figure IIa When the model is 

being distorted, a V structure is formed by two dislocations meetmg at an inclination 

of 60°, it is destroyed by the dislocations continuing along their paths. Figure 116 

shows a small triangle, which also embodies a dislocation, for it will be noticed that 

the rows below the fault have one more bubble than those below If a mild amount 

of 'thermal movement’ is imposed by gentle agitation of one side of the crystal, 

such faulty places disappear and a perfect structure is formed 

Here and there in the crystals there is a blank space where a bubble is missing, 

showing as a black dot in a general view Examples occur m figure 11 g. Such a gap 

cannot be closed by a local readjustment, since filling the hole causes another to 

appear Such holes both appear and disappear when the crystal is ‘ cold-worked 

These structures in the model suggest that similar local faults may exist in an 

actual metal They may play a part in processes such as diffusion or the order- 

disorder change by reducing energy barriers in their neighbourhood, and act as 

nuclei for crystallization in an allotropic change 

6 Recrystallization and annealing 

Figures 12a to I2e, plates 14 to 16, show the same raft of bubbles at successive 

times A raft covering the surface of the solution was given a vigorous stirring with 

a gl*u» rake, and then left to adjust itself Figure 12a shows its aspect about 1 sec. 

after stirring has ceased. The raft is broken into a number of small ‘crystallites’, 

these are in a high state of non-homogeneous strain as is shown by the numerous 

dislocations and other faults The following photograph (figure 126) shows the 

same raft 32 sec later. The small grains have coalesced to form larger grams, and 

much of the strain has disappeared in the process. Recrystallization takes place 

right through the series, the last three photographs of which show the appearance 

of the raft 2, 14 and 29 min after the initial stirring. It is not possible to follow the 

rearrangement for much longer times, because the bubbles shrink after long standing, 

apparently due to the diffusion of air through their walls, and they also become thin 

and tend to buret No agitation was given to the model during this process An 

ever slower process of rearrangement goes on, the movement of the bubbles in one 

part of the raft setting up strains which activate a rearrangement in a neighbouring 

part, and that in its turn still another 

A number of interesting points are to be seen in this series. Note the three small 

grains at the points indicated by the co-ordinates A A, BB, CC. A persists, though 

changed in form, throughout the whole senes B is still present after 14 mm , but 

has disappeared in 25 mm , leaving behind it four dislocations marking internal 

strain in the grain. Gram C shrinks and finally disappears m figure 12d, leaving a 

hole and a V which has disappeared m figure 12e At the same time the ill-defined 

boundary in figure \2d at DD has become a definite one in figure 12e Note also 

the straightening out of the gram boundary in the neighbourhood of EE m figures 

126 to 12e. Dislocations of various lengths can be seen, marking all stages between 

a slight warping of the structure and a definite boundary Holes where bubbles 

are missing show up as black dots Some of these holes are formed or filled up by 

movements of dislocations, but others represent places where a bubble has buret 

Many examples of V’s and some of triangles can be seen Other interesting points 

will be apparent from a study of this senes of photographs. 

Figures 13a, 136 and 13c, plate 17, show a portion of a raft 1 sec , 4 sec and 4 nun. 

after the stimng process, and is interesting as showing two successive stages in the 

relaxation towards a more perfect arrangement The changes show up well when one 

looks m a glancing direction across the page The arrangement is very broken in 

figure 13a In figure 136 the bubbles have grouped themselves in rows, but the 

curvature of these rows indicates a high degree of internal strain In figure 13c this 

strain has been relieved by the formation of a new boundary at A-A, the rows on 

either side now being straight It would appear that the energy of this strained 

crystal is greater than that of the miercrystalline boundary We are indebted to 

Messrs Kodak for the photographs of figure 13, which were taken when the cine¬ 

matograph film referred to below was produced 

7 Effect of impurity atom 

Figure 14, plate 18, shows the widespread effect of a bubble which is of the wrong 

size If this figure is compared with the perfect rafts shown in figures 2 and 4, 

plate 8, it will be seen that three bubbles, one larger and two smaller than 

normal, disturb the regularity of the rows over the whole of the figure As has been 

mentioned above, bubbles of the wrong size are generally found in the grain boun¬ 

daries, where holes of irregular size occur which can accommodate them 

8 Mechanical properties of the two-dimensional model 

The mechanical properties of a two-dimensional perfect raft have been described 

m the paper referred to above (Bragg 19426) The raft lies between two parallel 

springs dipping horizontally in the surface of the soap solution The pitch of the 

springs is adjusted to fit the spacing of the rows of bubbles, which then adhere firmly 

to them One spring can be translated parallel to itself by a micrometer screw, and 

the other is supported by two thin vertical glass fibres The shearing stress can be 

measured by noting the deflexion of the glass fibres When subjected to a shearing 

stram, the raft obeys Hooke’s law of elasticity up to the point where the elastic 

Umit is reached It then slips along some intermediate row by an amount equal to 

the width of one bubble The elastic shear and sbp can be repeated several times The 

elastic limit is approximately reached when one side of the raft has been sheared 

by an amount equal to a bubble width past the other side This feature supports 

the basic assumption made by one of us in the calculation of the elastic limit of a 

metal (Bragg 1942a), in which it is supposed that each crystallite in a cold-worked 

metal only yields when the stram in it has reached such a value that energy is 

released by the slip 

A calculation has been made by M M Nicolson of the forces between the bubbles, 

and will be pubhshed shortly It shows two interesting points The curve for 

the variation of potential energy with distance between centres is very similar to 

those which have been plotted for atoms It has a minimum for a distance between 

centres slightly less than a free bubble diameter, and rises sharply for smaller dis¬ 

tances Further, the rise is extremely sharp for bubbles of 0 1 mm diameter but 

much less so for bubbles of 1 mm diameter, thus confirming the impression given 

by the model that the small bubbles behave as if they were much more rigid than 

the large ones. 

9 Three-dimensional assemblages 

If the bubbles are allowed to accumulate in multiple layers on the surface, they 

form a mass of three-dimensional ‘crystals’ with one of the arrangements of closest 

packing Figure 15, plate 18, shows an oblique view of such a mass, its resemblance 

to a polished and etched metal surface is noticeable In figure 16, plate 20, a similar 

mass is seen viewed normally Parts of the structure are definitely in cubic closest 

packmg, the outer surface being the (111) face or (100) face Figure 17 a, plate 19, 

shows a (Ill) face The outlines of the three bubbles on which each upper bubble 

rests can be clearly seen, and the next layer of these bubbles is faintly visible in a 

position not beneath the uppermost layer, showing that the packing of the (III) 

planes has the well-known cubic succession Figure 176 plate 19, shows a (100) face 

with each bubble resting on four others The cubic axes are of course inclined at 

45° to the close-packed rows of the surface layer Figure 17 c, plate 19, shows a 

twin m the cubic structure across the face (HI) The uppermost faces are (111) 

and (100), and they make a small angle with each other, though this is not apparent 

in the figure, it shows up m an oblique view Figure 17d, plate 19, appears to show 

both the cubic and hexagonal succession of closely packed planes, but it is difficult 

to verify whether the left-hand side follows the true hexagonal cloee-packed «truc- 
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ture because it is not certain that the assemblage had a depth of more than two 

layers at this point Many instances of twins, and of intercryatalline boundaries, 

can be seen m figure 16, plate 20 

Figure 18, plate 21, shows several dislocations in a three-dimensional structure 

subjected to a bending stram 

10 Demonstration of the model 

With the co-operation of Messrs Kodak, a 16 mm cinematograph film has been 

made of the movements of the dislocations and gram boundaries when single crystal 

and polycrystalhne rafts are sheared compressed, or extended Moreover, if the 

soap solution is placed in a glass vessel with a flat bottom, the model lends itself to 

projection on a large scale by transmitted light Since a certain depth is required for 

producing the bubbles, and the solution is rather opaque, it is desirable to make the 

projection through a glass block resung on rhe bottom of the vessel and just sub¬ 

merged beneath the surface 

In conclusion, we wish to express our thanks to Mr C E Harrold, of King’s College, 

Cambridge, who made for as some of the pipettes which were used to produce the 

bubbles 
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Figure 2. Perfect crystalline raft of babbles. Diameter 1 41 mm. 
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Figure 4. Perfect crystalline raft of bubbles. Diameter 0-30 mm. 
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Grain boundaries 
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Figure 6a. A dislocation. Diameter 1-9 mm. 
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Dislocations 
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Figure 66. Diameter 0*76 mm. 
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Figure 6c. Diameter 0*30 mm. 

Figure 7, Parallel dislocations. Diameter 0-76 nun. 
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Figure 8. Dislocation projecting from a gram boundary. Diameter 0-30 mm. 

Figure 9. Dislocations in adjacent rows. Diameter 1-9 mm. 
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Figure 13. Two stages of recrystallization. Diameter 1*64 mm. 
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FiGuhe 14. Effect of atoms of impurity. Diumate; of uniform bubble* tthouL 13 mni. 
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Figure 16. A three-dimensional raft viewed normally. Diameter 0-70 mm. 
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Figure 18. Dislocations m three-dimensional structure. Diameter 0*70 mm. 
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31 

Tensors 

31-1 The tensor of polarizability 

Physicists always have a haoit of taking the simplest example of any phenome¬ 
non and calling it “physics,” leaving the more complicated examples to become 
the concern of other fields—say of applied mathematics, electrical engineering, 
chemistry, or crystallography. Even solid-state physics is almost only half physics 
because it worries too much about special substances. So in these lectures we will 
be leaving out many interesting things. For instance, one of the important proper¬ 
ties of crystals—or of most substances—is that their electric polarizability is 
different in different directions. If you apply a field in any direction, the atomic 
charges shift a little and produce a dipole moment, but the magnitude of the 
moment depends very much on the direction of the field. That is, of course, 
quite a complication. But in physics we usually start out by talking about the 
special case in which the polarizability is the same in all directions, to make life 
easier. We leave the other cases to some other field. Therefore, for our later work, 
we will not need at all what we are going to talk about in this chapter. 

The mathematics of tensors is particularly useful for describing properties 
of substances which vary in direction—although that’s only one example of their 
use. Since most of you are not going to become physicists, but are going to go 
into the real world, where things depend severely upon direction, sooner or later 
you will need to use tensors. In order not to leave anything out, we are going to 
describe tensors, although not in great detail. We want the feeling that our treat¬ 
ment of physics is complete. For example, our electrodynamics is complete—as 
complete as any electricity and magnetism course, even a graduate course. Our 
mechanics is not complete, because we studied mechanics when you didn’t have a 
high level of mathematical sophistication, and we were not able to discuss subjects 
like the principle of least action, or Lagrangians, or Hamiltonians, and so on, 
which are more elegant ways of describing mechanics. Except for general relativity, 
however, we do have the complete laws of mechanics. Our electricity and magnetism 
is complete, and a lot of other things are quite complete. The quantum mechanics, 
naturally, will not be—we have to leave something for the future. But you should 
at least know what a tensor is. 

We emphasized in Chapter 30 that the properties of crystalline substances are 
different in different directions—we say they are anisotropic. The variation of 
the induced dipole moment with the direction of the applied electric field is only 
one example, the one we will use for our example of a tensor. Let’s say that for a 
given direction of the electric field the induced dipole moment per unit volume P 
is proportional to the strength of the applied field E. (This is a good approximation 
for many substances if E is not too large.) We will call the proportionality 
constant ot* We want now to consider substances m which a depends on the 
direction of the applied field, as, for example, in crystals like calcite, which make 
double images when you look through them. 

Suppose, in a particular crystal, we find that an electric field Ei in the ^-direc¬ 
tion produces the polarization Px in the x-direction. Then we find that an electric 
field E2 in the ^-direction, with the same strength, as Ex produces a different polar- 

* In Chapter 10 we followed the usual convention and wrote P = eoxE and called 
x (“khi”) the “susceptibility.” Here, it will be more convenient to use a single letter, so 
we write a for eox For isotropic dielectrics, a = (k-1 )eo, where k is the dielectric constant 
(see Section 10-4). 
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Fig. 31-1. The vector addition of 
polarizations in an anisotropic crystal. 

ization P2 in the ^-direction. What would happen if we put an electric field at 

45° ? Well, that’s a superposition of two fields along a: and y, so the polarization 

P will be the vector sum of Pi and P2, as shown in Fig. 31-1 (a). The polarization 

is no longer in the same direction as the electric field. You can see how that might 

come about. There may be charges which can move easily up and down, but 

which are rather stiff for sidewise motions. When a force is applied at 45°, the 

charges move farther up than they do toward the side. The displacements are 

not in the direction of the external force, because there are asymmetric internal 

elastic forces. 

There is, of course, nothing special about 45°. It is generally true that the 

induced polarization of a crystal is not in the direction of the electric field. In our 

example above, we happened to make a “lucky” choice of our x- and >>-axes, 

for which P was along E for both the x- and ^-directions. If the crystal were 

rotated with respect to the coordinate axes, the electric field E2 in the jy-direction 

would have produced a polarization P with both an x- and a ^-component. 

Similarly, the polarization due to an electric field in the x-direction would have 

produced a polarization with an ^-component and a ^-component. Then the 

polarizations would be as shown in Fig. 31-l(b), instead of as in part (a). Things 

get more complicated—but for any field E, the magnitude of P is still proportional 

to the magnitude of E. 
We want now to treat the general case of an arbitrary orientation of a crystal 

with respect to the coordinate axes. An electric field in the x-direction will produce 

a polarization P with x-, >>-, and z-components; we can write 

Px = <*xxEx, Py = 0iyxEx, Pz = azxEx. (31.1) 

All we are saying here is that if the electric field is in the x-direction, the 

polarization does not have to be in that same direction, but rather has an x-, a y-9 

and a z-component—each proportional to Ex. We are calling the constants of 

proportionality axx, ayx, and azx, respectively (the first letter to tell us which com¬ 

ponent of P is involved, the last to refer to the direction of the electric field). 

Similarly, for a field in the ^-direction, we can write 

Px O-xyEyi Py ~~ ayyEy, Pz azyEy, (31.2) 

and for a field in the z-direction, 

Px = atxzEz, Py = ayzEZ9 Pz = azzEz. (31.3) 

Now we have said that polarization depends linearly on the fields, so if there is an 

electric field E that has both an x- and a ^-component, the resulting x-component 

of P will be the sum of the two Px s of Eqs. (31.1) and (31.2). If E has components 

along x, y, and z, the resulting components of P will be the sum of the three 

contributions in Eqs. (31.1), (31.2), and (31.3). In other words, P will be given by 

Px — Ot-XxEx + Ot-xyEy T* OLxzEZi 

Py = OiyXEX + ayyEy + OtyZEZi (31.4) 

Pz ~ azxEx T azyEv azzEz. 

The dielectric behavior of the crystal is then completely described by the nine 

quantities (aXXi axy, axz, ayz,. . .), which we can represent by the symbol al3. 

(The subscripts / and j each stand for any one of the three possible letters x, y, 
and z.) Any arbitrary electric field E can be resolved with the components EXi Eyi 

and Ez\ from these we can use the atJ to find Px, Py, and Pz, which together give 

the total polarization P. The set of nine coefficients at} is called a tensor—in this 

instance, the tensor of polarizability. Just as we say that the three numbers {Ex, 

Ey, Ez) “form the vector £,” we say that the nine numbers (aXX9 axy,. . .) “form 

the tensor atJ” 
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31-2 Transforming the tensor components 

You know that when we change to a different coordinate system x', y', and z', 

the components Ez>, Ey>, and Ez> of the vector will be quite different—as will 

also the components of P. So all the coefficients al3 will be different for a different 

set of coordinates. You can, in fact, see how the as must be changed by changing 

the components of E and P in the proper way, because if we describe the same 

physical electric field in the new coordinate system we should get the same polariza¬ 

tion. For any new set of coordinates, Px> is a linear combination of PX) Py, and Pz: 

Px‘ ~ &Px "f" bPy cPz> 

and similarly for the other components. If you substitute for Px, Py, and Pz in 

terms of the iTs, using Eq. (31.4), you get 

Px' — a(axxEx -f- axyEy ~b aXzEz) 

+ b( CLyxP-x “b ClyyEy H“ ’ * *) 

+ c(azxEx + ■ * * +***)• 

Then you write EXy Eyi and Ez in terms of EX i Ey>, and Ez>; for instance, 

Ex = a’Ex> + bfEy> + c'E,*, 

where a\ bf, cf are related to, but not equal to, a, 6, c. So you have Px>, expressed 

in terms of the components Ex>, Ey>, and Ez> \ that is, you have the new It is 

fairly messy, but quite straightforward. 

When we talk about changing the axes we are assuming that the crystal stays 

put in space. If the crystal were rotated with the axes, the a’s would not change. 

Conversely, if the orientation of the crystal were changed with respect to the axes, 

we would have a new set of a*s. But if they are known for any one orientation of 

the crystal, they can be found for any other orientation by the transformation we 

have just described. In other words, the dielectric property of a crystal is described 

completely by giving the components of the polarization tensor atl with respect 

to any arbitrarily chosen set of axes. Just as we can associate a vector velocity 

v = (i'x, vy, vg) with a particle, knowing that the three components will change 

in a certain definite way if we change our coordinate axes, so with a crystal we 

associate its polarization tensor whose nine components will transform in a 

certain definite way if the coordinate system is changed. 

The relation between P and E written m Eq. (31.4) can be put m the more 

compact notation: 

Pl = YtaIJE1, (31.5) 
3 

where it is understood that i represents either x, y, or z and that the sum is taken 

ony = jc, y, and z. Many special notations have been invented for dealing with 

tensors, but each of them is convenient only for a limited class of problems. One 

common convention is to omit the sum sign (X!) in Eq. (31.5), leaving it under¬ 

stood that whenever the same subscript occurs twice (here y), a sum is to be taken 

over that index. Since we will be using tensors so little, we will not bother to 

adopt any such special notations or conventions. 

31-3 The energy ellipsoid 

We want now to get some experience with tensors. Suppose we ask the in¬ 

teresting question: What energy is required to polarize the crystal (in addition to 

the energy in the electric field which we know is e0E2/2 per unit volume)? Consider 

for a moment the atomic charges that are being displaced. The work done in dis¬ 

placing the charge the distance dx is qEx dx, and if there are N charges per unit 

volume, the work done is qExN dx. But qN dx is the change dPx in the dipole 
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moment per unit volume. So the energy required per unit volume is 

Ex dPx. 

Combining the work for the three components of the field, the work per unit 

volume is found to be 

EdP. 

Since the magnitude of P is proportional to E, the work done per unit volume in 

bringing the polarization from 0 to P is the integral of E • dP. Calling this work 

up* we write * 

up = iE P = (31.6) 
l 

Now we can express P in terms of E by Eq. (31.5), and we have that 

(31.7) 

l 3 

The energy density up is a number independent of the choice of axes, so it is a 

scalar. A tensor has then the property that when it is summed over one index 

(with a vector), it gives a new vector; and when it is summed over both indexes 

(with two vectors), it gives a scalar. 

The tensor at3 should really be called a “tensor of second rank,” because it 

has two indexes. A vector—with one index—is a tensor of the first rank, and a 

scalar—with no index—is a tensor of zero rank. So we say that the electric field 

E is a tensor of the first rank and that the energy density uP is a tensor of zero 

rank. It is possible to extend the ideas of a tensor to three or more indexes, and 

so to make tensors of ranks higher than two. 

The subscripts of the polarization tensor range over three possible values— 

they are tensors in three dimensions. The mathematicians consider tensors in 

four, five, or more dimensions. We have already used a four-dimensional tensor 

F^y in our relativistic description of the electromagnetic field (Chapter 26). 

The polarization tensor atJ has the interesting property that it is symmetric, 

that is, that axy = ayx, and so on for any pair of indexes. (This is a physical 

property of a real crystal and not necessary for all tensors.) You can prove for 

yourself that this must be true by computing the change in energy of a crystal 

through the following cycle: (1) Turn on a field in the x-direction; (2) turn on a 

field in the ^-direction; (3) turn off the x-field; (4) turn off the j^-field. The crystal 

is now back where it started, and the net work done on the polarization must be 

back to zero. You can show, however, that for this to be true, axy must be equal 

to ctyX. The same kind of argument can, of course, be given for axz, etc. So the 

polarization tensor is symmetric. 

This also means that the polarization tensor can be measured by just measuring 

the energy required to polarize the crystal in various directions. Suppose we apply 

an E'-field with only an x- and a jy-component; then according to Eq. (31.7), 

Wp — i [<*xxEx + (otxy + ayx)ExEy + ayyEy]. (31.8) 

With an Ex alone, we can determine axx; with an Ey alone, we can determine ayy; 
with both Ex and Ey, we get an extra energy due to the term with (ary + ayx). 
Since the axy and ayx are equal, this term is 2axy and can be related to the energy. 

The energy expression, Eq. (31.8), has a nice geometric interpretation. 

Suppose we ask what fields Ex and Ey correspond to somz given energy density—say 

u0. That is just the mathematical problem of solving the equation 

axxEx + 2<xxyExEy T- otyyEy ~ 2z/q* 

This is a quadratic equation, so if we plot Ex and Ey, the solutions of this equation 

* This work done in producing the polarization by an electric field is not to be confused 
with the potential energy -po-E of a permanent dipole moment po. 
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are all the points on an ellipse (Fig. 31-2). (It must be an ellipse, rather than a 

parabola or a hyperbola, because the energy for any field is always positive and 

finite.) The vector E with components Ex and Ey can be drawn from the origin 

to the ellipse. So such an “energy ellipse” is a nice way of “visualizing” the polar¬ 

ization tensor. 

If we now generalize to include all three components, the electric vector E in 

any direction required to give a unit energy density gives a point which will be on 

the surface of an ellipsoid, as shown in Fig. 31-3. The shape of this ellipsoid of 

constant energy uniquely characterizes the tensor polarizability. 

Now an ellipsoid has the nice property that it can always be described simply 

by giving the directions of three “principal axes” and the diameters of the ellipse 

along these axes. The “principal axes” are the directions of the longest and 

shortest diameters and the direction at right angles to both. They are indicated 

by the axes a, h, and c in Fig. 31-3. With respect to these axes, the ellipsoid has 

the particularly simple equation 

&aaEa OtbbEb accEc 2m0. 

So with respect to these axes, the dielectric tensor has only three components 

that are not zero: aaa, abb, and a(t That is to say, no matter how complicated a 

crystal is, it is always possible to choose a set of axes (not necessarily the crystal 

axes) for which the polarization tensor has only three components. With such a 

set of axes, Eq. (31.4) becomes simply 

abb^by ^c OiccEc. (31.9) 

An electric field along any one of the principal axes produces a polarization along 

the same axis, but the coefficients for the three axes may, of course, be different. 

Often, a tensor is described by listing the nine coefficients in a table inside of 

a pair of brackets: 

CtXy CLXZ 

ayx ayy ayz (31.10) 

Otzx OtZy OtZZ 

Fig. 31-2. Locus of the vector E = 

{Ex, Ey) that gives a constant energy of 

polarization. 

Fig. 31-3. The energy ellipsoid of 

the polarization tensor. 

For the principal axes a, b, and c, only the diagonal terms are not zero; we say 

then that “the tensor is diagonal.” The complete tensor is 

<*aa 0 0 
0 abb 0 (31.11) 

The important point is that any polarization tensor (in fact, any symmetric tensor 

of rank two in any number of dimensions) can be put in this form by choosing a 

suitable set of coordinate axes. 

If the three elements of the polarization tensor in diagonal form are all equal, 

that is, if 

G-aa Cccc (31.12) 

the energy ellipsoid becomes a sphere, and the polarizability is the same in all 

directions. The material is isotropic. In the tensor notation, 

where 5tJ is the unit tensor 

ai} 

1 

0 

0 

abtJ, 

0 0 
1 0 
0 1 

5ij 1, if i jf 

bl3 = 0, if i ^ j. 

(31.13) 

(31.14) 

(31.15) 

That means, of course, 
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The tensor 8^ is often called the “Kronecker delta.” You may amuse yourself 

by proving that the tensor (31.14) has exactly the same form if you change the 

coordinate system to any other rectangular one. The polarization tensor of Eq. 

(31.13) gives 

Pi — w ^ &EU 
3 

which means the same as our old result for isotropic dielectrics: 

P = aE. 

The shape and orientation of the polarization ellipsoid can sometimes be 

related to the symmetry properties of the crystal. We have said in Chapter 30 

that there are 230 different possible internal symmetries of a three-dimensional 

lattice and that they can, for many purposes, be conveniently grouped into seven 

classes, according to the shape of the unit cell. Now the ellipsoid of polarizability 

must share the internal geometric symmetries of the crystal. For example, a 

triclmic crystal has low symmetry—the ellipsoid of polarizability will have unequal 

axes, and its orientation will not, m general, be aligned with the crystal axes. On 

the other hand, a monoclinic crystal has the property that its properties are un¬ 

changed if the crystal is rotated 180° about one axis. So the polarization tensor 

must be the same after such a rotation. It follows that the ellipsoid of the polariz¬ 

ability must return to itself after a 180° rotation. That can happen only if one of 

the axes of the ellipsoid is in the same direction as the symmetry axis of the crystal. 

Otherwise, the orientation and dimensions of the ellipsoid are unrestricted 

For an orthorhombic crystal, however, the axes of the ellipsoid must corre¬ 

spond to the crystal axes, because a 180° rotation about any one of the three axes 

repeats the same lattice. If we go to a tetragonal crystal, the ellipse must have the 

same symmetry, so it must have two equal diameters. Finally, for a cubic crystal, 

all three diameters of the ellipsoid must be equal, it becomes a sphere, and the 

polarizability of the crystal is the same in all directions. 

There is a big game of figuring out the possible kinds of tensors for all the 

possible symmetries of a crystal. It is called a “group-theoretical” analysis. But 

for the simple case of the polarizability tensor, it is relatively easy to see what the 

relations must be. 

31-4 Other tensors; the tensor of inertia 

There are many other examples of tensors appearing in physics. For example, 

in a metal, or in any conductor, one often finds that the current density / is ap¬ 

proximately proportional to the electric field E; the proportionality constant is 

called the conductivity cr: 

j = crE. 

For crystals, however, the relation between j and E is more complicated; the 

conductivity is not the same in all directions. The conductivity is a tensor, and 

we write 

J* = VijEj- 

Another example of a physical tensor is the moment of inertia. In Chapter 18 

of Volume I we saw that a solid object rotating about a fixed axis has an angular 

momentum L proportional to the angular velocity a?, and we called the proportion¬ 

ality factor /, the moment of inertia: 

L - /«. 

For an arbitrarily shaped object, the moment of inertia depends on its orientation 

with respect to the axis of rotation. For instance, a rectangular block will have 

different moments about each of its three orthogonal axes. Now angular velocity 

cj and angular momentum L are both vectors. For rotations about one of the axes 

of symmetry, they are parallel. But if the moment of inertia is different for the 
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three principal axes, then w and L are, in general, not in the same direction 

(see Fig. 31-4). They are related in a way analogous to the relation between 

E and P. In general, we must write 

LX ~ Ixx^x Ixytoy T IxZ^Zi 

Ly ~ IXyU)x "b lyyttiy “f" lyz^Zi (31.16) 

Lz ~ IzxCt)x + IzyCOy 4 Lzz0)z. 

The nine coefficients I%3 are called the tensor of inertia. Following the analogy 

with the polarization, the kinetic energy for any angular momentum must be 

some quadratic form in the components cox, coyi and o)z: 

KE = (31-17) 
%o 

We can use the energy to define the ellipsoid of inertia. Also, energy arguments 

can be used to show that the tensor is symmetric—that It3 ~ ln. 

The tensor of inertia for a rigid body can be worked out if the shape of the 

object is known. We need only to write down the total kinetic energy of all the 

particles in the body. A particle of mass m and velocity v has the kinetic energy 

imv2, and the total kinetic energy is just the sum 

\mv2 

Fig. 31-4. The angular momentum 

L of a solid object is not, in general, 

parallel to its angular velocity a?. 

over all of the particles of the body. The velocity v of each particle is related to 

the angular velocity w of the solid body. Let’s assume that the body is rotating 

about its center of mass, which we take to be at rest. Then if r is the displacement 

of a particle from the center of mass, its velocity v is given by a? X r. So the total 

kinetic energy is 
KE = ^M«Xr)2. (31.18) 

Now all we have to do is write w X r out in terms of the components ojXf cov, 

and x, y, z, and compare the result with Eq. (31.17); we find Il3 by identifying 

terms. Carrying out the algebra, we write 

(w X i*)2 = (« X r)2 4 (w X r)l + (« X r)2 

= (tCyZ — cozy)2 4 (uzx ~ o)Tz)2 4- - w(yx)2 

= oc2z2 — 2ojv(j)zzy 4 oo2j>2 

-f- oj2x2 — 2cozcoxxz 4 c*)2z2 

4 o:2y2 — 2o)xo)yyx 4 w2*2. 

Multiplying this equation by m/2, summing over all particles, and comparing 

with Eq. (31.17), we see that lxx, for instance, is given by 

hx = m0'2 + Z2)- 

This is the formula we have had before (Chapter 19, Vol. I) for the moment of 

inertia of a body about the x-axis. Since r2 = x2 4 y2 + z2, we can also write 

this term as 

lxx = tn^2 - X2)' 

Working out all of the other terms, the tensor of inertia can be written as 

Z m(r2 - x2) 

- Z myx 

- z mzx 

— z mxy 
Z m(r2 - y2) 

- Z mzy 

— Z mxz 

— Z myz 
Z mir2 - z2) 

If you wish, this may be written in “tensor notation” as 

I%3 y ^ m(y &t3 rzrj). 

(31.19) 

(31.20) 
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where the rx are the components (x, y, z) of the position vector of a particle and 

the £ means to sum over all the particles. The moment of inertia, then, is a tensor 

of the second rank whose terms are a property of the body and relate L to w by 

(3121) 

3 

For a body of any shape whatever, we can find the ellipsoid of inertia and, 

therefore, the three principal axes. Referred to these axes, the tensor will be 

diagonal, so for any object there are always three orthogonal axes for which the 

angular velocity and angular momentum are parallel They are called the principal 

axes of mertia. 

31-5 The cross product 

We should point out that we have been using tensors of the second rank 

since Chapter 20 of Volume I. There, we defined a “torque in a plane,” such as 

rxyi by 

TfV = xFu ~ yFx. 

Generalized to three dimensions, we could write 

tzj = rzF3 — r3Ft. (31.22) 

The quantity rZ3 is a tensor of the second rank. One way to see that this is so is by 

combining tX} with some vector, say the unit vector e, according to 

T<ie>- 

j 

If this quantity is a vector, then r%J must transform as a tensor—this is our definition 

of a tensor. Substituting for rl3, we have 

Z= Z r‘F>e> - Z r’e>F‘ 

3 3 3 

= r%{F * e) - (v * e)Fx. 

Since the dot products are scalars, the two terms on the right-hand side are vectors, 

and likewise their difference. So t%3 is a tensor. 

But t%] is a special kind of tensor; it is antisymmetric, that is, 

T%] ~ Tju 

so it has only three nonzero terms—txv, ryz, and rzx. We were able to show in 

Chapter 20 of Volume 1 that these three terms, almost “by accident,” transform 

like the three components of a vector, so that we could dejme 

T ~~ (tn Tyi Tz) = ([fyz5 Tzx, Tj-y) 

We say “by accident,” because it happens only in three dimensions. In four 

dimensions, for instance, an antisymmetric tensor of the second rank has six 

nonezero terms and certainly cannot be replaced by a vector with /bwr components. 

Just as the axial vector r = r X F is a tensor, so also is every cross product 

of two polar vectors—all the same arguments apply. By luck, however, they are 

also representable by vectors (really pseudovectors), so our mathematics has been 

made easier for us. 

Mathematically, if a and b are any two vectors, the nine quantities alb3 form 

a tensor (although it may have no useful physical purpose). Thus, for the position 

vector rt, rxr3 is a tensor, and since bl3 is also, we see that the right side of Eq. 

(31 20) is indeed a tensor. Likewise Eq (31.22) is a tensor, since the two terms on 

the right-hand side are tensors. 
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31-6 The tensor of stress 

The symmetric tensors we have described so far arose as coefficients in re¬ 

lating one vector to another. We would like to look now at a tensor which has a 

different physical significance—the tensor of stress. Suppose we have a solid 

object with various forces on it. We say that there are various “stresses” inside, 

by which we mean that there are internal forces between neighboring parts of the 

material. We have talked a little about such stresses in a two-dimensional case 

when we considered the surface tension in a stretched diaphragm in Section 

12-3. We will now see that the internal forces in the material of a three-dimensional 

body can be described in terms of a tensor. 

Consider a body of some elastic material—say a block of jello. If we make 

a cut through the block, the material on each side of the cut will, in general, get 

displaced by the internal forces. Before the cut was made, there must have been 

forces between the two parts of the block that kept the material in place; we can 

define the stresses in terms of these forces. Suppose we look at an imaginary plane 

perpendicular to the x-axis—like the plane a in Fig 31-5—and ask about the force 

across a small area Ay Az in this plane The material on the left of the area exerts 

the force AF\ on the material to the right, as shown in part (b) of the figure 

There is, of course, the opposite reaction force — AFX exerted on the material to 

the left of the surface. If the area is small enough, we expect that AFX is propor¬ 

tional to the area Ay Az. 

You are already familiar with one kind of stress—the pressure in a static 

liquid. There the force is equal to the pressure times the area and is at right angles 

to the surface element. For solids—also for viscous liquids in motion—the force 

need not be normal to the surface; there are shear forces in addition to pressures 

(positive or negative) (By a “shear” force we mean the tangential components 

of the force across a surface.) All three components of the force must be taken 

into account. Notice also that if we make our cut on a plane with some other 

orientation, the forces will be different. A complete description of the internal 

stress requires a tensor. 

Fig 31-5. The material to the left of 

the plane a exerts across the area 

Ay Az the force AF) on the material to 

the right of the plane. 

Fig. 31-6. The force AF] across an 

element of area Ay Az perpendicular ro 

the x-axis is resolved into the three 

components AFXi, AFyi, and AFZi. 

We define the stress tensor in the following way: First, we imagine a cut 

perpendicular to the x-axis and resolve the force AFY across the cut into its com¬ 

ponents AFxi, AFf/U AFzU as in Fig. 31-6. The ratio of these forces to the area 

Ay Az, we call Sxx, Syx, and S2X. For example, 

o _ AFvl 
*yx AyAz' 

The first index y refers to the direction force component; the second index x is 

normal to the area. If you wish, you can write the area Ay Az as Aar, meaning an 

element of area perpendicular to x. Then 

vx A ax ' 

Next, we think of an imaginary cut perpendicular to the y-axis. Across a small 
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Fig. 31-7. The force across an ele¬ 

ment of area perpendicular to y is re¬ 

solved into three rectangular components 

Fig. 31-8. The force Fn across the 

face N (whose unit normal is n) is resolved 

Into components. 

area Ax Az there will be a force AF2. Again we resolve this force into three com¬ 

ponents, as shown in Fig 31-7, and define the three components of the stress, 

Sxl/, Sl/y, SztJ, as the force per unit area in the three directions. Finally, we make an 

imaginary cut perpendicular to z and define the three components Sxz, S„z, and Szz. 

So we have the nine numbers 

>xy 

^vy 

sz„ 
(31.23) 

We want to show now that these nine numbers are sufficient to describe com¬ 

pletely the internal state of stress, and that StJ is indeed a tensor Suppose we want 

to know the force across a surface oriented at some arbitrary angle Can we find 

it from SlJl Yes, m the following way: We imagine a little solid figure which has 

one face A in the new surface, and the other faces parallel to the coordinate axes. 

If the face A happened to be parallel to the z-axis, we would have the triangular 

piece shown in Fig. 31-8. (This is a somewhat special case, but will illustrate well 

enough the general method.) Now the stress forces on the little solid triangle in 

Fig 31-8 are in equilibrium (at least in the limit of infinitesimal dimensions), 

so the total force on it must be zero. We know the forces on the faces parallel to 

the coordinate axes directly from St, Their vector sum must equal the foice on 

the lace A, so we can express this force in terms of StJ- 

Our assumption that the surface forces on the small triangular volume are in 

equilibrium neglects any other body forces that might be present, such as giavity 

oi pseudo forces if our coordinate system is not an inertial frame Notice, however, 

that such body forces will be proportional to the volume of the little triangle and, 

therefore, to Ax, Ay, Az, whereas all the surface forces are proportional to the 

areas such as Ax Ay, Ay Az, etc. So if we take the scale of the little wedge small 

enough, the body forces can always be neglected m comparison with the surface 

forces. 

Let’s now add up the forces on the little wedge. We take first the x-component, 

which is the sum of five parts—one from each face However, if Az is small enough, 

the forces on the triangular faces (perpendicular to the z-axis) will be equal and 

opposite, so we can forget them. The x-component of the force on the bottom 

rectangle is 

AFx2 = SxuAxAz. 

The x-component of the force on the vertical rectangle is 

AFxi = Sxx Ay Az. 

These two must be equal to the x-component of the force outward across the face 

A. Let’s call n the unit vector normal to the face A, and the force on it F„, then 

we have 

AFxn = Sxx Ay Az + Sxy Ax Az. 

The x-component Sxn of the stress across this plane is equal to AFltl divided by 

the area, which is A\/zAx2 + Ay2, or 

S xn = Sf 
Ay 

\/Ax2 + Ay2 
= + SX7y 

_Ax 

\/Ax2 + Ay2 

Now Ax/\/Ax2 4- Ay2 is the cosine of the angle 6 between n and the j’-axis, as 

shown in Fig. 31-8, so it can also be written as nu, the ^-component of n. Similarly, 

Ay/\/~Ax2 + Aj;2 is sin 6 ~ nx. We can write 

SXn SXXftX + Sryfty. 

If we now generalize to an arbitrary surface element, we would get that 

SXn SxxWt "F SXytty Sxznz 
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or, in general. 

sm = 2 (31.24) 
3 

We can find the force across any surface element in terms of the StJ, so it does 

describe completely the state of internal stress of the material. 

Equation (31 24) says that the tensor StJ relates the force Sn to the unit vector 

n, just as atJ relates P to E. Since n and Sn are vectors, the components of Sl} must 

transform as a tensor with changes in coordinate axes. So is indeed a tensor. 

We can also show that StJ is a symmetric tensor by looking at the forces on a 

little cube of material. Suppose we take a little cube, oriented with its faces parallel 

to our coordinate axes, and look at it in cross section, as shown in Fig 31-9. If 

we let the edge of the cube be one unit, the x- and ^-components of the forces on 

the faces normal to the x- and y-axes might be as shown in the figure. If the cube 

is small, the stresses do not change appreciably from one side of the cube to the 

opposite side, so the force components are equal and opposite as shown Now 

there must be no torque on the cube, or it would start spinning. The total torque 

about the center is (Sl/X — Sxy) (times the unit edge of the cube), and since the 

total is zero, Syx is equal to Sxy> and the stress tensor is symmetric. 

Since StJ is a symmetric tensor, it can be described by an ellipsoid which will 

have three principal axes. For surfaces normal to these axes, the stresses are 

particularly simple—they correspond to pushes or pulls perpendicular to the sur¬ 

faces There are no shear forces along these faces. For any stress, we can always 

choose our axes so that the shear components are zero. If the ellipsoid is a sphere, 

there are only normal forces in any direction. This corresponds to a hydrostatic 

pressure (positive or negative). So for a hydrostatic pressure, the tensor is diagonal 

and all three components are equal; they are, in fact, just equal to the pressure p. 

We can write 

StJ = pbl3. (31.25) 

The stress tensor—and also its ellipsoid—will, in general, vary from point to 

point in a block of material; to describe the whole block we need to give the value 

of each component of Sl} as a function of position. So the stress tensor is a field. 

We have had scalar fields, like the temperature T(x,y, z), which give one number 

for each point in space, and vector fields like E(x, y, z), which give three numbers 

for each point. Now we have a tensor field which gives nine numbers for each 

point in space—or really six for the symmetric tensor S13. A complete description 

of the internal forces in an arbitrarily distorted solid requires six functions of 

x, y, and z. 

31-7 Tensors of higher rank 

The stress tensor StJ describes the internal forces of matter. If the material is 

elastic, it is convenient to describe the internal distortion in terms of another tensor 

TtJ—called the strain tensor. For a simple object like a bar of metal, you know 

that the change in length, AL, is approximately proportional to the force, so we 

say it obeys Hooke’s law: 

A L = 7 F. 

For a solid elastic body with arbitrary distortions, the strain Tu is related to the 

stress St] by a set of linear equations: 

T,J = £ y„kiSti. (31.26) 
k,l 

Also, you know that the potential energy of a spring (or bar) is 

iFAL = iJF2. 

The generalization for the elastic energy density in a solid body is 

^elastic ^ j 2'YijklSijSjrf. (31.27) 
ijkl 

Fig. 31-9. The x- and y-forces on 

four faces of a small unit cube. 
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The complete description of the elastic properties of a crystal must be given in 
terms of the coefficients yl3ki- This introduces us to a new beast. It is a tensor of the 
fourth rank. Since each index can take on any one of three values, x, y, or z, there 
are 34 = 81 coefficients. But there are really only 21 different numbers. First, 
since S%3 is symmetric, it has only six different values, and only 36 different co¬ 
efficients are needed in Eq. (31.27). But also, St} can be interchanged with Ski 
without changing the energy, so yZ3u must be symmetric if we interchange ij 
and kL This reduces the number of different coefficients to 21. So to describe the 
elastic properties of a crystal of the lowest possible symmetry requires 21 elastic 
constants! This number is, of course, reduced for crystals of higher symmetry. 
For example, a cubic crystal has only three elastic constants, and an isotropic 
substance has only two. 

That the latter is true can be seen as follows How can the components of 
ytJu be independent of the direction of the axes, as they must be if the material 
is isotropic? Answer: They can be independent only if they are expressible in terms 
of the tensor bt3. There are two possible expressions, bt3hi and <5^5^ + btjb}k, 

which have the required symmetry, so Yllki must be a linear combination of them. 
Therefore, for isotropic materials, 

yuki — + b(btkdji + SiiSjk), 

and the material requires two constants, a and h. to describe its elastic properties. 
We will leave it for you to show that a cubic crystal needs only three 

As a final example, this time of a third-rank tensor, we have the piezoelectric 
effect. Under stress, a crystal generates an electric field proportional to the stress; 
hence, in general, the law is 

El = £ P>)k$3*■' 

where Et is the electric field, and the Pt)k are the piezoelectric coefficients—or the 
piezoelectric tensor Can you show that if the crystal has a center of inversion 
(invariant under x, y, z —> — x, — y, —z) the piezoelectric coefficients are all zero? 

31-8 The four-tensor of electromagnetic momentum 

All the tensors we have looked at so far in this chapter relate to the three 
dimensions of space; they are defined to have a certain transformation property 
under spatial rotations. In Chapter 26 we had occasion to use a tensor in the four 
dimensions of relativistic space-time—the electromagnetic field tensor The 
components of such a four-tensor transform under a Lorentz transformation of 
the coordinates in a special way that we worked out. (Although we did not do it 
that way, we could have considered the Lorentz transformation as a “rotation” 
in a four-dimensional “space” called Minkowski space; then the analogy with what 
we are doing here would have been clearer) 

As our last example, we want to consider another tensor in the four dimensions 
(/, x, y, z) of relativity theory. When we wrote the stress tensor, we defined SZJ 
as a component of a force across a unit area. But a force is equal to the time 
rate of change of a momentum. Therefore, instead of saying is the x-compon- 
ent of the force across a unit area perpendicular to yf we could equally well say, 
“Sxy is the rate of flow of the x-component of momentum through a unit area 
perpendicular to y.” In other words, each term of Sl} also represents the flow of 
the /-component of momentum through a unit area perpendicular to they-direction 
These are pure space components, but they are parts of a “larger” tensor S^v in 
four dimensions (/x and v ~ /, x, y, z) containing additional components like 
Stx, Syt, Stti etc. We will now try to find the physical meaning of these extra 
components. 

We know that the space components represent flow of momentum. We can 
get a clue on how to extend this to the time dimension by studying another kind of 
“flow”—the flow of electric charge. For the scalar quantity, charge, the rate of 
flow (per unit area perpendicular to the flow) is a space vector—the current density 
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vector j. We have seen that the time component of this flow vector is the density 

of the stuff that is flowing For instance, j can be combined with a time component, 

jt = p, the charge density, to make the four-vector jy = (p,y); that is, the p in 

takes on the values t, x, y, z to mean “density, rate of flow m the x-direction, 

rate of flow in /, rate of flow in z” of the scalar charge. 

Now by analogy with our statement about the time component of the flow of 

a scalar quantity, we might expect that with Sxx, Sxy, and Srz, describing the flow 

of the x-component of momentum, there should be a time component Sxt which 

would be the density of whatever is flowing; that is, Sxt should be the density of 

x-momentum. So we can extend our tensor horizontally to include a /-component 

We have 

Sxt = density of x-momentum, 

Sxx = a"-flow of x-momentum, 

Sxy -- /-flow of x-momentum, 

Sxz = z-flow of x-momentum. 

Similarly, for the /-component of momentum we have the three components of 

flow—SyX, Syy, Sl/z—to which we should add a fourth term: 

■S* = density of /-momentum. 

And, of course, to Szxy Szy, Szz we would add 

Szt ~ density of z-momentum. 

In four dimensions there is also a /-component of momentum, which is, we 

know, energy So the tensor St3 should be extended vertically with Stx, Sty, and 

StZi where 

Stx = x-flow of energy, 

Sty = /-flow of energy, (31.28) 

Stz ~ z-flow of energy; 

that is, Stx is the flow of energy per unit area and per unit time across a surface 

perpendicular to the x-axis, and so on. Finally, to complete our tensor we need 

Sit, which would be the density of energy. We have extended our stress tensor 

Sl3 of three dimensions to the four-dimensional stress-energy tensor S^. The 

index p can take on the four values /, x, y, and z, meaning, respectively, “density,” 

“flow per unit area in the x-direction,” “flow per unit area in the /-direction," 

and “flow per unit area in the z-direction ” In the same way, v takes on the four 

values /, x, yf z to tell us what flows, namely, “energy,” “momentum in the x-direc- 

tion,” “momentum in the /-direction,” and “momentum m the z-direction.” 

As an example, we will discuss this tensor not in matter, but m a region of free 

space in which there is an electromagnetic field. We know that the flow of energy is 

the Poynting vector S = et)C2E X B. So the x-, /-, and z-components of S are, 

from the relativistic point of view, the components Su, Stv, and Siz of our four- 

dimensional stress-energy tensor. The symmetry of the tensor Si3 carries over into 

the time components as well, so the four-dimensional tensor S^ is symmetric: 

Syr - Syy. (31.29) 

In other words, the components Stf, SIJt, Szi, which are the densities of x, y, and 

z momentum, are also equal to the x-, >-, and z-components of the Poynting vector 

S', the energy flow—as we have already shown in an earlier chapter by a different 

kind of argument. 

The remaining components of the electromagnetic stress tensor S^ can also 

be expressed in terms of the electric and magnetic fields E and B That is to say, 

we must admit stress or, to put it less mysteriously, flow of momentum in the 

electromagnetic field We discussed this in Chapter 27 in connection with Eq 

(27.21), but did not work out the details 
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Those who want to exercise their prowess in tensors in four dimensions might 

like to see the formula for S„„ in terms of the fields: 

where sums on a, ft are on /, x, yt z but (as usual in relativity) we adopt a special 

meaning for the sum sign £ and for the symbol 5. In the sums the x, y, z terms 

are to be subtracted and 8tt = +1, while 8XX ~ byy = 8ZZ — — 1 and 8yv — 0 

for fi 9^ v {c = 1). Can you verify that it gives the energy density SH = 

(cq/2) (E2 + B2) and the Poynting vector e0E X B1 Can you show that in an 

electrostatic field with B = 0 the principal axes of stress are in the direction of the 

electric field, that there is a tension (e0/2)E2 along the direction of the field, and that 

there is an equal pressure in directions perpendicular to the field direction? 
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32 

Refractive Index of Dense Materials 

32-1 Polarization of matter 

We want now to discuss the phenomenon of the refraction of light—and also, 

therefore, the absorption of light—by dense materials. In Chapter 31 of Volume I 

we discussed the theory of the index of refraction, but because of our limited 

mathematical abilities at that time, we had to restrict ourselves to finding the index 

only for materials of low density, like gases. The physical principles that produced 

the index were, however, made clear The electric field of the light wave polarizes 

the molecules of the gas, producing oscillating dipole moments. The acceleration 

of the oscillating charges radiates new waves of the field. This new field, interfering 

with the old field, produces a changed field which is equivalent to a phase shift of 

the original wave. Because this phase shift is proportional to the thickness of the 

material, the effect is equivalent to having a different phase velocity in the material. 

When we looked at the subject before, we neglected the complications that arise 

from such effects as the new wave changing the fields at the oscillating dipoles. 

We assumed that the forces on the charges in the atoms came just from the incoming 

wave, whereas, in fact, their oscillations are driven not only by the incoming wave 

but also by the radiated waves of all the other atoms It would have been difficult 

for us at that time to include this effect, so we studied only the rarefied gas, 

where such effects are not important. 

Now, however, we will find that it is very easy to treat the problem by the use 

of differential equations. This method obscures the physical origin of the index 

(as coming from the re-radiated waves interfering with die original waves), but 

it makes the theory for dense materials much simpler. This chapter will bring 

together a large number of pieces from our earlier work. We’ve taken up practically 

everything we will need, so there are relatively few really new ideas to be introduced. 

Since you may need to refresh your memory about what we are going to need, 

we give in Table 32-1 a list of the equations we are going to use, together with a 

reference to the place where each can be found. In most instances, we will not take 

the time to give the physical arguments again, but will just use the equations. 

Table 32-1 

Our work in this chapter will be based on the following material, 
already covered in earlier chapters 

32-1 Polarization of matter 

32-2 Maxwell’s equations in a 

dielectric 

32-3 Waves in a dielectric 

32-4 The complex index of refraction 

32-5 The index of a mixture 

32-6 Waves in metals 

32-7 Low-frequency and 

high-frequency approximations; 

the skin depth and the plasma 

frequency 

Review: See Table 32-1. 

Subject Reference Equation 

Damped oscillations Vol I, Chap. 23 m(x + Jx + wqx) = F 

Index of gases Vol I, Chap. 31 
1 Nqi 

+ 2 eo(«g - u2) 

n = n' — in" 

Mobility Vol. I, Chap. 41 mx -j- jLt-v = Z7 

Electrical conductivity Vol. I, Chap. 43 
r Nqlr 

M — — ; <J =- 
m m 

Polarizability Vol II, Chap. 10 Ppol = -V • P 

Inside dielectrics Vol. II, Chap 11 £|or,l = E + ~P 
3«l) 
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We begin by recalling the machinery of the index of refraction for a gas. 

We suppose that there are N particles per unit volume and that each particle be¬ 

haves as a harmonic oscillator. We use a model of an atom or molecule in which 

the electron is bound with a force proportional to its displacement (as though the 

electron were held in place by a spring). We emphasized that this was not a legiti¬ 

mate classical model of an atom, but we will show later that the correct quantum 

mechanical theory gives results equivalent to this model (in simple cases). In our 

earlier treatment, we did not include the possibility of a damping force in the atomic 

oscillators, but we will do so now. Such a force corresponds to a resistance to the 

motion, that is, to a force proportional to the velocity of the electron. Then the 

equation of motion is 

F = qeE ~ m(x + 7x + coox), (32.1) 

where x is the displacement parallel to the direction of E. (We are assuming an 

isotropic oscillator whose restoring force is the same in all directions. Also, we 

are taking, for the moment, a linearly polarized wave, so that E doesn’t change 

direction.) If the electric field acting on the atom varies sinusoidally with time, 

we write 

E = E0etut. (32.2) 

The displacement will then oscillate with the same frequency, and we can let 

x - x„elw' 

Substituting x = /cox and x = — co2x, we can solve for x in terms of E: 

x 
qe/m 

2-;-—2 E 
CO + Z7w + CO() 

(32.3) 

Knowing the displacement, we can calculate the acceleration x and find the 

radiated wave responsible for the index. This was the way we computed the index 

in Chapter 31 of Volume I. 

Now, however, we want to take a different approach. The induced dipole 

moment p of an atom is qex or, using Eq. (32.3), 

P = 
qlrm_ 

— co2 -f- /7co -f- co2 
E. (32.4) 

Since p is proportional to E, we write 

p = e0a(o))E, (32.5) 

where a is called the atomic polarizability* With this definition, we have 

ql/me0 m ^ 
a — ---- * (32 6 

— co T /Tco T coo 

The quantum mechanical solution for the motions of electrons in atoms 

gives a similar answer except with the following modifications. The atoms have 

several natural frequencies, each frequency with its own dissipation constant 

7. Also the effective “strength” of each mode is different, which we can represent 

by multiplying the polarizability for each frequency by a strength factor/, which 

is a number we expect to be of the order of 1 Representing the three parameters 

co, 7, and / by c04, 7*, and fk for each mode of oscillation, and summing over the 

* Throughout this chapter we follow the notation of Chapter 31 of Volume I, and let 
a represent the atomic polarizability as defined here. In the last chapter, we used a to 
represent the volume polarizability—the ratio of P to E In the notation of this chapter 
P = NaeoE (see Eq 32.8) 
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various modes, we modify Eq. (32.6) to read 

:(«) = -?r v 
fk 

e°m "~k -w2 + /TjfcW + OJofc 

(32 7) 

If jV is the number of atoms per unit volume in the material, the polarization 

P is just Np — e^NaE, and is proportional to E\ 

P = €vN<x(oj)E. (32.8) 

In other words, when there is a sinusoidal electric field acting in a material, there 

is an induced dipole moment per unit volume which is proportional to the electric 

field—with a proportionality constant a that, we emphasize, depends upon the 

frequency. At very high frequencies, a is small; there is not much response. How¬ 

ever, at low frequencies there can be a strong response. Also, the proportionality 

constant is a complex number, which means that the polarization does not exactly 

follow the electric field, but may be shifted in phase to some extent At any rate, 

there is a polarization per unit volume whose magnitude is proportional to the 

strength of the electric field. 

32-2 Maxwell’s equations in a dielectric 

The existence of polarization in matter means that there are polarization 

charges and currents inside of the material, and these must be put into the complete 

Maxwell equations in order to find the fields We are going to solve Maxwell’s 

equations this ame m a situation in which the charges and currents are not zero, 

as in a vacuum, but are given implicitly by the polarization vector Our first 

step is to find explicitly the charge density p and current density /, averaged over 

a small volume of the same size we had in mind when we defined P. Then the 

p and j we need can be obtained from the polarization. 

We have seen in Chapter 10 that when the polarization P varies from place 

to place, there is a charge density given by 

pp()1 = -VP. (32.9) 

At that time, we were dealing with static fields, but the same formula is valid also 

for time-varying fields However, when P varies with time, there are charges in 

motion, so there is also a polarization current. Each of the oscillating charges 

contributes a current equal to its charge times its velocity v With N such 

charges per unit volume, the current density j is 

/ = Nqcv. 

Since we know that r ~ dx/dt, then / = Nqc(dx/dt), which is just dP/dt. There¬ 

fore the current density from the varying polarization is 

- £ (32.io) 

Our problem is now direct and simple. We write Maxwell’s equations with 

the charge density and current density expressed in terms of P, using Eqs. (32.9) 

and (32 10). (We assume that there are no other currents and charges in the 

material.) We then relate P to E with Eq. (32.5), and we solve the equation for 

E and B—looking for the wave solutions 

Before we do this, we would like to make an historical note. Maxwell origi¬ 

nally wrote his equations in a form which was different from the one we have been 

using. Because the equations were written in this different form for many years— 

and are still written that way by many people—we will explain the difference In 

the early days, the mechanism of the dielectric constant was not fully and clearly 

appreciated. The nature of atoms was not understood, nor that there was a polar¬ 

ization of the material. So people did not appreciate that there was a contribution 
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to the charge density p from V • P. They thought only in terms of charges that 

were not bound to atoms (such as the charges that flow in wires or are rubbed 

off surfaces). 

Today, we prefer to let p represent the total charge density, including the part 

from the bound atomic charges. If we call that part ppoi, we can write 

P Ppol Pother? 

where potiirr is the charge density considered by Maxwell and refers to the charges 

not bound to individual atoms. We would then write 

V E = 
Prol + po+h< 

€() 

Substituting ppoi from Eq. (32.9), 

or 

V E = - —VP 
e<> €o 

V ■ (CoE + P) ~ Potlicr* (32.11) 

The current density in the Maxwell equations for X X B also has, in general, 

contributions from bound atomic currents. We can therefore write 

/ = Jv 

and the Maxwell equation becomes 

c2V X B = /--- 
€n 

7oth(* 

jpoi , dE 

€o dt 

Using Eq. (32.10), we get 

€()C2V X B = /other + (€()£* + P)- 

(32 12) 

(32 13) 

Now you can see that if we were to define a new vector D by 

D = e0E + 

the two field equations would become 

and 
^ ' D Pother 

6()C2V X B — ./other + ^ 

(32.14) 

(32.15) 

(32.16) 

These are actually the forms that Maxwell used for dielectrics. His two remaining 

equations were 

and 

V X E = 
dB 

dt ’ 

V B = 0, 

which are the same as we have been using. 

Maxwell and the other early workers also had a problem with magnetic 

materials (which we will take up soon) Because they did not know about the 

circulating currents responsible for atomic magnetism, they used a current density 

that was missing still another part Instead of Eq. (32.16), they actually wrote 

VXH = j' + -~- (32.17) 

where H differs from e0c2B because it includes the effects of atomic currents. 

(Then j' represents what is left of the currents.) So Maxwell had jour field vectors— 

£, D, B, and H—the D and H were hidden ways of not paying attention to what 
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was going on inside the material You will find the equations written this way in 

many places. 

To solve the equations, it is necessary to relate D and H to the other fields, 

and people used to write 

D = eE and B - fxH. (32.18) 

However, these relations are only approximately true for some materials and 

even then only if the fields are not changing rapidly with time. (For sinusoidally 

varying fields one often can write the equations this way by making e and p complex 

functions of the frequency, but not for an arbitrary time variation of the fields.) 

So there used to be all kinds of cheating in solving the equations. We think the 

right way is to keep the equations in terms of the fundamental quantities as we 

now understand them—and that’s how we have done it. 

32-3 Waves in a dielectric 

We want now to find out what kind of electromagnetic waves can exist in a 

dielectric material in which there are no extra charges other than those bound in 

atoms. So we take p = — V-Pandy = dP/dt. Maxwell’s equations then become 

V * P 
(a) V E = - — 

€o 

(c) V X E = - 
aB 
dt 

fl» Sv X B - l(?-+ e) 

(d) V * B = 0 

(32.19) 

We can solve these equations as we have done before. We start by taking 

the curl of Eq. (32.19c): 

V x (V X E) = - ~ V X B. 
at 

Next, we make use of the vector identity 

V X (V X E) = V(V • E) - V2E, 

and also substitute for V X B, using Eq. (32 19b); we get 

Using Eq. (32 19a) for v • E, we get 

v2e 
d2E 1 d2P 

c*!iT=-Ya v(v ■ P) + 
(32.20) 

So instead of the wave equation, we now get that the D’Alembertian of E is equal 

to two terms involving the polarization P. 

Since P depends on E, however, Eq. (32.20) can still have wave solutions. 

We will now limit ourselves to isotropic dielectrics, so that P is always in the same 

direction as E. Let’s try to find a solution for a wave going in the z-direction 

Then, the electric field might vary as el(03f-ks\ We will also suppose that the wave 

is polarized in the x-direction—that the electric field has only an x-component. 

We write 

Ex = £„e‘(“'-fcz). (32.21) 

You know that any function of (z — vt) represents a wave that travels with 

the speed v. The exponent of Eq. (32.21) can be written as 

so, Eq. (32 21) represents a wave with the phase velocity 

<>ph = (*>/k • 

32-5 



The index of refraction n is defined (see Chapter 31, Vol. I) by letting 

c 
= -• 

Thus Eq. (32 21) becomes 

E = nzic') 

So we can find n by finding what value of k is required if Eq. (32.21) is to satisfy 

the proper field equations, and then using 

lee 
n = — • (32.22) 

co 

In an isotropic material, there will be only an x-component of the polarization; 

then P has no variation with the ^-coordinate, so V • P = 0, and we get rid of 

the first term on the right-hand side of Eq. (32.20) Also, since we are assuming a 

linear dielectric, Px will vary as elut, and d2Px/dt2 = — co2/V The Laplacian in 

Eq. (32.20) becomes simply d2Ex/dz2 = —k2Ex, so we get 

-k2Ex + Ex = - Px. (32.23) 
Cz 60C“ 

Now let us assume for the moment that since E is varying sinusoidally, we 

can set P proportional to Ey as in Eq. (32.5). (Well come back to discuss this 

assumption later.) We write 

Px = e0 NaEx. 

Then Ex drops out of Eq. (32.23), and we find 

k2 = 4 (1 + Na). (32.24) 

We have found that a wave like Eq. (32.21), with the wave number k given by 

Eq. (32 24), will satisfy the field equations. Using Eq. (32.22), the index n is given by 

n2 = 1 + Na. (32.25) 

Let’s compare this formula with what we obtained in our theory of the index 

of a gas (Chapter 31, Vol. I). There, we got Eq (31.29), which is 

n = 1 + 
1 Nq2_ 

2 meu _m2 I 2 
T" &)() 

Taking a from Eq. (32.6), Eq (32.25) would give us 

n2 = 1 + 
Nqj_1__ 

-u2 + i7w + a2 

(32.26) 

(32.27) 

First, we have the new term in iJw, because we are including the dissipation of 

the oscillators. Second, the left-hand side is n instead of n2, and there is an extra 

factor of 1/2. But notice that if N is small enough so that n is close to one (as it 

is for a gas), then Eq. (32.27) says that n2 is one plus a small number: n2 = 1 + e. 

We can then write n = \/l e ~ 1 + e/2, and the two expressions are equiva¬ 

lent. Thus our new method gives for a gas the same result we found earlier. 

Now you might think that Eq. (32.27) should give the index of refraction 

for dense materials also. It needs to be modified, however, for several reasons. 

First, the derivation of this equation assumes that the polarizing field on each 

atom is the field Ex. That assumption is not right, however, because in dense 

materials there is also the field produced by other atoms in the vicinity, which may 

be comparable to Ex. We considered a similar problem when we studied the static 

fields in dielectrics. (See Chapter 11.) You will remember that we estimated the 

field at a single atom by imagining that it sat in a spherical hole in the surrounding 

dielectric. The field in such a hole—which we called the local field—is increased 
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over the average field E by the amount P/3e0. (Remember, however, that this 

result is only strictly true in isotropic materials—including the special case of a 

cubic crystal.) 

The same arguments will hold for the electric field in a wave, so long as the 

wavelength of the wave is much longer than the spacing between atoms. Limiting 

ourselves to such cases, we write 

£iocai = E + (32.28) 

This local field is the one that should be used for Ein Eq. (32.3); that is, Eq.(32.8) 

should be rewritten: 

P = e0/V«£-|ocal. (32.29) 

Using ifiocai from Eq. (32.28), we find 

or 

f - T---WJ) <3230) 

In other words, for dense materials P is still proportional to E (for sinusoidal 

fields). However, the constant of proportionality is not e0Na, as we wrote below 

Eq. (32.23), but should be eQNa/[\ — {Na/3)]. So we should correct Eq (32.25) 

to read 

= 1 + 
Na 
(Na/3) 

(32.31) 

It will be more convenient if we rewrite this equation as 

n2 - 1 

2 + 2 
= Na, (32.32) 

which is algebraically equivalent. This is known as the Clausius-Mosotti equation. 

There is another complication in dense materials. Because neighboring atoms 

are so close, there are strong interactions between them. The internal modes of 

oscillation are, therefore, modified. The natural frequencies of the atomic oscilla¬ 

tions are spread out by the interactions, and they are usually quite heavily damped 

—the resistance coefficient becomes quite large. So the co0’s and 7*s of the solid 

will be quite different from those of the free atoms. With these reservations, we 

can still represent a, at least approximately, by Eq. (32.7). We have then that 

3 n2 ~ 1 = Nq* __fk 

«2 + 2 men V -u,2 + akw + a4 
(32.33) 

One final complication. If the dense material is a mixture of several compo¬ 

nents, each will contribute to the polarization. The total a will be the sum of the 

contributions from each component of the mixture [except for the inaccuracy of 

the local field approximation, Eq. (32.28), in ordered crystals—effects we discussed 

when analyzing ferroelectrics]. Writing N3 as the number of atoms of each com¬ 

ponent per unit volume, we should replace Eq. (32.32) by 

3 (Jy4) = e (32-34> 

where each a3 will be given by an expression like Eq. (32.7). Equation (32.34) 

completes our theory of the index of refraction. The quantity 3(rt2 — 1 )/(n2 + 2) 

is given by some complex function of frequency, which is the mean atomic polariz¬ 

ability oc(cjo). The precise evaluation of a(co) (that is, finding/^, Jk and co0*) in dense 

substances is a difficult problem of quantum mechanics. It has been done from 

first principles only for a few especially simple substances. 
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32-4 The complex index of refraction 

We want to look now at the consequences of our result, Eq (32.33). First, 

we notice that a is complex, so the index n is going to be a complex number. What 

does that mean9 Let’s say that we write n as the sum of a real and an imaginary 

part: 

n = nn — inr> (32 35) 

/ 

/ 

/ 

Fig. 32-1. A graph of Ex for some 

instant t, if n/ ~ hr/Iiv. 

where nR and /?/ are real functions of co We write ini with a minus sign, so that nj 

will be a positive quantity in all ordinary optical materials. (In ordinary inactive 

materials—that are not, like lasers, light sources themselves—7 is a positive number, 

and that makes the imaginary part of n negative.) Our plane wave of Eq. (32.21) 

is written m terms of n as 
Ex - Eoe-iu(t-nzlc) 

Writing n as in Eq. (32.35), we would have 

Ex = (32 36) 

The term represents a wave travelling with the speed c/nu, so nJy> 

represents what we normally think of as the index of refraction. But the amplitude 

of this wave is 

£0e-w,,/*/c, 

which decreases exponentially with z A graph of the strength of the electric field 

at some instant as a function of z is shown in Fig. 32-1, for n\ ~ n^/lir. The 

imaginary part of the index represents the attenuation of the wave due to the 

energy losses in the atomic oscillators. The intensity of the wave is proportional 

to the square of the amplitude, so 

This is often written as 

Intensity 2wn/3f/(\ 

Intensity * e~0z, 

where /3 = 2coni/c is called the absorption coefficient. Thus we have in Eq (32.33) 

not only the theory of the index of refraction of materials, but the theory of their 

absorption of light as well. 

In what we usually consider to be transparent material, the quantity c/omi— 

which has the dimensions of a length—is quite large in comparison with the 

thickness of the material. 

32-5 The index of a mixture 

There is another prediction of our theory of the index of refraction that we 

can check against experiment. Suppose we consider a mixture of two materials. 

The index of the mixture is not the average of the two indexes, but should be 

given in terms of the sum of the two polarizabilities, as in Eq. (32.34). If we ask 

about the index of, say, a sugar solution, the total polarizability is the sum of the 

polarizability of the water and that of the sugar. Each must, of course, be cal¬ 

culated using for N the number per unit volume of the molecules of the particular 

kind. In other words, if a given solution has Ni molecules of water, whose polariz¬ 

ability is <*!, and N2 molecules of sucrose (C12H22On), whose polarizability is 

«2, we should have that 

3 = Nl°“ + N2a-- (32 37) 

We can use this formula to test our theory against experiment by measuring 

the index for various concentrations of sucrose in water. We are making several 

assumptions here, however. Our formula assumes that there is no chemical action 

when the sucrose is dissolved and that the disturbances to the individual atomic 
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Table 32-2 

Refractive index of sucrose solutions, and comparison with predictions of Eq. (32.37). 

Data from Handbook 

A B C D 
Moles of 

Fraction of sucrose density n sucrose4 
by weight (gm/cm3) at 20°C per liter, 

N2/Nv 

0B 0.9982 1.333 0 
0.30 1.1270 1.3811 0.970 
0.50 1.2296 1.4200 1.798 
0 85 1.4454 1.5033 3.59 
1.00b 1.588 1.5577c 4 64 

a pure water 

c average (see text) 
6 molecular weight of water = 18 

E F 1 G H J 
Moles of 

watere 
per liter, 

N\a i N2a.2 
hl()OL 2 

(gm/liter) 

N\/Nq 

55.5 0617 0 617 o 1 
43.8 0 698 0.487 0.211 0 213 

34 15 0.759 | 0.379 | 0.380 0 211 

12 02 0.886 ■ 0.1335 ■ 0.752 0 210 

0 0.960 : o 0.960 0.207 

b sugar crystals 
d molecular weight of sucrose = 342 

oscillators are not too different for various concentrations. So our result is certainly 

only approximate. Anyway, let’s see how good it is. 

We have picked the example of a sugar solution because there is a good table 

of measurements of the index of refraction in the Handbook of Chemistry and 

Physics and also because sugar is a molecular crystal that goes into solution with¬ 

out ionizing or otherwise changing its chemical state. 

We give in the first three columns of Table 32-2 the data from the handbook. 

Column A is the percent of sucrose by weight, column B is the measured density 

(gm/cm3), and column C is the measured index of refraction for light whose 

wavelength is 589.3 millimicrons. For pure sugar we have taken the measured 

index of sugar crystals. The crystals are not isotropic, so the measured index is 

different along different directions. The handbook gives three values: 

*i = 1.5376, n2 = 1.5651, n3 = 1.5705. 

We have taken the average. 

Now we could try to compute n for each concentration, but we don’t know 

what value to take for aj or a2. Let’s test the theory this way: We will assume 

that the polarizability of water (^i) is the same at all concentrations and compute 

the polarizability of sucrose by using the experiment of values for n and solving 

Eq. (38.27) for a2. If the theory is correct, we should get the same a2 for all 

concentrations. 

First, we need to know Ni and N2: let’s express them m terms of Avogadro’s 

number, N0. Let’s take one liter (1000 cm3) for our unit of volume. Then NJNq is 

the weight per liter divided by the gram-molecular weight. And the weight per 

liter is the density (multiplied by 1000 to get grams per liter) times the fractional 

weight of either the sucrose or the water. In this way, we get N2/N{) and N^/Nq 

as in columns D and E of the table. 

In column F we have computed 3(n2 ~~ 1 )/(n2 + 2) from the experimental 

values of n in column C. For pure water, 3{n2 — 1 )/(n2 + 2) is 0.617, which is 

equal to just A^a j. We can then fill in the rest of Column G, since for each row 

row G/E may be in the same ratio—namely, 0.617:55.5. Subtracting column G 

from column F, we get the contribution N2a2 of the sucrose, shown in column H 

Dividing these entries by the values of N2/N$ in column D, we get the value of 

NQa2 shown in column J 

From our theory we would expect all the values of NQa2 to be the same They 

are not exactly equal, but pretty close. We can conclude that our ideas are fairly 

correct. Even more, we find that the polarizability of the sugar molecule doesn’t 

seem to depend much on its surroundings—its polarizability is nearly the same in a 

dilute solution as it is in the crystal. 
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32-6 Waves in metals 

The theory we have worked out in this chapter for solid materials can also 

be applied to good conductors, like metals, with very little modification. In metals 

some of the electrons have no binding force holding them to any particular atom; 

it is these “free” electrons which are responsible for the conductivity. There are 

other electrons which are bound, and the theory above is directly applicable to 

them. Their influence, however, is usually swamped by the effects of the con¬ 

duction electrons. We will consider now only the effects of the free electrons 

If there is no restoring force on an electron—but still some resistance to its 

motion—its equation of motion differs from Eq. (32.1) only because the term in 

<x>lx is lacking. So all we have to do is set coq = 0 in the rest of our derivations— 

except that there is one more difference. The reason that we had to distinguish 

between the average field and the local field in a dielectric is that in an insulator 

each of the dipoles is fixed in position, so that it has a definite relationship to the 

position of the others. But because the conduction electrons in a metal move 

around all over the place, the field on them on the average is just the average field 

E. So the correction we made to Eq. (32 5) by using Eq. (32.28) should not be 

made for conduction electrons Therefore the formula for the index of refraction 

for metals should look like Eq. (32.27), except with o?0 set equal to zero, namely, 

7 = i+M 
me0 — oj- + Hoi 

(32 38) 

drift 

This is only the contribution from the conduction electrons, which we will assume 

is the major term for metals 

Now we even know how to find what value to use for 7, because it is related 

to the conductivity of the metal. In Chapter 43 of Volume I we discussed how the 

conductivity of a metal comes from the diffusion of the free electrons through the 

crystal. The electrons go on a jagged path from one scattering to the next, and 

between scatterings they move freely except for an acceleration due to any average 

electric field (as shown in Fig 32-2). We found m Chapter 43 of Volume I that 

the average drift velocity is just the acceleration times the average time r between 

collisions. The acceleration is qcE/m, so 

Fig, 32-2. The motion of a free 

electron. *'dnft 
qeE 
- T. 
m 

(32.39) 

This formula assumed that E was constant, so that /'(|nft was a steady velocity. 

Since there is no average acceleration, the drag force is equal to the applied force. 

We have defined 7 by saying that 7mv is the drag force [see Eq. (32.1)], which is 

qeE; therefore we have that 

7 = — 
r 

(32.40) 

Although we cannot easily measure r directly, we can determine it by measur¬ 

ing the conductivity of the metal. It is found experimentally that an electric field E 

in a metal produces a current with the density j proportional to E (for isotropic 

materials): 

j = <rE> 

The proportionality constant a is called the conductivity. This is just what we expect 

from Eq. (32.39) if we set 

Then 

j = Nqevdri{{. 

a 
m 

(32.41) 

So r—and therefore 7—can be related to the observed electrical conductivity. 

Using Eqs (32.40) and (32 41), we can rewrite our formula for the index, Eq. 
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(32.42) 

(32.38), in the following form: 

n2 

where 

= 1 + T 
<r/eo 

/co( 1 + /cor) 

1 ma 

T ~ 7 ” Nql 

This is a convenient formula for the index of refraction of metals. 

(32.43) 

32-7 Low-frequency and high-frequency approximations; the skin depth and the 

plasma frequency 

Our result, Eq. (32.42), for the index of refraction for metals predicts quite 

different characteristics for wave propagation at different frequencies. Let’s first 

see what happens at very low frequencies. If w is small enough, we can approximate 

Eq. (32.42) by 

n2 = -i —• (32.44) 
€()« 

Now, as you can check by taking the square,* 

so for low frequencies, 

n = y/a/2eac* (1 — /). (32.45) 

The real and imaginary parts of n have the same magnitude. With such a large 

imaginary part to n, the wave is rapidly attenuated in the metal. Referring to 

Eq. (32.36), the amplitude of a wave going in the z-direction decreases as 

Let’s write this as 
exp [—v <ro) 2eoc2 z]. (32.46) 

(32.47) 

where 5 is then the distance m which the wave amplitude decreases by the factor 

e~J = \/HI—or roughly one-third. The amplitude of such a wave as a function 

of z is shown in Fig. 32-3. Since electromagnetic waves will penetrate into a 

metal only this distance, 5 is called the skin depth, It is given by 

5 = \Z2e0c2/aoo. (32.48) 

Now what do we mean by “low” frequencies? Looking at Eq. (32.42), we 

see that it can be approximated by Eq. (32.44) only if cor is much less than one 

and if cueQ/a is also much less than one—that is, our low-frequency approximation 

applies when 

1 

« « - 
T 

and 

««-• (32.49) 
Co 

Let’s see what frequencies these correspond to for a typical metal like copper. 

We compute r by using Eq. (32.43), and <r/e0, by using the measured conductivity. 

We take the following data from a handbook: 

<7 = 5.76 X 107 (ohm-meter)”1, 

atomic weight = 63.5 grams, 

density = 8.9 grams — cm-3, 

Avogadro’s number = 6.02 X 1023 (gram atomic weight)-1. 

* Or writing —i = e~1*12; V—l = = costt/4 — / sin 7t/4, which gives the 
same result. 

jAMPLITUDE 

SURFACE 

Fig. 32—3. The amplitude of a trans¬ 

verse electromagnetic wave as a function 

of distance into a metal. 
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If we assume that there is one free electron per atom, then the number of electrons 

per cubic meter is 

iV- 8.5 X 1028 meter-3. 

Using 

qe = 1.6 X 10-19 coulomb, 

e0 = 8.85 X 10-12 farad-meter-1, 

m — 9.11 X 10-31 kgm, 

we get 

r — 2.4 X 10 14 sec. 

- = 4.1 X 1013 sec \ 
r 

— ~ 6.5 X 1018 sec 1. 
€o 

So for frequencies less than about 1012 cycles per second, copper will have the 

“low-frequency” behavior we describe (that means for waves whose free-space 

wavelength is longer than 0.3 millimeters—very short radio waves!). 

For these waves, the skin depth in copper is 

^ _ /0.028 m2-sec~1 

\ co 

For microwaves of 10,000 megacycles per second (3-cm waves) 

8 = 6.7 X 10-4 cm. 

The wave penetrates a very small distance. 

We can see from this why in studying cavities (or waveguides) we needed to 

worry only about the fields inside the cavity, and not in the metal or outside the 

cavity. Also, we see why the losses in a cavity are reduced by a thin plating of 

silver or gold. The losses come from the current, which are appreciable only in a 

thin layer equal to the skin depth. 

Suppose we look now at the index of a metal like copper at high frequencies. 

For very high frequencies cor is much greater than one, and Eq. (32.42) is well 

approximated by 

«2 = 1-V • (32-50) 
€0«2T 

For waves of high frequencies the index of a metal becomes real—and less than 

one! This is also evident from Eq. (32.38) if the dissipation term with 7 is neglected, 

as can be done for very large co. Equation (32.38) gives 

n 
2 Nq2e 

m€0co- ’ 
(32.51) 

which is, of course, the same as Eq. (32.50). We have seen before the quantity 

Nq^/mto, which we called the square of the plasma frequency (Section 7-3): 

co 
2 
v 

Nq2 
e{)m ’ 

so we can write Eq. (32.50) or Eq. (32.51) as 

n 
2 1 ~ 

2 

The plasma frequency is a kind of “critical” frequency. 

For co < cop the index of a metal has an imaginary part, and waves are 

attenuated; but for co » cop the index is real, and the metal becomes transparent. 

You know, of course, that metals are reasonably transparent to x-rays. But 

some metals are even transparent in the ultraviolet. In Table 32-3 we give for 
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several metals the experimental observed wavelength at which they begin to become 

transparent. In the second column we give the calculated critical wavelength 

\p = 2tc/o)p. Considering that the experimental wavelength is not too well 

defined, the fit of the theory is fairly good. 

You may wonder why the plasma frequency cop should have anything to do 

with the propagation of electromagnetic waves in metals. The plasma frequency 

came up in Chapter 7 as the natural frequency of density oscillations of the free 

electrons. (A clump of electrons is repelled by electric forces, and the inertia of the 

electrons leads to an oscillation of density.) So longitudinal plasma waves are 

resonant at cop. But we are now talking about transverse electromagnetic waves, 

and we have found that transverse waves are absorbed for frequencies below ojp. 

(It’s an interesting and not accidental coincidence.) 

Although we have been talking about wave propagation in metals, you ap¬ 

preciate by this time the universality of the phenomena of physics—that it doesn’t 

make any difference whether the free electrons are in a metal or whether they are 

in the plasma of the ionosphere of the earth, or in the atmosphere of a star. To 

understand radio propagation in the ionosphere, we can use the same expressions— 

using, of course, the proper values for N and r. We can see now why long radio 

waves are absorbed or reflected by the ionosphere, whereas short waves go right 

through. (Short waves must be used for communication with satellites.) 

We have talked about the high- and low-frequency extremes for wave propaga¬ 

tion in metals. For the m-between frequencies the full-blown formula of Eq. 

(32.42) must be used. In general, the index will have real and imaginary parts; 

the wave is attenuated as it propagates into the metal. For very thin layers, metals 

are somewhat transparent even at optical frequencies. As an example, special 

goggles for people who work around high-temperature furnaces are made by 

evaporating a thin layer of gold on glass. The visible light is transmitted fairly 

well—with a strong green tinge—but the infrared is strongly absorbed. 

Finally, it cannot have escaped the reader that many of these formulas re¬ 

semble in some ways those for the dielectric constant k discussed in Chapter 10. 

The dielectric constant k measures the response of the material to a constant field, 

that is, for w = 0. If you look carefully at the definition of n and k you see that 

k is simply the limit of n2 as to —» 0. Indeed, placing co = 0 and n2 = k in equa¬ 

tions of this chapter will reproduce the equations of the theory of the dielectric 

constant of Chapter 11. 

Table 32-3* 

Wavelengths below which the metal 
becomes transparent 

Metal X (experimental) Xp = 2?rc/co 

Li 1550 A 1550 A 
Na 2100 2090 
K 3150 2870 
Rb 3400 3220 

* From: C. Kittel, Introduction to Solid 

State Physics, John Wiley and Sons, Inc., 
New York, 2nd ed., 1956, p. 266. 
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33 

Heflcction from Surfaces 

33-1 Reflection and refraction of light 

The subject of this chapter is the reflection and refraction of light—or electro¬ 

magnetic waves in general—at surfaces. We have already discussed the laws of 

reflection and refraction in Chapter 35 of Volume I. Here’s what we found out 

there: 

1. The angle of reflection is equal to the angle of incidence. With the angles 

defined as shown m Fig. 33-1, 

0r = 0X. (33.1) 

2. The product n sin 9 is the same for the incident and transmitted beams 

(Snell’s law). 

Hi sin 6% = n2 sin 9t. (33.2) 

3. The intensity of the reflected light depends on the angle of incidence and 

also on the direction of polarization. For E perpendicular to the plane of 

incidence, the reflection coefficient R± is 

Ir = sin2 (0, - 9t) 
/, sin2 (0, + 0/) 

(33.3) 

For E parallel to the plane of incidence, the reflection coefficient R\\ is 

„ ^ [r tan2 (fit - et) 
11 /, tan2 (0, + 0,) ' 

4. For normal incidence (any polarization, of course!), 

Jr = (n r ~ /I A2 

I, \n2 + «i/ 

(33.4) 

(33.5) 

(Earlier, we used i for the incident angle and r for the refracted angle Since we 

can’t use r for both “refracted” and “reflected” angles, we are now using 9% = 

incident angle, 9, = reflected angle, and 9t = transmitted angle.) 

Our earlier discussion is really about as far as anyone would normally need 

to go with the subject, but we are going to do it all over again a different way 

Why° One reason is that we assumed before that the indexes were real (no ab¬ 

sorption in the materials) But another reason is that you should know how to 

deal with what happens to waves at surfaces from the point of view of Maxwell’s 

equations. We’ll get the same answers as before, but now from a straightforward 

solution of the wave problem, rather than by some clever arguments. 

We want to emphasize that the amplitude of a surface reflection is not a 

property of the material, as is the index of refraction It is a “surface property,” 

one that depends precisely on how the surface is made. A thin layer of extraneous 

junk on the surface between two materials of indices n\ and n2 will usually change 

the reflection. (There are all kinds of possibilities of interference here—like the 

colors of oil films Suitable thickness can even reduce the reflected amplitude to 

zero for a given frequency; that’s how coated lenses are made.) The formulas 

we will derive are correct only if the change of index is sudden—within a distance 

very small compared with one wavelength. For light, the wavelength is about 

5000 A, so by a “smooth” surface we mean one in which the conditions change in 

33-1 Reflection and refraction of 

light 

33-2 Waves in dense materials 

33-3 The boundary conditions 

33-4 The reflected and transmitted 

waves 

33-5 Reflection from metals 

33-6 Total internal reflection 

Review. Chapter 35, Vol. 1, Polarization 

Fig. 33-1. Reflection and refraction 

of light waves at a surface. (The wave 

directions are normal to the wave crests.) 
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going a distance of only a few atoms (or a few angstroms). Our equations will 

work for light for highly polished surfaces. In general, if the index changes grad¬ 

ually over a distance of several wavelengths, there is very little reflection at all. 

33-2 Waves in dense materials 

Fig. 33-2. For a wave moving in the 

direction k, the phase at any point P is 

(cot — k ■ r). 

First, we remind you about the convenient way of describing a sinusoidal 

plane wave we used in Chapter 36 of Volume I. Any field component in the wave 

(we use E as an example) can be written in the form 

E - E0en“l-k-r}, (33.6) 

where E represents the amplitude at the point r (from the origin) at the time t. 

The vector k points in the direction the wave is travelling, and its magnitude 

\k\ = k = 27r/X is the wave number. The phase velocity of the wave is = «//c, 

for a light wave in a material of index n, ^pi, = c/n, so 

k 
OM 

C 
(33.7) 

Suppose k is in the z-direction, then k ■ r is just kz, as we have often used it For 

k in any other direction, we should replace z by rk, the distance from the origin 

in the ^-direction; that is, we should replace kz by krk, which is just k r. (See 

Fig. 33-2.) So Eq. (33.6) is a convenient representation of a wave m any direction. 

We must remember, of course, that 

k • r = kxx -f kyy + kzz, 

where kx, ky, and kz are the components of k along the three axes. In fact, we 

pointed out once that (w, kx, kv, kz) is a four-vector, and that its scalar product 

with (/, x, y, z) is an invariant. So the phase of a wave is an invariant, and Eq. 

(33.6) could be written 

E = E0elkuXu. 

But we don’t need to be that fancy now. 

For a sinusoidal E, as in Eq. (33.6), dE/dt is the same as iooE, and dE/dx is 

— ikxE, and so on for the other components. You can see why it is very convenient 

to use the form in Eq. (33 6) when working with differential equations—differentia¬ 

tions are replaced by multiplications. One further useful point: The operation 

V = (d/dx, d/dy, d/dz) gets replaced by the three multiplications ( — ikx, —iky, 

— ikg). But these three factors transform as the components of the vector k, so 

the operator v gets replaced by multiplication with ~ik: 

d 

at !w’ 

V -> — ik. (33.8) 

This remains true for any V operation—whether it is the gradient, or the diver¬ 

gence, or the curl. For instance, the z-component of V X E is 

__ dEx _ 

dx dy 

If both Ey and Ex vary as e~'k r, then we get 

ikxEy “b ikyEx, 

which is, you see, the z-component of —ik X E. 

So we have the very useful general fact that whenever you have to take the 

gradient of a vector that varies as a wave in three dimensions (they are an important 

part of physics), you can always take the derivations quickly and almost without 

thinking by remembering that the operation V is equivalent to multiplication by 

-ik. 
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For instance, the Faraday equation 

becomes for a wave 

This tells us that 

which corresponds to the result we found earlier for waves in free space—that B, 

in a wave, is at right angles to E and to the wave direction. (In free space, o.)/k — 

c.) You can remember the sign in Eq. (33 9) from the fact that k is in the direction 

of PoyntingY vector S = e()c2E X B. 

If you use the same rule with the other Maxwell equations, you get again the 

results of the last chapter and, in particular, that 

2 2 

k k = k2 = • (33 10) 

But since we know that, we won’t do it again. 

If you want to entertain yourself, you can try the following terrifying problem 

that was the ultimate test for graduate students back in 1890: solve Maxwell’s 

equations for plane waves in an anisotropic crystal, that is, when the polarization 

P is related to the electric field E by a tensor of polarizability. You should, of 

course, choose your axes along the principal axes of the tensor, so that the relations 

are simplest (then Px = aaEx, Py = ahEu, and Pz ~ acEz), but let the waves 

have an arbitrary direction and polarization. You should be able to find the rela¬ 

tions between E and B, and how k varies with direction and wave polarization. 

Then you will understand the optics of an anisotropic crystal. It would be best 

to start with the simpler case of a birefnngent crystal—like calcite—for which 

two of the polarizabilities are equal (say, ai, = ac), and see if you can understand 

why you see double when you look through such a crystal If you can do that, 

then try the hardest case, in which all three as are different. Then you will know 

whether you are up to the level of a graduate student of 1890. In this chapter, 

however, we will consider only isotropic substances 

V X E = - 
dB 
dt 

ik X E = ~i(x>B. 

(33.9) 

We know from experience that when a plane wave arrives at the boundary 

between two different materials—say, air and glass, or water and oil—there is a 

wave reflected and a wave transmitted Suppose we assume no more than that and 

see what we can work out. We choose our axes with the jez-plane in the surface 

and the xy-plane perpendicular to the incident wave surfaces, as shown in Fig. 33-3. 
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The electric vector of the incident wave can then be written as 

Et = EQe',ut~kr\ (33.11) 

Since k is perpendicular to the z-axis, 

k • r = kxx + kyy. (33 12) 

We write the reflected wave as 

Er = (33.13) 

so that its frequency is co', its wave number is k\ and its amplitude is Eq. (We 

know, of course, that the frequency is the same and the magnitude of k is the same 

as for the incident wave, but we are not going to assume even that. We will let it 

come out of the mathematical machinery.) Finally, we write for the transmitted 

wave, 

Et = E'0'el(“r,f-k"-r). (33.14) 

We know that one of Maxwell’s equations gives Eq (33.9), so for each of the 

waves we have 

B, 
k X Et 

B7 
0) 

kf X E, 
a/ 

„ _ k" X Et __-~jT~ (33.15) 

Also, if we call the indexes of the two media ri\ and n2» have from Eq. (33.10) 

k2 = kl + ki = 
2 2 

co n i 
(33 16) 

Since the reflected wave is in the same material, then 

Fig. 33—4. A boundary condition 

Ey2 — Fyi is obtained from E ds = 0. 

k'2 

whereas for the transmitted wave, 

kn2 

w’2nj 

w"2n| 

(33.17) 

(33.18) 

33-3 The boundary conditions 

All we have done so far is to describe the three waves; our problem now is 

to work out the parameters of the reflected and transmitted waves in terms of 

those of the incident wave. How can we do that? The three waves we have de¬ 

scribed satisfy Maxwell’s equations in the uniform material, but Maxwell’s equa¬ 

tions must also be satisfied at the boundary between the two different materials. 

So we must now look at what happens right at the boundary. We will find that 

Maxwell’s equations demand that the three waves fit together in a certain way. 

As an example of what we mean, the y-component of the electric field E must 

be the same on both sides of the boundary. This is required by Faraday’s law, 

VX£=-^> (33.19) 

as we can see in the following way. Consider a little rectangular loop Y which 

straddles the boundary, as shown in Fig 33-4. Equation (33.19) says that the line 

integral of E around Y is equal to the rate of change of the flux of B through the 

loop: 

iE d-- 
Now imagine that the rectangle is very narrow, so that the loop encloses an in¬ 

finitesimal area. If B remains finite (and there’s no reason it should be infinite 

at the boundary!) the flux through the area is zero So the line integral of E must 
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be zero. If E,\ and Eu2 are the components of the field on the two sides of the 

boundary and if the length of the rectangle is /, we have 

E,n 1 - E,21 = 0 

or 

Ev i = E„ 2, (33.20) 

as we have said. This gives us one relation among the fields of the three waves. 

The procedure of working out the consequences of Maxwell’s equations at 

the boundary is called “determining the boundary conditions.” Ordinarily, it is 

done by finding as many equations like Eq. (33 20) as one can, by making argu¬ 

ments about little rectangles like V in Fig. 33-4, or by using little gaussian surfaces 

that straddle the boundary Although that is a perfectly good way of proceeding, 

it gives the impression that the problem of dealing with a boundary is different 

for every different physical problem 

For example, in a problem of heat flow across a boundary, how are the tem¬ 

peratures on the two sides related? Well, yon could argue, for one thing, that the 

heat flow to the boundary from one side would have to equal the flow away from 

the other side. It is usually possible, and generally quite useful, to work out the 

boundary conditions by making such physical arguments. There may be times, 

however, when in working on some problem you have only some equations, and 

you may not see right away what physical arguments to use. So although we are 

at the moment interested only in an electromagnetic problem, where we can make 

the physical arguments, we want to show you a method that can be used for any 

problem—a general way of finding what happens at a boundary directly from the 

differential equations 

We begin by writing all the Maxwell equations for a dielectric—and this time 

we are very specific and write out explicitly all the components: 

V E = 
X P 

Ci) 

£() + 
dy "r 

dEA _ _ fdP* , OPy 
dz) \dx dy 

dPA 
dz ) 

(33.21) 

dE, 
dy 

clE, 

dz 

dE, 

dx 

X B - 0 

dE, _ dBh 

dz dt 

dEz _ dBu 

dx ” dt 

dEt _ dBz 

dy dt 

0Bt dB, dB, 

'dx + 'dy + dz 

czX X B = 
1 dP dE 

<=o dt dt 

1 (dBz 

,2 (dBr 

\ dz 

.2 (dB, 

\dx 

dBA 

dz ) 

OX ) 

dBA 
dy) 

1 dP, dEx 

e() dt dt 

\ dPy dE, 

€o dt dt 

1 dPz dE£ 

dt dt 

(33.22a) 

(33.22b) 

(33 22c) 

(33 23) 

(33.24a) 

(33.24b) 

(33.24c) 
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Fig. 33-5. The fields in the transition 

region (3) between two different ma¬ 

terials in regions (1) and (2). 

Now these equations must all hold in region 1 (to the left of the boundary) 

and in region 2 (to the right of the boundary). We have already written the solu¬ 

tions in regions 1 and 2. Finally, they must also be satisfied in the boundary, which 

we can call region 3. Although we usually think of the boundary as being sharply 

discontinuous, in reality it is not. The physical properties change very rapidly 

but not infinitely fast. In any case, we can imagine that there is a very rapid, but 

continuous, transition of the index between region 1 and 2, in a short distance we 

can call region 3. Also, any field quantity like Px, or Ein etc., will make a similar 

kind of transition in region 3. In this region, the differential equations must still 

be satisfied, and it is by following the differential equations in this region that we 

can arrive at the needed “boundary conditions.” 

For instance, suppose that we have a boundary between vacuum (region 1) 

and glass (region 2). There is nothing to polarize in the vacuum, so Pi = 0. 

Let's say there is some polarization P2 in the glass. Between the vacuum and the 

glass there is a smooth, but rapid, transition If we look at any component of 

P, say Px, it might vary as drawn m Fig. 33-5(a). Suppose now we take the first 

of our equations, Eq (33.21). It involves derivatives of the components of P with 

respect to x, y, and z. The y- and z-denvatives are not interesting; nothing spec¬ 

tacular is happening in those directions. But the ^-derivative of Px will have some 

very large values in region 3, because of the tremendous slope of Px. The derivative 

dPx/dx will have a sharp spike at the boundary, as shown in Fig. 33—5(b). If we 

imagine squashing the boundary to an even thinner layer, the spike would get 

much higher If the boundary is really sharp for the waves we are interested in, 

the magnitude of dPx/dx in region 3 will be much, much greater than any contribu¬ 

tions we might have from the variation of P m the wave away from the boundary— 

so we ignore any variations other than those due to the boundary. 

Now how can Eq. (33 21) be satisfied if there is a whopping big spike on the 

right-hand side? Only if there is an equally whopping big spike on the other side. 

Something on the left-hand side must also be big. The only candidate is dEJdx, 

because the variations with y and z are only those small effects m the wave we just 

mentioned. So — e0(dE/dx) must be as drawn in Fig. 33-5(c)—just a copy of 

dPx/dx. We have that 

_ dEx __ _ dPx J 
0 ~dx dx ' 5 

If we integrate this equation with respect to x across region 3, we conclude that 

£q(EX2 ~ Exl) — ~(Px2 ~~ P^i)* (33.25) 

In other words, the jump m e0Ex in going from region 1 to region 2 must be equal 

to the jump in — Px. 

We can rewrite Eq. (33.25) as 

^oEx2 4- Px2 = 60Exi + Pxi, (33.26) 

which says that the quantity (to^c + Px) has equal values in region 2 and region 1. 

People say: the quantity (€qEx + Px) is continuous across the boundary. We have, 

in this way, one of our boundary conditions. 

Although we took as an illustration the case in which Pt was zero because 

region 1 was a vacuum, it is clear that the same argument applies for any two 

materials in the two regions, so Eq. (33.26) is true in general. 

Let’s now go through the rest of Maxwell’s equations and see what each of 

them tells us. We take next Eq. (33.22a). There are no x-derivattves, so it doesn’t 

tell us anything. (Remember that the fields themselves do not get especially large 

at the boundary; only the derivatives with respect to x can become so huge that 

they dominate the equation.) Next, we look at Eq. (33 22b). Ahf There is an 

x-derivative! We have dEz/dx on the left-hand side. Suppose it has a huge de¬ 

rivative But wait a moment! There is nothing on the right-hand side to match it 

with; therefore Ez cannot have any jump in going from region 1 to region 2. 

[If it did, there would be a spike on the left of Eq. (33.22a) but none on the right, 
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and the equation would be false ] So we have a new condition: 

Es2 = EzX. (33.27) 

By the same argument, Eq (33.22c) gives 

Ej/2 — EfJ(33.28) 

This last result is just what we got in Eq. (33 20) by a line integral argument. 

We go on to Eq. (33 23) The only term that could have a spike is dBx/dx. 

But there’s nothing on the right to match it, so we conclude that 

Br2 = B r i. (33.29) 

On to the last of Maxwell’s equations! Equation (33 24a) gives nothing, 

because there are no a-derivatives Equation (33 23 b) has one, —c2 dBz/dx, but 

again, there is nothing to match it with. We get 

Bz2 = BzX. (33.30) 

The last equation is quite similar, and gives 

By 2 = Bul. (33.31) 

The last three equations gives us that B2 = Bx. We want to emphasize, 

however, that we get this result only when the materials on both sides of the 

boundary are nonmagnetic—or rather, when we can neglect any magnetic effects 

of the materials. This can usually be done for most materials, except ferromagnetic 

oges (We will treat the magnetic properties of materials in some later chapters.) 

I Our program has netted us the six relations between the fields in region 1 and 

those in region 2. We have put them all together in Table 33-1. We can now use 

them to match the waves in the two regions. We want to emphasize, however, that 

the idea we have just used will work in any physical situation in which you have 

differential equations and you want a solution that crosses a sharp boundary 

between two regions where some property changes. For our present purposes, 

we could have easily derived the same equations by using arguments about the 

fluxes and circulations at the boundary. (You might see whether you can get the 

same result that way.) But now you have seen a method that will work in case you 

ever get stuck and don’t see any easy argument about the physics of what is happen¬ 

ing at the boundary—you can just work with the equations. 

Table 33-1 

Boundary conditions at the surface of 
dielectric 

(eoEv + Pih = i^E2 + P>)s 

(E i)v = (E2)t/ 

(E ih = {E2)z 

Bx - B> 

(The surface is in the yr-plane) 

33-4 The reflected and transmitted waves 

Now we are ready to apply our boundary conditions to the waves we wrote 

down in Section 33-2. We had: 

E, (33 32) 

Er _ t— h'XX— kylf) (33.33) 

E, 
— Ft>i(u"t—k'3!x—k'yy) 
— xi(>C , (33.34) 

B, 
_ k X E{ 

(33.35) 

Br 
_ *;_X_£r 

(33.36) 
CO 

Bt 
k" X Et 

a/' 
(33 37) 

We have one further bit of knowledge: E is perpendicular to its propagation 

vector k for each wave. 
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Fig. 33-6. Polarization of the re¬ 

flected and transmitted waves when the 

E-field of the incident wave is perpendicu¬ 

lar to the plane of incidence. 

The results will depend on the direction of the Zf-vector (the “polarization”) 

of the incoming wave. The analysis is much simplified if we treat separately the case 

of an incident wave with its £-vector parallel to the “plane of incidence” (that is, 

the .xy-plane) and the case of an incident wave with the ^-vector perpendicular to 

the plane of incidence. A wave of any other polarization is just a linear combina¬ 

tion of two such waves. In other words, the reflected and transmitted intensities 

are different for different polarizations, and it is easiest to pick the two simplest 

cases and treat them separately. 

We will carry through the analysis for an incoming wave polarized per¬ 

pendicular to the plane of incidence and then just give you the result for the other. 

We are cheating a little by taking the simplest case, but the principle is the same 

for both. So we take that Et has only a z-component, and since all the ^-vectors 

are in the same direction we can leave off the vector signs. 

So long as both materials are isotropic, the induced oscillations of charges in 

the material will also be in the z-direction, and the f-field of the transmitted and 

radiated waves will have only z-components. So for all the waves, Ex and Ey 

and Px and Py are zero. The waves will have their E- and jB-vectors as drawn in 

Fig. 33-6 (We are cutting a corner here on our original plan of getting everything 

from the equations. This result would also come out of the boundary conditions, 

but we can save a lot of algebra by using the physical argument When you have 

some spare time, see if you can get the same result from the equations. It is clear 

that what we have said agrees with the equations; it is just that we have not shown 

that there are no other possibilities.) 

Now our boundary conditions, Eqs. (33 26) through (33.31), give relations 

between the components of E and B in regions 1 and 2. For region 2 we have only 

the transmitted wave, but in region 1 we have two waves. Which one do we use? 

The fields in region 1 are, of course, the superposition of the fields of the incident 

and reflected waves. (Since each satisfies Maxwell’s equations, so does the sum.) 

So when we use the boundary conditions, we must use that 

•£-! = £, + £V, E 2 = Eu 

and similarly for the B's. 

For the polarization we are considering, Eqs. (33.26) and (33.28) give us no 

new information; only Eq (33.27) is useful. It says that 

Et + Er = Et 

at the boundary, that is, for x = 0. So we have that 

_j_ = (33.38) 

which must be true for all t and for all y. Suppose we look first at y = 0. Then we 

have 

E0e'ut + 

This equation says that two oscillating terms are equal to a third oscillation. 

That can happen only if all the oscillations have the same frequency. (It is im¬ 

possible for three—or any number—of such terms with different frequencies to 

add to zero for all times.) So 

to" = ci/ = co. (33.39) 

As we knew all along, the frequencies of the reflected and transmitted waves are 

the same as that of the incident wave. 

We should really have saved ourselves some trouble by putting that in at the 

beginning, but we wanted to show you that it can also be got out of the equations. 

When you are doing a real problem, it is usually the best thing to put everything you 

know into the works right at the start and save yourself a lot of trouble. 

By definition, the magnitude of /ms given by A2 = n2co2/c2, so we have also 

that 

*"2 = k'2 = k2 

nt n\ n\ 
(33.40) 
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Now look at Eq. (33.38) for / = 0. Using again the same kind of argument 

we have just made, but this time based on the fact that the equation must hold 

for all values of y> we get that 

k'* = = ky. (33.41) 

From Eq. (33.40), kf2 = k2, so 

k,2 4- ky2 — k2 4~ kTr 

Combining this with Eq. (33.41), we have that 

kfl — k2 

or that k\ = ±kx. The positive sign makes no sense; that would not give a 

reflected wave, but another incident wave, and we said at the start that we were 

solving the problem of only one incident wave. So we have 

k'r - -kx. (33 42) 

The two equations (33.41) and (33,42) give us that the angle of reflection is equal 

to the angle of incidence, as we expected. (See Fig. 33—3 ) The reflected wave is 

E, = E[,el{<Jit-kxX+ky y). (33.43) 

For the transmitted wave we already have that 

kff Ky 

and 

k"2 

~nl 

so we can solve these to find k". We get 

kf = k"2 - kf = n\ k2 - kl. (33.45) 
n\ 

Suppose for a moment that nx and n2 are real numbers (that the imaginary 

parts of the indexes are very small). Then all the k's are also real numbers, and 

from Fig. 33-3 we find that 

^7 = sin 0,, jp = sin 6t. (33.46) 

From (33.44) we get that 

n2 sin $t = Hi sin 6ti (33.47) 

which is Snell’s law of refraction—again, something we already knew. If the 

indexes are not real, the wave numbers are complex, and we have to use Eq. (33.45). 

[We could still define the angles dl and dt by Eq. (33.46), and Snell’s law, Eq. (33.47), 

would be true m general. But then the “angles” also are complex numbers, thereby 

losing their simple geometrical interpretation as angles. It is best then to describe 

the behavior of the waves by their complex kx or k” values ] 

So far, we haven’t found anything new. We have just had the simple-minded 

delight of getting some obvious answers from a complicated mathematical ma¬ 

chinery. Now we are ready to find the amplitudes of the waves which we have 

not yet known. Using our results for the co’s and A’s, the exponential factors in 

Eq. (33.38) can be cancelled, and we get 

E0 + E[, = EH. (33 48) 

Since both E{} and Eq are unknown, we need one more relationship. We must 

use another of the boundary conditions. The equations for Ex and Ev are no help, 

because all the E's have only a z-component So we must use the conditions on 

B. Let’s try Eq. (33 29): 

2 ~ Bxl. 
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From Eqs. (33.35) through (33.37), 

B r i Mii ( Ke, 
0)' 

Bxt = 
k’iEt 

co 

Recalling that to" = a/ = co and fc" = k't) = klf, we get that 

£0 + E(y = £&'. 

But this is just Eq. (33 48) all over agaiff We've just wasted time getting something 
we already knew. 

We could try Eq. (33.30), Bz2 = BzU but there are no z-components of B] 
So there's only one equation left: Eq. (33.31), Bl/2 — B,n. For the three waves. 

By, = ~ 
kxEt 

co 
Byr 

w' ’ Byt ~ 

k"E, 
~ , J! 

(33.49) 

Putting for Elf E}, and Et the wave expression for x = 0 (to be at the boundary), 
the boundary condition is 

?(wf—A.,,;/) — ^x t—ky I/) 

- u" L"c 

Fig. 33-7. Polarization of the waves 

when the E-field of the incident wave is 

parallel to the plane of incidence. 

Again all co’s and k,Js are equal, so this reduces to 

kxEyy + k'xE'0 kfJE{;. (33.50) 

This gives us an equation for the £’s that is different from Eq. (33 48). With the 
two, we can solve for Eq and Eq. Remembering that kf, = —kx, we get 

Ely = 

E rt _ 
o — 

Tx + k'j 

2 kx 
kx + k'J 

Eih 

E0. 

(33 51) 

(33.52) 

These, together with Eq. (33.45) or Eq. (33 46) for k", give us what we wanted to 
know. We will discuss the consequences of this result in the next section. 

If we begin with a wave polarized with its 2?-vector parallel to the plane of 
incidence, E will have both x- and y-components, as shown in Fig. 33-7. The 
algebra is straightforward but more complicated (The work can be somewhat 
reduced by expressing things in this case m terms of the magnetic fields, which are 
all in the z-direction.) One finds that 

and 

n2kx - mk'J , , 
|£o| - -2-— -j- l^ol 

n\kx + nik'J 
(33 53) 

, 2 nxti,kx 
^ol - , -7 l^ol* 

nikx + n\k’l 
(33 54) 

Let’s see whether our results agree with those we got earlier Equation (33 3) 
is the result we worked out in Chapter 35 of Volume 1 for the ratio of the intensity 
of the reflected wave to the intensity of the incident wave Then, however, we were 
considering only real indexes For real indexes (and k's), we can write 

kx = k cos dx = —- cos 
c 

kx = kff cos Qt — cos Bt 
c 

Substituting in Eq. (33,51), we have 

Eo _ tiy cos d, — n2 cos 9t 
E0 Aii cos 9t + n2 cos Bt ’ 

(33.55) 
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which does not look the same as Eq. (33.3). It will, however, if we use Snell’s law 

to get rid of the n’s. Setting n2 = nx sin ^9,/sin 6f, and multiplying the numerator 

and denominator by sin Qti we get 

EU _ cos Bx sin Qt — sin 8, cos 6t 

E0 cos 8h sin 8t + sin 8t cos 8t 

The numerator and denominator are just the sines of (8t — 8t) and (0, + 8t); 

we get 

Eq = sin ($, - 8t) 

Eq sin (0, + dt) 
(33.56) 

Since Eq and E0 are in the same material, the intensities are proportional to the 

squares of the electric fields, and we get the same result as before. Similarly, Eq. 

(33.53) is the same as Eq. (33.4). 

For waves which arrive at normal incidence, 8t = 0 and 8t = 0. Equation 

(33.56) gives 0/0, which is not very useful. We can, however, go back to Eq. 

(33.55), which gives 

[r ^ (E{X2 = (ny - nA2 

i, \E{)/ \«i + n2) 
(33.57) 

This result, naturally, applies for “either” polarization, since for normal incidence 

there is no special “plane of incidence.” 

33-5 Reflection from metals 

We can now use our results to understand the interesting phenomenon of 

reflection from metals. Why is it that metals are shiny? We saw in the last chapter 

that metals have an index of refraction which, for some frequencies, has a large 

imaginary part. Let’s see what we would get for the reflected intensity when light 

shines from air (with n = 1) onto a material with n = —ini. Then Eq. (33.55) 

gives (for normal incidence) 

Eo _ 1 + inj 
E0 1 - inx 

For the intensity of the reflected wave, we want the square of the absolute values 

of Eq and Eu: 

lr _ \E'0{2 _ |i + im|2 

I, |£0|* 
or 

[r __ 1 H~ nj 

II 1 + nj 
(33 58) 

For a material with an index which is a pure imaginary number, there is 100 per¬ 

cent reflectionf 

Metals do not reflect 100 percent, but many do reflect visible light very well. 

In other words, the imaginary part of their indexes is very large But we have seen 

that a large imaginary part of the index means a strong absorption. So there is a 

general rule that if any material gets to be a very good absorber at any frequency, 

the waves are strongly reflected at the surface and very little gets inside to be ab¬ 

sorbed You can see this effect with strong dyes Pure crystals of the strongest 

dyes have a “metallic” shine. Probably you have noticed that at the edge of a bottle 

of purple ink the dried dye will give a golden metallic reflection, or that dried red 

ink will sometimes give a greenish metallic reflection. Red ink absorbs out the 

greens of transmitted light, so if the ink is very concentrated, it will exhibit a strong 

surface reflection for the frequencies of green light. 

You can easily show this effect by coating a glass plate with red ink and 

letting it dry. If you direct a beam of white light at the back of the plate, as shown 

in Fjg. 33-8, there will be a transmitted beam of red light and a reflected beam of 

green light. 

Fig. 33-8. A material which absorbs 

light strongly at the frequency a; also 

reflects light of that frequency. 
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33-6 Total internal reflection 

If light goes from a material like glass, with a real index n greater than 1, 

toward, say, air, with an index n2 equal to 1, Snell's law says that 

sin Bt = n sin 6t. 

The angle 0t of the transmitted wave becomes 90° when the incident angle Bt is 

equal to the “critical angle” 6, given by 

n sin 6C — 1. (33.59) 

What happens for Bt greater than the critical angle7 You know that there is total 

internal reflection. But how does that come about7 

Let’s go back to Eq (33.45) which gives the wave numbei k” for the trans¬ 

mitted wave. We would have 

Fig. 33-10. If there is a small gap, 

internal reflection is not “total”; a trans¬ 

mitted wave appears beyond the gap. 

Now kfJ — k sin B% and k = con/c, so 

2 

k”'2 = "t (1 - n2 sin2 9,) . 

If n sin 9, is greater than one, k"'2 is negative and k” is a pure imaginary, say 

±ik[. You know by now what that means' The “transmitted” wave (Eq. 33.34) 

will have the form 

Et = 

The wave amplitude either grows or drops off exponentially with increasing x. 

Clearly, what we want here is the negative sign. Then the amplitude of the wave 

to the right of the boundary will go as shown in Fig. 33-9. Notice that ki is of 

the order co/c—which is Xn, the free-space wavelength of the light. When light is 

totally reflected from the inside of a glass-air surface, there are fields in the air, 

but they extend beyond the surface only a distance of the order of the wavelength 

of the light 

We can now see how to answer the following question: If a light wave in glass 

arrives at the surface at a large enough angle, it is reflected, if another piece of 

glass is brought up to the surface (so that the “surface” in effect disappears) the 

light is transmitted. Exactly when does this happen? Surely there must be con¬ 

tinuous change from total reflection to no reflection' The answer, of course, is 

that if the air gap is so small that the exponential tail of the wave in the air has an 

appreciable strength at the second piece of glass, it will shake the electrons there 

and generate a new wave, as shown in Fig. 33-10. Some light will be transmitted. 

(Clearly, our solution is incomplete, we should solve all the equations again for a 

thin layer of air between two regions of glass.) 
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Fig. 33-1 1. A demonstration of the penetration of internally reflected waves. 

This transmission effect can be observed with ordinary light only if the air 

gap is very small (of the order of the wavelength of light, like 10~5 cm), but it is 

easily demonstrated with three-centimeter waves. Then the exponentially de¬ 

creasing field extends several centimeters. A microwave apparatus that shows the 

effect is drawn in Fig. 33-11 Waves from a small three-centimeter transmitter are 

directed at a 45° prism of paraffin. The index of refraction of paraffin for these 

frequencies is 1.50, and therefore the critical angle is 41.5°. So the wave is totally 

reflected from the 45° face and is picked up by detector A, as indicated in 

Fig. 33-11(a). If a second paraffin prism is placed in contact with the first, as 

shown in part (b) of the figure, the wave passes straight through and is picked up 

at detector B. If a gap of a few centimeters is left between the two prisms, as in 

part (c), there are both transmitted and reflected waves. The electric field outside 

the 45° face of the prism in Fig. 33-11(a) can also be shown by bringing detector 

B to within a few centimeters of the surface. 

tB 

© 
DETECTOR 
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34 

The Magnetism of Mutter 

34-1 Diamagnetism and paramagnetism 

In this chapter we are going to talk about the magnetic properties of materials. 

The material which has the most striking magnetic properties is, of course, iron. 

Similar magnetic properties are shared also by the elements nickel, cobalt, and—at 

sufficiently low temperatures (below 16°C)—by gadolinium, as well as by a number 

of peculiar alloys. That kind of magnetism, called ferromagnetism, is sufficiently 

striking and complicated that we will discuss it in a special chapter. However, 

all ordinary substances do show some magnetic effects, although very small 

ones—a thousand to a million times less than the effects in ferromagnetic materials. 

Here we are going to describe ordinary magnetism, that is to say, the magnetism 

of substances other than the ferromagnetic ones. 

This small magnetism is of two kinds. Some materials are attracted toward 

magnetic fields; others are repelled. Unlike the electrical effect in matter, which 

always causes dielectrics to be attracted, there are two signs to the magnetic 

effect. These two signs can be easily shown with the help of a strong electromagnet 

which has one sharply pointed pole piece and one flat pole piece, as drawn in 

Fig. 34-1. The magnetic field is much stronger near the pointed pole than near the 

flat pole. If a small piece of material is fastened to a long string and suspended 

between the poles, there will, in general, be a small force on it. This small force 

can be seen by the slight displacement of the hanging material when the magnet 

is turned on. The few ferromagnetic materials are attracted very strongly toward 

the pointed pole; all other materials feel only a very weak force. Some are weakly 

attracted to the pointed pole; and some are weakly repelled. 

34-1 Diamagnetism and 

paramagnetism 

34-2 Magnetic moments and angular 

momentum 

34-3 The precession of atomic 

magnets 

34-4 Diamagnetism 

34-5 Larmor’s theorem 

34-6 Classical physics gives neither 

diamagnetism nor 

paramagnetism 

34-7 Angular momentum in quantum 

mechanics 

34-8 The magnetic energy of atoms 

Review: Section 15-1, “The forces on 

a current loop; energy of a 

dipole.” 

The effect is most easily seen with a small cylinder of bismuth, which is 

repelled from the high-field region. Substances which are repelled in this way are 

called diamagnetic. Bismuth is one of the strongest diamagnetic materials, but 

even with it, the effect is still quite weak. Diamagnetism is always very weak. 

If a small piece of aluminum is suspended between the poles, there is also a weak 

force, but toward the pointed pole. Substances like aluminum are called para¬ 

magnetic. (In such an experiment, eddy-current forces arise when the magnet is 

turned on and off, and these can give off strong impulses. You must be careful 

to look for the net displacement after the hanging object settles down.) 
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We want now to describe briefly the mechanisms of these two effects. 

First, in many substances the atoms have no permanent magnetic moments, 

or rather, all the magnets within each atom balance out so that the net moment 

of the atom is zero. The electron spins and orbital motions all exactly balance 

out, so that any particular atom has no average magnetic moment. In these cir¬ 

cumstances, when you turn on a magnetic field little extra currents are generated 

inside the atom by induction. According to Lenz’s law, these currents are in 

such a direction as to oppose the increasing field. So the induced magnetic mo¬ 

ments of the atoms are directed opposite to the magnetic field. This is the mech¬ 

anism of diamagnetism. 

Then there are some substances for which the atoms do have a permanent 

magnetic moment—in which the electron spins and orbits have a net circulating 

current that is not zero So besides the diamagnetic effect (which is always present), 

there is also the possibility of lining up the individual atomic magnetic moments 

In this case, the moments try to line up with the magnetic field (in the way the 

permanent dipoles of a dielectric are lined up by the electric field), and the induced 

magnetism tends to enhance the magnetic field. These are the paramagnetic sub¬ 

stances. Paramagnetism is generally fairly weak because the lining-up forces are 

relatively small compared with the forces from the thermal motions which try to 

derange the order. It also follows that paramagnetism is usually sensitive to the 

temperature (The paramagnetism arising from the spins of the electrons re¬ 

sponsible for conduction in a metal constitutes an exception. We will not be 

discussing this phenomenon here.) For ordinary paramagnetism, the lower the 

temperature, the stronger the effect. There is more lining-up at low temperatures 

when the deranging effects of the collisions are less. Diamagnetism, on the other 

hand, is more or less independent of the temperature. In any substance with built-in 

magnetic moments there is a diamagnetic as well as a paramagnetic effect, but the 

paramagnetic effect usually dominates. 

In Chapter 11 we described a ferroelectric material, m which all the electric 

dipoles get lined up by their own mutual electric fields It is also possible to imagine 

the magnetic analog of ferroelectricity, in which all the atomic moments would 

line up and lock together. If you make calculations of how this should happen, 

you will find that because the magnetic forces are so much smaller than the electric 

forces, thermal motions should knock out this alignment even at temperatures as 

low as a few tenths of a degree Kelvin. So it would be impossible at room tempera¬ 

ture to have any permanent lining up of the magnets. 

On the other hand, this is exactly what does happen in iron—it does get lined 

up. There is an effective force between the magnetic moments of the different atoms 

of iron which is much, much greater than the direct magnetic interaction It is an 

indirect effect which can be explained only by quantum mechanics. It is about 

ten thousand times stronger than the direct magnetic interaction, and is what lines 

up the moments in ferromagnetic materials. We discuss this special interaction 

in a later chapter. 

Now that we have tried to give you a qualitative explanation of diamagnetism 

and paramagnetism, we must correct ourselves and say that if is noi possible to 

understand the magnetic effects of materials in any honest way from the point 

of view of classical physics. Such magnetic effects are a completely quantum- 

mechanical phenomenon. It is, however, possible to make some phoney classical 

arguments and to get some idea of what is going on. We might put it this way. 

You can make some classical arguments and get guesses as to the behavior of the 

material, but these arguments are not “legal” in any sense because it is absolutely 

essential that quantum mechanics be involved in every one of these magnetic 

phenomena. On the other hand, there are situations, such as in a plasma or a 

region of space with many free electrons, where the electrons do obey the laws 

of classical mechanics And in those circumstances, some of the theorems from clas¬ 

sical magnetism are worth while Also, the classical arguments are of some value 

for historical reasons. The first few times that people were able to guess at the mean¬ 

ing and behavior of magnetic materials, they used classical arguments Finally, 

as we have already illustrated, classical mechanics can give us some useful guesses 
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as to what might happen—even though the really honest way to study this subject 

would be to learn quantum mechanics first and then to understand the magnetism 

in terms of quantum mechanics. 

On the other hand, we don’t want to wait until we learn quantum mechanics 

inside out to understand a simple thing like diamagnetism We will have to 

lean on the classical mechanics as kind of half showing what happens, realizing, 

however, that the arguments are really not correct. We therefore make a series of 

theorems about classical magnetism that will confuse you because they will prove 

different things. Except for the last theorem, every one of them will be wrong 

Furthermore, they will all be wrong as a description of the physical world, because 

quantum mechanics is left out. 

34-2 Magnetic moments and angular momentum 

The first theorem we want to prove from classical mechanics is the following: 

If an electron is moving in a circular orbit (for example, revolving around a nucleus 

under the influence of a central force), there is a definite ratio between the magnetic 

moment and the angular momentum. Let’s call J the angular momentum and 

tx the magnetic moment of the electron in the orbit. The magnitude of the angular 

momentum is the mass of the electron times the velocity times the radius (See 

Fig. 34-2.) It is directed perpendicular to the plane of the orbit. 

J — mvr. (34.1) 

(This is, of course, a nonrelativistic formula, but it is a good approximation for 

atoms, because for the electrons involved v/c is generally of the order of e2/hc = 

1/137, or about 1 percent) 

The magnetic moment of the same orbit is the current times the area. (See 

Section 14-5 ) The current is the charge per unit time which passes any point on 

the orbit, namely, the charge# times the frequency of rotation. The frequency is the 

velocity divided by the circumference of the orbit; so 

Fig. 34-2. For any circular orbit the 

magnetic moment /x is q/2m times the 

angular momentum J. 

/ - 
q2V/ 

The area is 7rr2, so the magnetic moment is 

qvr 

* = ~T 
(34 2) 

It is also directed perpendicular to the plane of the orbit, 

same direction: 

** = in J (0rblt)' 

So J and /a are in the 

(34.3) 

Their ratio depends neither on the velocity nor on the radius. For any particle 

moving in a circular orbit the magnetic moment is equal to q/2m times the angular 

momentum. For an electron, the charge is negative—we can call it — so for 

an electron 

M = — v'- / (electron orbit). (34.4) 
Zm 

That’s what we would expect classically and, miraculously enough, it is also 

true quantum-mechamcally It’s one of those things. However, if you keep going 

with the classical physics, you find other places where it gives the wrong answers, 

and it is a great game to try to remember which things are right and which things 

are wrong. We might as well give you immediately what is true in general in 

quantum mechanics. First, Eq. (34 4) is true for orbital motion, but that’s not the 

only magnetism that exists. The electron also has a spin rotation about its own 

axis (something like the earth rotating on its axis), and as a result of that spin it 

has both an angular momentum and a magnetic moment But for reasons that are 

purely quantum-mechanical—there is no classical explanation—the ratio of /x 
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to / for the electron spin is twice as large as it is for orbital motion of the spinning 

electron: 

/a = — ^ / (electron spin). (34 5) 

In any atom there are, generally speaking, several electrons and some combina¬ 

tion of spin and orbit rotations which builds up a total angular momentum and a 

total magnetic moment. Although there is no classical reason why it should be so, 

it is always true in quantum mechanics that (for an isolated atom) the direction of 

the magnetic moment is exactly opposite to the direction of the angular momentum. 

The ratio of the two is not necessarily either —qe/m or ~qe/2m, but somewhere in 

between, because there is a mixture of the contributions from the orbits and the 

spins. We can write 

where g is a factor which is characteristic of the state of the atom. It would be 1 

for a pure orbital moment, or 2 for a pure spin moment, or some other number 

in between for a complicated system like an atom. This formula does not, of course, 

tell us very much. It says that the magnetic moment is parallel to the angular mo¬ 

mentum, but can have any magnitude. The form of Eq. (34.6) is convenient, how¬ 

ever, because g—called the “Lande g-factor”—is a dimensionless constant whose 

magnitude is of the order of one. It is one of the jobs of quantum mechanics to 

predict the g-factor for any particular atomic state. 

You might also be interested in what happens in nuclei. In nuclei there are 

protons and neutrons which may move around in some kind of orbit and at the 

same time, like an electron, have an intrinsic spin. Again the magnetic moment 

is parallel to the angular momentum. Only now the order of magnitude of the 

ratio of the two is what you would expect for a proton going around in a circle, 

with m in Eq. (34.3) equal to the proton mass Therefore it is usual to write for 

nuclei 

* - * (&y * <34-7> 
where mp is the mass of the proton, and g—called the nuclear g-factor—is a number 

near one, to be determined for each nucleus. 

Another important difference for a nucleus is that the spin magnetic moment 

of the proton does not have a ^-factor of 2, as the electron does For a proton, 

g = 2(2 79). Surprisingly enough, the neutron also has a spin magnetic moment, 

and its magnetic moment relative to its angular momentum is 2(—1.93). The 

neutron, in other words, is not exactly “neutral” in the magnetic sense. It is like 

a little magnet, and it has the kind of magnetic moment that a rotating negative 

charge would have. 

34-3 The precession of atomic magnets 

One of the consequences of having the magnetic moment proportional to the 

angular momentum is that an atomic magnet placed in a magnetic field will precess. 

First we will argue classically. Suppose that we have the magnetic moment ju 

suspended freely in a uniform magnetic field. It will feel a torque r, equal to 

/* X /?, which tries to bring it in line with the field direction But the atomic 

magnet is a gyroscope—it has the angular momentum /. Therefore the torque 

due to the magnetic field will not cause the magnet to line up. Instead, the magnet 

will precess, as we saw when we analyzed a gyroscope in Chapter 20 of Volume I. 

The angular momentum—and with it the magnetic moment—precesses about an 

axis parallel to the magnetic field. We can find the rate of precession by the same 

method we used in Chapter 20 of the first volume. 

Suppose that in a small time At the angular momentum changes from J to /', 

as drawn in Fig. 34-3, staying always at the same angle 6 with respect to the direc¬ 

tion of the magnetic field B. Let’s call oop the angular velocity of the precession, 

so that in the time At the angle of precession is a)p At. From the geometry of the 
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figure, we see that the change of angular momentum in the time At is 

AJ = (J sin 0)(o>p At). 

So the rate of change of the angular momentum is 

jt = UpJ sine, (34.8) 

which must be equal to the torque: 

r = fiB sin 8. (34.9) 

The angular velocity of precession is then 

= J B. (34.10) 

Substituting fx/J from Eq. (34.6), we see that for an atomic system 

(34.11) 

the precession frequency is proportional to B. It is handy to remember that 

for an atom (or electron) 

~ = (1.4 megacycles/gauss)gi?, (34.12) 
/7T 

and that for a nucleus 

fv = = (0.76 kilocycles /gauss)g£, (34.13) 
2.ir 

(The formulas for atoms and nuclei are different only because of the different 

conventions for g for the two cases.) 

According to the classical theory, then, the electron orbits—and spins—in 

an atom should precess in a magnetic field. Is it also true quantum-mechanically? 

It is essentially true, but the meaning of the “precession’' is different. In quantum 

mechanics one cannot talk about the direction of the angular momentum in the 

same sense as one does classically, nevertheless, there is a very close analogy—so 

close that we continue to call it “precession.” We will discuss it later when we talk 

about the quantum-mechanical point of view. 

34-4 Diamagnetism 

Next we want to look at (7/nmagnetism from the classical point of view. It 

can be worked out in several ways, but one of the nice ways is the following. 

Suppose that we slowly turn on a magnetic field in the vicinity of an atom. As 

the magnetic field changes an electric field is generated by magnetic induction. 

From Faraday’s law, the line integral of E around any closed path is the rate of 

change of the magnetic flux through the path. Suppose we pick a path T which is 

a circle of radius r concentric with the center of the atom, as shown in Fig. 34-4. 

The average tangential electric field E around this path is given by 

E2Trr = - j (Birr2), 

and there is a circulating electric field whose strength is 

£ — _r_dJL. 
2 dt 

The induced electric field acting on an electron in the atom produces a torque 

equal to ~qeEr, which must equal the rate of change of the angular momentum 

dJ/dt: 
dJ _ qer2 dlB 

dt 2 dt 
(34.14) 

Fig. 34-3. An object with angular 

momentum J and a parallel magnetic 

moment /* placed in a magnetic field B 

precesses with rhe angular velocity «p. 

B 

Fig. 34-4. The induced electric 

forces on the electrons in an atom. 
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Integrating with respect to time from zero field, we find that the change in angular 

momentum due to turning on the field is 

a r2 
AJ = B. (34.15) 

This is the extra angular momentum from the twist given to the electrons as the 

field is turned on. 

This added angular momentum makes an extra magnetic moment which, 

because it is an orbital motion, is just ~qe/2m times the angular momentum. The 

induced diamagnetic moment is 
2 2 

Am = — tp- AJ = B. (34.16) 
2m 4m 

The minus sign (as you can see is right by using Lenz’s law) means that the added 

moment is opposite to the magnetic field. 

We would like to write Eq (34.16) a little differently. The r2 which appears 

is the radius from an axis through the atom parallel to B, so if B is along the z-direc- 

tion, it is x2 T- y2> If we consider spherically symmetric atoms (or average over 

atoms with their natural axes in all directions) the average of x2 + y2 is 2/3 of 

the average of the square of the true radial distance from the center point of the 

atom. It is therefore usually more convenient to write Eq. (34.16) as 

= -^(r\vB. (34.17) 

In any case, we have found an induced atomic moment proportional to the 

magnetic field B and opposing it. This is diamagnetism of matter. It is this magnetic 

effect that is responsible for the small force on a piece of bismuth in a nonuniform 

magnetic field. (You could compute the force by working out the energy of the 

induced moments in the field and seeing how the energy changes as the material 

is moved into or out of the high-field region.) 

We are still left with the problem: What is the mean square radius, (r2).u? 

Classical mechanics cannot supply an answer. We must go back and start over 

with quantum mechanics. In an atom we cannot really say where an electron is, 

but only know the probability that it will be at some place If we interpret {r2)in 

to mean the average of the square of the distance from the center for the probability 

distribution, the diamagnetic moment given by quantum mechanics is just the 

same as formula (34.17). This equation, of course, is the moment for one electron. 

The total moment is given by the sum over all the electrons in the atom. The 

surprising thing is that the classical argument and quantum mechanics give the 

same answer, although, as we shall see, the classical argument that gives Eq. (34.17) 

is not really valid in classical mechanics. 

The same diamagnetic effect occurs even when an atom already has a perma¬ 

nent moment. Then the system will precess in the magnetic field. As the whole 

atom precesses, it takes up an additional small angular velocity, and that slow 

turning gives a small current which represents a correction to the magnetic moment. 

This is just the diamagnetic effect represented in another way. But we don't 

really have to worry about that when we talk about paramagnetism. If the dia¬ 

magnetic effect is first computed, as we have done here, we don’t have to worry 

about the fact that there is an extra little current from the precession. That has 

already been included in the diamagnetic term. 

34-5 Larmor’s theorem 

We can already conclude something from our results so far First of all, in 

the classical theory the moment /* was always proportional to /, with a given con¬ 

stant of proportionality for a particular atom There wasn’t any spin of the 

electrons, and the constant of proportionality was always —qe/2m; that is to say, 

in Eq. (34.6) we should set g ^ 1. The ratio of fx to / was independent of the in¬ 

ternal motion of the electrons. Thus, according to the classical theory, all systems 
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of electrons would precess with the same angular velocity. (This is not true in 

quantum mechanics.) This result is related to a theorem in classical mechanics 

that we would now like to prove Suppose we have a group of electrons which are 

all held together by attraction toward a central point—as the electrons are attracted 

by a nucleus. The electrons will also be interacting with each other, and can, in 

general, have complicated motions. Suppose you have solved for the motions 

with no magnetic field and then want to know what the motions would be with a 

weak magnetic field. The theorem says that the motion with a weak magnetic 

field is always one of the no-field solutions with an added rotation, about the axis 

of the field, with the angular velocity a>/, = qeB/2m. (This is the same as cop, 

if g = 1.) There are, of course, many possible motions. The point is that for 

every motion without the magnetic field there is a corresponding motion in the 

field, which is the original motion plus a uniform rotation This is called Larmor’s 

theorem, and coj, is called the Larmor frequency. 

We would like to show how the theorem can be proved, but we will let you 

work out the details. Take, first, one electron m a central force field. The force on 

it is just F(r), directed toward the center. If we now turn on a uniform magnetic 

field, there is an additional force, qv X B\ so the total force is 

F(r) + qv X B. (34.18) 

Now let’s look at the same system from a coordinate system rotating with angulai 

velocity co about an axis through the center of force and parallel to B. This is no 

longer an inertial system, so we have to put in the proper pseudoforces—the cen¬ 

trifugal and Coriolis forces we talked about in Chapter 19 of Volume I. We found 

there that in a frame rotating with angular velocity w, there is an apparent tangential 

force proportional to vrt the radial component of velocity: 

Ff = -2/wghv (34.19) 

And there is an apparent radial force which is given by 

Fr = moo2r + 2mu)rh (34 20) 

where vt is the tangential component of the velocity, measured in the rotating 

frame. (The radial component vr for rotating and inertial frames is the same ) 

Now for small enough angular velocities (that is, if oor « vt), we can neglect 

the first term (centrifugal) in Eq. (34.20) in comparison with the second (Coriolis) 

Then Eqs. (34.19) and (34.20) can be written together as 

F = -2X v. (34.21) 

If we now combine a rotation and a magnetic field, we must add the force in 

Eq, (34.21) to that in Eq (34.18), The total force is 

F(r) + qv X B + 2mv X to (34.22) 

[we reverse the cross product and the sign of Eq. (34 21) to get the last term]. 

Looking at our result, we see that if 

2 m« = qB 

the two terms on the right cancel, and in the moving frame the only force is F(r). 

The motion of the electron is just the same as with no magnetic field—and, of 

course, no rotation. We have proved Larmor’s theorem for one electron. Since 

the proof assumes a small oj, it also means that the theorem is true only for weak 

magnetic fields. The only thing we could ask you to improve on is to take the case 

of many electrons mutually interacting with each other, but all in the same central 

field, and prove the same theorem. So no matter how complex an atom is, if it has 

a central field the theorem is true. But that’s the end of the classical mechanics, 

because it isn’t true in fact that the motions precess in that way. The precession 

frequency cop of Eq. (34.11) is only equal to if g happens to be equal to 1. 
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34-6 Classical physics gives neither diamagnetism nor paramagnetism 

Now we would like to demonstrate that according to classical mechanics 

there can be no diamagnetism and no paramagnetism at all. It sounds crazy—first, 

we have proved that there are paramagnetism, diamagnetism, precessing orbits, 

and so on, and now we are going to prove that it is all wrong. Yes!—We are going 

to prove that if you follow the classical mechanics far enough, there are no such 

magnetic effects—they all cancel out. If you start a classical argument in a certain 

place and don’t go far enough, you can get any answer you want. But the only 

legitimate and correct proof shows that there is no magnetic effect whatever. 

It is a consequence of classical mechanics that if you have any kind of system— 

a gas with electrons, protons, and whatever—kept in a box so that the whole thing 

can’t turn, there will be no magnetic effect. It is possible to have a magnetic effect 

if you have an isolated system, like a star held together by itself, which can start 

rotating when you put on the magnetic field. But if you have a piece of material 

that is held in place so that it can’t start spinning, then there will be no magnetic 

effects. What we mean by holding down the spin is summarized this way: At a 

given temperature we suppose that there is only one state of thermal equilibrium 

The theorem then says that if you turn on a magnetic field and wait for the system 

to get into thermal equilibrium, there will be no paramagnetism or diamagnetism— 

there will be no induced magnetic moment. Proof: According to statistical me¬ 

chanics, the probability that a system will have any given state of motion is pro¬ 

portional to e~Ujk\ where U is the energy of that motion. Now what is the energy 

of motion? For a particle moving in a constant magnetic field, the energy is the 

ordinary potential energy plus mv2/2, with nothing additional for the magnetic 

field. [You know that the forces from electromagnetic fields are q(E + v X B), 

and that the rate of work F • u is just qE • v, which is not affected by the magnetic 

field ] So the energy of a system, whether it is in a magnetic field or not, is always 

given by the kinetic energy plus the potential energy. Since the probability of any 

motion depends only on the energy—that is, on the velocity and position—it is 

the same whether or not there is a magnetic field. For thermal equilibrium, there¬ 

fore, the magnetic field has no effect. If we have one system in a box, and then have 

another system in a second box, this time with a magnetic field, the probability 

of any particular velocity at any point in the first box is the same as m the second. 

If the first box has no average circulating current (which it will not have if it is in 

equilibrium with the stationary walls), there is no average magnetic moment. 

Since in the second box all the motions are the same, there is no average magnetic 

moment there either. Hence, if the temperature is kept constant and thermal 

equilibrium is re-established after the field is turned on, there can be no magnetic 

moment induced by the field—according to classical mechanics. We can only get a 

satisfactory understanding of magnetic phenomena from quantum mechanics. 

Unfortunately, we cannot assume that you have a thorough understanding of 

quantum mechanics, so this is hardly the place to discuss the matter. On the other 

hand, we don’t always have to learn something first by learning the exact rules and 

then by learning how they are applied in different cases. Almost every subject 

that we have taken up in this course has been treated in a different way. In the 

case of electricity, we wrote the Maxwell equations on “Page One” and then de¬ 

duced all the consequences. That’s one way. But we will not now try to begin a new 

“Page One,” writing the equations of quantum mechanics and deducing everything 

from them We will just have to tell you some of the consequences of quantum 

mechanics, before you learn where they come from. So here we go. 

34-7 Angular momentum in quantum mechanics 

We have already given you a relation between the magnetic moment and the 

angular momentum. That’s pleasant. But what do the magnetic moment and the 

angular momentum mean in quantum mechanics? In quantum mechanics it turns 

out to be best to define things like magnetic moments in terms of the other con¬ 

cepts such as energy, in order to make sure that one knows what it means. Now, 
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it is easy to define a magnetic moment in terms of energy, because the energy of 

a moment in a magnetic field is, in the classical theory, ft ■ B. Therefore, the follow¬ 

ing definition has been taken in quantum mechanics: If we calculate the energy of a 

system m a magnetic field and we find that it is proportional to the field strength 

(for small field), the coefficient is called the component of magnetic moment in 

the direction of the field. (We don’t have to get so elegant for our work now, we 

can still think of the magnetic moment in the ordinary, to some extent classical, 

sense.) 

Now we would like to discuss the idea of angular momentum in quantum 

mechanics—or rather, the characteristics of what, in quantum mechanics, is called 

angular momentum. You see, when you go to new kinds of laws, you can’t just 

assume that each word is going to mean exactly the same thing. You may think, 

say, “Oh, I know what angular momentum is. It’s that thing that is changed by a 

torque.*’ But what’s a torque? In quantum mechanics we have to have new 

definitions of old quantities. It would, therefore, be legally best to call it by some 

other name such as “quantangular momentum,” or something like that, because 

it is the angular momentum as defined in quantum mechanics But if we can find a 

quantity in quantum mechanics which is identical to our old idea of angular 

momentum when the system becomes large enough, there is no use in inventing 

an extra word. We might as well just call it angular momentum. With that under¬ 

standing, this odd thing that we are about to describe is angular momentum It 

is the thing which in a large system we recognize as angular momentum in classical 

mechanics. 

First, we take a system in which angular momentum is conserved, such as an 

atom all by itself in empty space. Now such a thing (like the earth spinning on its 

axis) could, in the ordinary sense, be spinning around any axis one wished to choose. 

And for a given spin, there could be many different “states,” all of the same 

energy, each “state” corresponding to a particular direction of the axis of the 

angular momentum. So in the classical theory, with a given angular momentum, 

there is an infinite number of possible states, all of the same energy. 

It turns out in quantum mechanics, however, that several strange things 

happen. First, the number of states in which such a system can exist is limited— 

there is only a finite number. If the system is small, the finite number is very small, 

and if the system is large, the finite number gets very, very large. Second, we 

cannot describe a “state” by giving the direction of its angular momentum, but 

only by giving the component of the angular momentum along some direction—say 

in the z-direction Classically, an object with a given total angular momentum 

J could have, for its z-component, any value from -\-J to —J. But quantum- 

mechanically, the z-component of angular momentum can have only certain discrete 

values. Any given system—a particular atom, or a nucleus, or anything—with a 

given energy, has a characteristic number y, and its z-component of angular mo¬ 

mentum can only be one of the following set of values: 

<j-w 
(j-2)h 

~(j ~ 2)h 

~u - m 
-/ft 

(34.23) 

The largest z-component is j times h; the next smaller is one unit of h less, and so 

on down to —jh. The number j is called “the spin of the system.” (Some people 

call it the “total angular momentum quantum number”; but we’ll call it the “spin.”) 

You may be worried that what we are saying can only be true for some “spe¬ 

cial” z-axis But that is not so. For a system whose spin is y, the component of 

angular momentum along any axis can have only one of the values in (34.23) 

Although it is quite mysterious, we ask you just to accept it for the moment We 
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will come back and discuss the point later. You may at least be pleased to hear that 

the z-component goes from some number to minus the same number, so that we 

at least don’t have to decide which is the plus direction of the z-axis. (Certainly, if 

we said that it went from +/ to minus a different amount, that would be infinitely 

mysterious, because we wouldn’t have been able to define the z-axis, pointing the 

other way.) 

Now if the z-component of angular momentum must go down by integers 

from +/ to —j, then j must be an integer. No! Not quite; twice j must be 

an integer. It is only the difference between +/ and —j that must be an integer. So, 

in general, the spin j is either an integer or a half-integer, depending on whether 

2] is even or odd. Take, for instance, a nucleus like lithium, which has a spin of 

three-halves, j = 3/2. Then the angular momentum around the z-axis, in units 

of h> is one of the following: 

+3/2 

+ 1/2 

-1/2 
-3/2. 

There are four possible states, each of the same energy, if the nucleus is in empty 

space with no external fields. If we have a system whose spin is two, then the 

z-component of angular momentum has only the values, in units of h, 

2 
1 

0 
-1 

-2. 

If you count how many states there are for a given/, there are (2j + 1) possibilities. 

In other words, if you tell me the energy and also the spin y, it turns out that 

there are exactly (2y + I) states with that energy, each state corresponding to one 

of the different possible values of the z-component of the angular momentum. 

We would like to add one other fact. If you pick out any atom of known y 

at random and measure the z-component of the angular momentum, then you may 

get any one of the possible values, and each of the values is equally likely. All of 

the states are in fact single states, and each is just as good as any other. Each one 

has the same “weight” in the world. (We are assuming that nothing has been done 

to sort out a special sample.) This fact has, incidentally, a simple classical analog. 

If you ask the same question classically: What is the likelihood of a particular 

z-component of angular momentum if you take a random sample of systems, all 

with the same total angular momentum?—the answer is that all values from the 

maximum to the minimum are equally likely. (You can easily work that out.) 

The classical result corresponds to the equal probability of the (2y + 1) possi¬ 

bilities in quantum mechanics. 

From what we have so far, we can get another interesting and somewhat 

surprising conclusion. In certain classical calculations the quantity that appears 

in the final result is the square of the magnitude of the angular momentum /—in 

other words, J • /. It turns out that it is often possible to guess at the correct 

quantum-mechanical formula by using the classical calculation and the following 

simple rule: Replace J2 = /■ / byy(y + 1 )h2. This rule is commonly used, and 

usually gives the correct result, but not always. We can give the following argument 

to show why you might expect this rule to work. 

The scalar product / • / can be written as 

jj = j! + j'I + Si 

Since it is a scalar, it should be the same for any orientation of the spin. Suppose 

we pick samples of any given atomic system at random and make measurements of 

Jl, or J2, or J2Zi the average value should be the same for each. (There is no special 

distinction for any one of the directions.) Therefore, the average of / ■ / is just 
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equal to three times the average of any component squared, say of J2; 

{/■/>av = 3 <7f). 

But since / • / is the same for all orientations, its average is, of course, just its 

constant value; we have 

/•/= 3<4>av. (34.24) 

If we now say that we will use the same equation for quantum mechanics, we 

can easily find (J‘i)ilv. We just have to take the sum of the (2\j + 1) possible values 

of J2, and divide by the total number; 

{J2U = J~ + U ~ 1)2 +—" + \~ J + 1)2 + (~y)2 h2. (34.25) 
4 7 r 1 

For a system with a spin of 3/2, it goes like this: 

(J2\v = (3/2)2 + (1/2f + (-1/2)8 + (—3/2)2 = 5 ^ 

We conclude that 

JJ = 3{4),v = 3 p2 = f(f + l)^2. 

We will leave it for you to show that Eq. (34.25), together with Eq. (34.24), gives 

the general result 

/■/ = X/+ l)^2- (34.26) 

Although we would think classically that the largest possible value of the z-com- 

ponent of J is just the magnitude of J—namely, \/ J • J—quantum mechanically 

the maximum of Jz is always a little less than that, because jh is always less than 

V/0 + 1) h. The angular momentum is never “completely along the z-direction.” 

34-8 The magnetic energy of atoms 

Now we want to talk again about the magnetic moment. We have said that in 

quantum mechanics the magnetic moment of a particular atomic system can be 

written in terms of the angular momentum by Eq. (34.6); 

(34.27) 

where — qe and m are the charge and mass of the electron. 

An atomic magnet placed in an external magnetic field will have an extra 

magnetic energy which depends on the component of its magnetic moment along 

the field direction. We know that 

tfmag = ' B. (34.28) 

Choosing our z-axis along the direction of B, 

UmAK = (34.29) 

Using Eq. (34.27), we have that 

UnM*= 8 (Jfy J*B' 
Quantum mechanics says that Jz can have only certain values: jh, (j — l)h, . . ., 

—jh. Therefore, the magnetic energy of an atomic system is not arbitrary; it can 

have only certain values. Its maximum value, for instance, is 

* (&)hjB- 
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Fig. 34-5. The possible magnetic en¬ 

ergies of an atomic system with a spin of 

3 l2 in a magnetic field B. 

Fig. 34-6. The two possible energy 

states of an electron in a magnetic field B. 

The quantity qeh/2m is usually given the name “the Bohr magneton” and written 

qeh 
= 2iH’ 

The possible values of the magnetic energy are 

t^mag ™ -y- » 

where Jz/h takes on the possible values j, (j — 1), (j — 2), . . . , (—j + 1), —j. 

In other words, the energy of an atomic system is changed when it is put in a 

magnetic field by an amount that is proportional to the field, and proportional to 

Jz. We say that the energy of an atomic system is “split into 2j + 1 levels” by 

a magnetic field. For instance, an atom whose energy is t/0 outside a magnetic 

field and whose j is 3/2, will have four possible energies when placed in a field. 

We can show these energies by an energy-level diagram like that drawn in Fig 

34-5. Any particular atom can have only one of the four possible energies in any 

given field B. That is what quantum mechanics says about the behavior of an 

atomic system in a magnetic field. 

The simplest “atomic” system is a single electron. The spin of an electron is 

1/2, so there are two possible states. Jz = fi/2 and Jz = —h/2. For an electron 

at rest (no orbital motion), the spin magnetic moment has a g-value of 2, so the 

magnetic energy can be either =tixbB. The possible energies in a magnetic field are 

shown in Fig. 34-6. Speaking loosely we say that the electron either has its spin 

“up” (along the field) or “down” (opposite the field). 

For systems with higher spins, there are more states. We can think that the 

spin is “up” or “down” or cocked at some “angle” in between, depending on the 

value of Jz. 

We will use these quantum mechanical results to discuss the magnetic prop¬ 

erties of materials in the next chapter. 
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Paramagnetism and Magnetic Resonance 

35-1 Quantized magnetic states 

In the last chapter we described how m quantum mechanics the angular 

momentum of a thing does not have an arbitrary direction, but its component 

along a given axis can take on only certain equally spaced, discrete values. It is 

a shocking and peculiar thing. You may think that perhaps we should not go 

into such things until your minds are more advanced and ready to accept this 

kind of an idea. Actually, your minds will never become more advanced—in 

the sense of being able to accept such a thing easily. There isn’t any descriptive 

way of making it intelligible that isn’t so subtle and advanced in its own form 

that it is more complicated than the thing you were trying to explain. The behavior 

of matter on a small scale—as we have remarked many times—is different from 

anything that you are used to and is very strange indeed. As we proceed with 

classical physics, it is a good idea to try to get a growing acquaintance with the 

behavior of things on a small scale, at first as a kind of experience without any 

deep understanding. Understanding of these matters comes very slowly, if at all. 

Of course, one does get better able to know what is going to happen in a quantum- 

mechanical situation—if that is what understanding means—but one never gets a 

comfortable feeling that these quantum-mechanical rules are “natural.” Of course 

they are, but they are not natural to our own experience at an ordinary level. We 

should explain that the attitude that we are going to take with regard to this rule 

about angular momentum is quite different from many of the other things we have 

talked about. We are not going to try to “explain” it, but we must at least tell you 

what happens; it would be dishonest to describe the magnetic properties of materials 

without mentioning the fact that the classical description of magnetism—of 

angular momentum and magnetic moments—is incorrect. 

One of the most shocking and disturbing features about quantum mechanics 

is that if you take the angular momentum along any particular axis you find that 

it is always an integer or half-integer times ft. This is so no matter which axis you 

take. The subtleties involved in that curious fact—that you can take any other axis 

and find that the component for it is also locked to the same set of values—we will 

leave to a later chapter, when you will experience the delight of seeing how this 

apparent paradox is ultimately resolved. 

We will now just accept the fact that for every atomic system there is a number 

j, called the spin of the system—which must be an integer or a half-integer—and 

that the component of the angular momentum along any particular axis will 

always have one of the following values between +jft and —jft: 

35-1 Quantized magnetic states 

35-2 The Stern-Gerlach experiment 

35-3 The Rabi molecular-beam 

method 

35-4 The paramagnetism of bulk 

materials 

35-5 Cooling by adiabatic 

demagnetization 

35-6 Nuclear magnetic resonance 

Review. Chapter 11, Inside Dielectrics 

Jz one of < 

j 

j- 1 

j ~ 2 

—j + 2 

~j + 1 

[-J 

*ft. (35.1) 

We have also mentioned that every simple atomic system has a magnetic 

moment which has the same direction as the angular momentum. This is true not 

only for atoms and nuclei but also for the fundamental particles. Each funda¬ 

mental particle has its own characteristic value of j and its magnetic moment. 
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Fig. 35-1. An atomic system with spin 

I has (2/ -f- 1) possible energy values in a 

magnetic field B. The energy splitting is 

proportional to 8 for small fields. 

(For some particles, both are zero.) What we mean by “the magnetic moment” 

in this statement is that the energy of the system in a magnetic field, say in 

the z-direction, can be written as —ju.zB for small magnetic fields. We must have the 

condition that the field should not be too great, otherwise it could disturb 

the internal motions of the system and the energy would not be a measure 

of the magnetic moment that was there before the field was turned on. But if the 

field is sufficiently weak, the field changes the energy by the amount 

AU = (35.2) 

with the understanding that in this equation we are to replace \xz by 

where Jz has one of the values in Eq. (35.1). 

Suppose we take a system with a spin j = 3/2. Without a magnetic field, the 

system has four different possible states corresponding to the different values of 

Jzy all of which have exactly the same energy. But the moment we turn on the mag¬ 

netic field, there is an additional energy of interaction which separates these states 

into four slightly different energy levels. The energies of these levels are given by a 

certain energy proportional to B, multiplied by h times 3/2, 1 /2, — 1/2, and —3/2— 

the values of Jz. The splitting of the energy levels for atomic systems with spins of 

1/2, 1, and 3/2 are shown m the diagrams of Fig. 35-1. (Remember that for any 

arrangement of electrons the magnetic moment is always directed opposite to the 

angular momentum.) 

You will notice from the diagrams that the “center of gravity” of the energy 

levels is the same with and without a magnetic field. Also notice that the spacings 

from one level to the next are always equal for a given particle in a given magnetic 

field. We are going to write the energy spacing, for a given magnetic field B, as 

ho)p—which is just a definition of cop. Using Eqs. (35.2) and (35.3), we have 

= g j~- hB 

<*>p = g 

35-2 



The quantity g(q/2m) is just the ratio of the magnetic moment to the angular 

momentum—it is a property of the particle. Equation (35.4) is the same formula 

that we got in Chapter 34 for the angular velocity of precession in a magnetic 

field, for a gyroscope whose angular momentum is J and whose magnetic moment 

is ft. 

Fig. 35-2. The experiment of Stern and Gerlach. 

35-2 The Stern-Gerlach experiment 

The fact that the angular momentum is quantized is such a surprising thing 

that we will talk a little bit about it historically. It was a shock from the moment 

it was discovered (although it was expected theoretically). It was first observed in 

an experiment done in 1922 by Stern and Gerlach. If you wish, you can consider 

the experiment of Stern-Gerlach as a direct justification for a belief in the quantiza¬ 

tion of angular momentum. Stern and Gerlach devised an experiment for measur¬ 

ing the magnetic moment of individual silver atoms. They produced a beam of 

silver atoms by evaporating silver in a hot oven and letting some of them come out 

through a series of small holes. This beam was directed between the pole tips 

of a special magnet, as shown in Fig. 35-2, Their idea was the following. If 

the silver atom has a magnetic moment ft, then in a magnetic field B it has an energy 

~HZB, where z is the direction of the magnetic field. In the classical theory, ftz 

would be equal to the magnetic moment times the cosine of the angle between the 

moment and the magnetic field, so the extra energy in the field would be 

AU = —ftB cos 0. (35.5) 

Of course, as the atoms come out of the oven, their magnetic moments would 

point in every possible direction, so there would be all values of 0. Now if the 

magnetic field varies very rapidly with z—if there is a strong field gradient—then 

the magnetic energy will also vary with position, and there will be a force on the 

magnetic moments whose direction will depend on whether cosine 6 is positive or 

negative. The atoms will be pulled up or down by a force proportional to the 

derivative of the magnetic energy; from the principle of virtual work, 

Fz = 

BU n dB 
- jj. cos 6 - 

dz dz 
(35.6) 

Stern and Gerlach made their magnet with a very sharp edge on one of the 

pole tips in order to produce a very rapid variation of the magnetic field. The beam 

of silver atoms was directed right along this sharp edge, so that the atoms would 

feel a vertical force in the inhomogeneous field. A silver atom with its magnetic 

moment directed horizontally would have no force on it and would go straight 

past the magnet. An atom whose magnetic moment was exactly vertical would 

have a force pulling it up toward the sharp edge of the magnet. An atom whose 

magnetic moment was pointed downward would feel a downward push. Thus, 
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as they left the magnet, the atoms would be spread out according to their vertical 

components of magnetic moment. In the classical theory all angles are possible, 

so that when the silver atoms are collected by deposition on a glass plate, one should 

expect a smear of silver along a vertical line. The height of the line would be pro¬ 

portional to the magnitude of the magnetic moment. The abject failure of classical 

ideas was completely revealed when Stern and Gerlach saw what actually happened. 

They found on the glass plate two distinct spots. The silver atoms had formed 

two beams. 

That a beam of atoms whose spins would apparently be randomly oriented 

gets split up into two separate beams is most miraculous. How does the magnetic 

moment know that it is only allowed to take on certain components in the direction 

of the magnetic field9 Well, that was really the beginning of the discovery of the 

quantization of angular momentum, and instead of trying to give you a theoretical 

explanation, we will just say that you are stuck with the result of this experiment 

just as the physicists of that day had to accept the result when the experiment was 

done. It is an experimental fact that the energy of an atom in a magnetic field 

takes on a series of individual values. For each of these values the energy is pro¬ 

portional to the field strength. So in a region where the field varies, the principle 

of virtual work tells us that the possible magnetic force on the atoms will have a 

set of separate values, the force is different for each state, so the beam of atoms is 

split into a small number of separate beams. From a measurement of the deflection 

of the beams, one can find the strength of the magnetic moment. 

35-3 The Rabi molecular-beam method 

We would now like to describe an improved apparatus for the measurement 

of magnetic moments which was developed by I. I Rabi and his collaborators. 

In the Stern-Gerlach experiment the deflection of atoms is very small, and the 

measurement of the magnetic moment is not very precise. Rabfis technique per¬ 

mits a fantastic precision in the measurement of the magnetic moments. The 

method is based on the fact that the original energy of the atoms in a magnetic 

field is split up into a finite number of energy levels. That the energy of an atom 

in the magnetic field can have only certain discrete energies is really not more 

surprising than the fact that atoms m general have only certain discrete energy 

levels—something we mentioned often in Volume I. Why should the same thing 

not hold for atoms in a magnetic field? It does. But it is the attempt to correlate 

this with the idea of an oriented magnetic moment that brings out some of the 

strange implications of quantum mechanics. 

When an atom has two levels which differ in energy by the amount AU, it 

can make a transition from the upper level to the lower level by emitting a light 

quantum of frequency co, where 

hca = AU (35.7) 

The same thing can happen with atoms in a magnetic field. Only then, the energy 

differences are so small that the frequency does not correspond to light, but to 

microwaves or to radiofrequencies. The transitions from the lower energy level 

to an upper energy level of an atom can also take place with the absorption of light 

or, in the case of atoms m a magnetic field, by the absorption of microwave energy. 

Thus if we have an atom m a magnetic field, we can cause transitions from one state 

to another by applying an additional electromagnetic field of the proper frequency. 

In other words, if we have an atom in a strong magnetic field and we “tickle” 

the atom with a weak varying electromagnetic field, there will be a certain prob¬ 

ability of knocking it to another level if the frequency is near to the co in Eq. (35.7). 

For an atom in a magnetic field, this frequency is just what we have earlier called 

u>p and it is given in terms of the magnetic field by Eq (35.4). If the atom is tickled 

with the wrong frequency, the chance of causing a transition is very small. Thus 

there is a sharp resonance at cop in the probability of causing a transition. By 

measuring the frequency of this resonance in a known magnetic field By we can 

measure the quantity g(q/2m)—and hence the g-factor—with great precision. 
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It is interesting that one comes to the same conclusion from a classical point 

of view. According to the classical picture, when we place a small gyroscope with 

a magnetic moment jjl and an angular momentum J m an external magnetic field, 

the gyroscope will precess about an axis parallel to the magnetic field. (See Fig 

35-3.) Suppose we ask: How can we change the angle of the classical gyroscope 

with respect to the field—namely, with respect to the z-axis? The magnetic field 

produces a torque around a horizontal axis. Such a torque you would think is 

trying to line up the magnet with the field, but it only causes the precession. If we 

want to change the angle of the gyroscope with respect to the z-axis, we must 

exert a torque on it about the z-axis. If we apply a torque which goes in the same 

direction as the precession, the angle of the gyroscope will change to give a smaller 

component of J in the z-direction In Fig. 35-3, the angle between J and the 

z-axis would increase. If we try to hinder the precession, J moves toward the 

vertical. 

For our precessing atom m a uniform magnetic field, how can we apply the 

kind of torque we want? The answer is: with a weak magnetic field from the side 

You might at first think that the direction of this magnetic field would have to 

rotate with the precession of the magnetic moment, so that it was always at right 

angles to the moment, as indicated by the field Bf in Fig. 35-4(a). Such a field 

works very well, but an alternating horizontal field is almost as good. If we have 

a small horizontal field B\ which is always in the v:-direction (plus or minus) and 

which oscillates with the frequency cop, then on each one-half cycle the torque on 

the magnetic moment reverses, so that it has a cumulative effect which is almost 

as effective as a rotating magnetic field. Classically, then, we would expect the 

component of the magnetic moment along the z-direction to change if we have a 

very weak oscillating magnetic field at a frequency which is exactly co;} Classically, 

of course, fiz would change continuously, but in quantum mechanics the z-com- 

ponent of the magnetic moment cannot adjust continuously. It must jump suddenly 

from one value to another. We have made the comparison between the con¬ 

sequences of classical mechanics and quantum mechanics to give you some clue 

as to what might happen classically and how it is related to what actually happens 

in quantum mechanics. You will notice, incidentally, that the expected resonant 

frequency is the same in both cases. 

One additional remark: From what we have said about quantum mechanics, 

there is no apparent reason why there couldn’t also be transitions at the frequency 

2o)p. It happens that there isn’t any analog of this in the classical case, and also 

it doesn’t happen in the quantum theory either—at least not for the particular 

method of inducing the transitions that we have described. With an oscillating 

horizontal magnetic field, the probability that a frequency 2cop would cause a jump 

of two steps at once is zero. It is only at the frequency ojp that transitions, either 

upward or downward, are likely to occur. 

Now we are ready to describe Rabi’s method for measuring magnetic mo¬ 

ments. We will consider here only the operation for atoms with a spin of 1/2 A 

diagram of the apparatus is shown m Fig. 35-5. There is an oven which gives out 

a stream of neutral atoms which passes down a line of three magnets. Magnet 1 

Fig. 35-3. The classical precession of 

an atom with the magnetic moment ft and 

the angular momentum J. 

Fig. 35-4. The angle of precession of 

an atomic magnet can be changed by a 

horizontal magnetic field always at right 

angles to ft, as in (a), or by an oscillating 

field, as in (b). 

Fig. 35-5. The Rabi molecular-beam apparatus. 
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DETECTOR 
CURRENT 

Fig. 35-6, The current of atoms in 

the beam decreases when cj = cjp. 

is just like the one in Fig. 35-2, and has a field with a strong field gradient—say, 

with 3Bzfdz positive. If the atoms have a magnetic moment, they will be deflected 

downward if Jz — + h/2, or upward if Jz — — h/2 (since for electrons & is directed 

opposite to /). If we consider only those atoms which can get through the slit 

Si, there are two possible trajectories, as shown. Atoms with Jz = +/?/2 must 

go along curve a to get through the slit, and those with Jz — —h/2 must go along 

curve b. Atoms which start out from the oven along other paths will not get 

through the slit. 

Magnet 2 has a uniform field. There are no forces on the atoms m this 

region, so they go straight through and enter magnet 3. Magnet 3 is just like 

magnet 1 but with the field inverted. so that dBz/dz has the opposite sign. The 

atoms with Jz = -\-h/2 (we say “with spin up”), that felt a downward push in 

magnet 1, get an upward push in magnet 3; they continue on the path a and go 

through slit S2 to a detector. The atoms with Jz = —h/2 (“with spin down”) 

also have opposite forces m magnets 1 and 3 and go along the path b, which also 

takes them through slit S2 to the detector. 

The detector may be made in various ways, depending on the atom being 

measured. For example, for atoms of an alkali metal like sodium, the detector can 

be a thin, hot tungsten wire connected to a sensitive current meter. When sodium 

atoms land on the wire, they are evaporated off as Na+ ions, leaving an electron 

behind. There is a current from the wire proportional to the number of sodium 

atoms arriving per second. 

In the gap of magnet 2 there is a set of coils that produces a small horizontal 

magnetic field B'. The coils are driven with a current which oscillates at a variable 

frequency co. So between the poles of magnet 2 there is a strong, constant, 

vertical field B0 and a weak, oscillating, horizontal field B'. 

Suppose now that the frequency co of the oscillating field is set at wp—the 

“precession” frequency of the atoms in the field B. The alternating field will cause 

some of the atoms passing by to make transitions from one Jz to the other An 

atom whose spin was initially “up” (Jz ~ -\-h/2) may be flipped “down” 

(Jz = —h/2). Now this atom has the direction of its magnetic moment reversed, 

so it will feel a downward force in magnet 3 and will move along the path af, 

shown m Fig. 35-5. It will no longer get through the slit S2 to the detector. 

Similarly, some of the atoms whose spins were initially down (Jz = —h/2) will 

have their spins flipped up (Jz = +h/2) as they pass through magnet 2. They 

will then go along the path b' and will not get to the detector. 

If the oscillating field B( has a frequency appreciably different from wp, it will 

not cause any spin flips, and the atoms will follow their undisturbed paths to 

the detector. So you can see that the “precession” frequency ojp of the atoms 

in the field B{) can be found by varying the frequency a> of the field Bf until a de¬ 

crease is observed in the current of atoms arriving at the detector. A decrease in 

the current will occur when to is “m resonance” with A plot of the detector 

current as a function of to might look like the one shown in Fig. 35-6. Knowing 

top, we can obtain theg-value of the atom. 

Such atomic-beam or, as they are usually called, “molecular” beam resonance 

experiments are a beautiful and delicate way of measuring the magnetic properties 

of atomic objects. The resonance frequency a>p can be determined with great 

precision—in fact, with a greater precision than we can measure the magnetic 

field Bo, which we must know to find g. 

35-4 The paramagnetism of bulk materials 

We would like now to describe the phenomenon of the paramagnetism of 

bulk materials Suppose we have a substance whose atoms have permanent mag¬ 

netic moments, for example a crystal like copper sulfate. In the crystal there are 

copper ions whose inner electron shells have a net angular momentum and a net 

magnetic moment. So the copper ion is an object which has a permanent magnetic 

moment. Let’s say just a word about which atoms have magnetic moments and 

which ones don’t. Any atom, like sodium for instance, which has an odd number 
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of electrons, will have a magnetic moment. Sodium has one electron in its un¬ 

filled shell. This electron gives the atom a spin and a magnetic moment. Ordinarily, 

however, when compounds are formed the extra electrons in the outside shell are 

coupled together with other electrons whose spin directions are exactly opposite, 

so that all the angular momenta and magnetic moments of the valence electrons 

usually cancel out. That’s why, in general, molecules do not have a magnetic 

moment. Of course if you have a gas of sodium atoms, there is no such cancella¬ 

tion.* Also, if you have what is called in chemistry a “free radical”—an object 

with an odd number of valence electrons—then the bonds are not completely 

satisfied, and there is a net angular momentum. 

In most bulk materials there is a net magnetic moment only if there are atoms 

present whose inner electron shell is not filled. Then there can be a net angular 

momentum and a magnetic moment. Such atoms are found in the “transition 

element” part of the periodic table—for instance, chromium, manganese, iron, 

nickel, cobalt, palladium, and platinum are elements of this kind. Also, all of the 

rare earth elements have unfilled inner shells and permanent magnetic moments. 

There are a couple of other strange things that also happen to have magnetic 

moments, such as liquid oxygen, but we will leave it to the chemistry department 

to explain the reason. 

Now suppose that we have a box full of atoms or molecules with permanent 

moments—say a gas, or a liquid, or a crystal. We would like to know what happens 

if we apply an external magnetic field. With no magnetic field, the atoms are kicked 

around by the thermal motions, and the moments wind up pointing in all directions. 

But when there is a magnetic field, it acts to line up the little magnets; then there 

are more moments lying toward the field than away from it. The material is 

“magnetized.” 

We define the magnetization M of a material as the net magnetic moment per 

unit volume, by which we mean the vector sum of all the atomic magnetic moments 

m a unit volume. If there are N atoms per unit volume and their average moment 

is (m)jiv then M can be written as N times the average atomic moment: 

M = (35.8) 

The definition of M corresponds to the definition of the electric polarization P 

of Chapter 10. 

The classical theory of paramagnetism is just like the theory of the dielectric 

constant we showed you in Chapter 11. One assumes that each of the atoms has a 

magnetic moment ju, which always has the same magnitude but which can point 

in any direction. In a field B, the magnetic energy is — fi • B = — pB cos 6, where 

0 is the angle between the moment and the field. From statistical mechanics, the 

relative probability of having any angle is e—cnorKyikTt so angles near zero are 

more likely than angles near ir. Proceeding exactly as we did m Section 11-3, we 

find that for small magnetic fields Mis directed parallel to B and has the magnitude 

M = 
N}jl2B 

3kT 
(35 9) 

[See Eq. (11.20).] This approximate formula is correct only for pB/kT much less 

than one. 

We find that the induced magnetization—the magnetic moment per unit 

volume—is proportional to the magnetic field. This is the phenomenon of para¬ 

magnetism. You will see that the effect is stronger at lower temperatures and weaker 

at higher temperatures. When we put a field on a substance, it develops, for small 

fields, a magnetic moment proportional to the field. The ratio of M to B (for small 

fields) is called the magnetic susceptibility. 

Now we want to look at paramagnetism from the point of view of quantum 

mechanics. We take first the case of an atom with a spin of 1/2. In the absence of 

* Ordinary Na vapor is mostly monatomic, although there are also some molecules of 
Na2- 
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a magnetic field the atoms have a certain energy, but in a magnetic field there are 

two possible energies, one for each value of Jz. For Jz = +k/2, the energy is 

changed by the magnetic field by the amount 

AUt = B- (35-'°) 

(The energy shift AUis positive for an atom because the electron charge is negative.) 

For Jz = —h/2y the energy is changed by the amount 

(35.11) 

To save writing, let’s set 

a(qA i. 
Mo 8 \2m) ' 2 ’ 

(35.12) 

then 

AU = ±Mo^- (35.13) 

The meaning of ji{) is clear: — fi0 is the z-component of the magnetic moment in 

the up-spin case, and +/x0 is the z-component of the magnetic moment in the 

down-spin case. 

Now statistical mechanics tells us that the probability that an atom is in one 

state or another is proportional to 

e~(Energy of state)}kT 

With no magnetic field the two states have the same energy; so when there is equilib¬ 

rium in a magnetic field, the probabilities are proportional to 

e-MJ/kT. (35.14) 

The number of atoms per unit volume with spin up is 

Nup = ae-»°Blkt, (35.15) 

and the number with spin down is 

tfdow„ - ae^°Blkt. (35.16) 

The constant a is to be determined so that 

Nup H- -A^down A/, (35.17) 

the total number of atoms per unit volume. So we get that 

= N 
^ BjkT _j_ £—BfkT 

(35.18) 

What we are interested in is the average magnetic moment along the z-axis. 

The atoms with spin up will contribute a moment of — u0, and those with spin 

down will have a moment of +M0’ so the average moment is 

(M)av 
^up( Mo) "F ^down(F Mo) 

— (35.19) 

The magnetic moment per unit volume M is then Using Eqs. (35.15), 

(35.16), and (35.17), we get that 

BjkT _ 

M ~ e+^BikT e-t0BIkT 
(35.20) 

This is the quantum-mechanical formula for M for atoms with j — 1 /2. Inciden¬ 

tally, this formula can also be written somewhat more concisely in terms of the 
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hyperbolic tangent function: 

M = Nfj,(j tanh Mo/? 
kT 

(35.21) 

A plot of M as a function of B is given in Fig. 35.7. When B gets very large, 

the hyperbolic tangent approaches 1, and M approaches the limiting value Nfi{) 

So at high fields, the magnetization saturates. We can see why that is; at high 

enough fields the moments are all lined up in the same direction In other words, 

they are all m the spin-down state, and each atom contributes the moment ^u,. 

In most normal cases—say, for typical moments, room temperatures, and 

the fields one can normally get (like 10,000 gauss)—the ratio fxQB/kT is about 0.02. 

One must go to very low temperatures to see the saturation. For normal tempera¬ 

tures, we can usually replace tanh x by x, and write 

(35 22) 

Just as we saw in the classical theory, M is proportional to B. In fact, the 

formula is almost exactly the same, except that there seems to be a factor of 1/3 

missing. But we still need to relate the ju0 in our quantum formula to the ju that 

appears in the classical result, Eq (35.9). 

In the classical formula, what appears is u2 — ju • ju, the square of the vector 

magnetic moment, or 

M " = {8 ~2m)' J J (35 23) 

Fig. 35-7. The variation of the para¬ 

magnetic magnetization with the magnetic 

field strength 8. 

We pointed out in the last chapter that you can very likely get the right answer 

from a classical calculation by replacing / • / by j(J + 1 )h2. In our particular 

example, we have j = 1/2, so 

ju + m2 = ifc2. 

Substituting this for /* J in Eq. (35.23), we get 

or in terms of Mo? defined m Eq. (35.12), we get 

M * fl 3/4 

Substituting this for 112 in the classical formula, Eq. (35.9), does indeed reproduce 

the correct quantum formula, Eq. (35.22). 

The quantum theory of paramagnetism is easily extended to atoms of any 

spin j. The low-field magnetization is 

where 

M - Ng2 
j(j + 1 )n%B 

3 kT ’ 

2m 

(35.24) 

(35.25) 

is a combination of constants with the dimensions of a magnetic moment. Most 

atoms have moments of roughly this size. It is called the Bohr magneton. The 

spin magnetic moment of the electron is almost exactly one Bohr magneton. 

35-5 Cooling by adiabatic demagnetization 

There is a very interesting special application of paramagnetism. At very 

low temperatures it is possible to line up the atomic magnets in a strong field. 

It is then possible to get down to extremely low temperatures by a process called 

adiabatic demagnetization. We can take a paramagnetic salt (for example, one 

35-9 



containing a number of rare-earth atoms likepraseodynium-ammonium-nitrate), 
and start by cooling it down with liquid helium to one or two degrees absolute in a 
strong magnetic field. Then the factor pB/kT is larger than 1—say more like 2 or 3. 
Most of the spins are lined up, and the magnetization is nearly saturated. Let’s 
say, to make it easy, that the field is very powerful and the temperature is very low, 
so that nearly all the atoms are lined up. Then you isolate the salt thermally (say, 
by removing the liquid helium and leaving a good vacuum) and turn off the mag¬ 
netic field. The temperature of the salt goes way down. 

Now if you were to turn off the field suddenly, the jiggling and shaking of the 
atoms in the crystal lattice would gradually knock all the spins out of alignment. 
Some of them would be up and some down. But if there is no field (and disregard¬ 
ing the interactions between the atomic magnets, which will make only a slight 
error), it takes no energy to turn over the atomic magnets. They could randomize 
their spins without any energy change and, therefore, without any temperature 
change. 

Suppose, however, that while the atomic magnets are being flipped over by the 
thermal motion there is still some magnetic field present. Then it requires some 
work to flip them over opposite to the field—they must do work against the field. 
This takes energy from the thermal motions and lowers the temperature. So if the 
strong magnetic field is not removed too rapidly, the temperature of the salt will 
decrease—it is cooled by the demagnetization. From the quantum-mechanical 
view, when the field is strong all the atoms are in the lowest state, because the odds 
against any being in the upper state are impossibly big. But as the field is lowered, 
it gets more and more likely that thermal fluctuations will knock an atom into the 
upper state. When that happens, the atom absorbs the energy A U = p0B. So if 
the field is turned off slowly, the magnetic transitions can take energy out of the 
thermal vibrations of the crystal, cooling it off. It is possible in this way to go from 
a temperature of a few degrees absolute down to a temperature of a few thou¬ 
sandths of a degree. 

Would you like to make something even colder than that? It turns out that 
Nature has provided a way. We have already mentioned that there are also mag¬ 
netic moments for the atomic nuclei. Our formulas for paramagnetism work just 
as well for nuclei, except that the moments of nuclei are roughly a thousand times 
smaller. [They are of the order of magnitude of qh/2mv, where mp is the proton 
mass, so they are smaller by the ratio of the masses of the electron and proton.] 
With such magnetic moments, even at a temperature of 2°K, the factor pB/kT 
is only a few parts m a thousand. But if we use the paramagnetic demagnetiza¬ 
tion process to get down to a temperature of a few thousandths of a degree, 
pB/kT becomes a number near 1—at these low temperatures we can begin to 
saturate the nuclear moments. That is good luck, because we can then use 
the adiabatic demagnetization of the nuclear magnetism to reach still lower 
temperatures. Thus it is possible to do two stages of magnetic cooling. First we 
use adiabatic demagnetization of paramagnetic ions to reach a few thousandths of 
a degree. Then we use the cold paramagnetic salt to cool some material which has 
a strong nuclear magnetism. Finally, when we remove the magnetic field from this 
material, its temperature will go down to within a millionth of a degree of absolute 
zero—if we have done everything very carefully. 

35-6 Nuclear magnetic resonance 

We have said that atomic paramagnetism is very small and that nuclear mag¬ 
netism is even a thousand times smaller. Yet it is relatively easy to observe the 
nuclear magnetism by the phenomenon of “nuclear magnetic resonance.” Suppose 
we take a substance like water, in which all of the electron spins are exactly bal¬ 
anced so that their net magnetic moment is zero. The molecules will still have a 
very, very tiny magnetic moment due to the nuclear magnetic moment of the hydro¬ 
gen nuclei. Suppose we put a small sample of water in a magnetic field B. Since 
the protons (of the hydrogen) have a spin of 1/2, they will have two possible 
energy states. If the water is in thermal equilibrium, there will be slightly more 
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protons in the lower energy states—with their moments directed parallel to the 

field. There is a small net magnetic moment per unit volume. Since the proton 

moment is only about one-thousandth of an atomic moment, the magnetization 

which goes as fx2—using Eq. (35.22)—is only about one-millionth as strong as 

typical atomic paramagnetism. (That’s why we have to pick a material with no 

atomic magnetism.) If you work it out, the difference between the number of 

protons with spin up and with spin down is only one part in 108, so the effect 

is indeed very small! It can still be observed, however, in the following way. 

Suppose we surround the water sample with a small coil that produces a 

small horizontal oscillating magnetic field. If this field oscillates at the frequency 

ojp, it will induce transitions between the two energy states—just as we described 

for the Rabi experiment in Section 35-3. When a proton flips from an upper 

energy state to a lower one, it will give up the energy fizB which, as we have seen, 

is equal to ho)p. If it flips from the lower energy state to the upper one, it will 

absorb the energy from the coil. Since there are slightly more protons in the 

lower state than in the upper one, there will be a net absorption of energy from the 

coil. Although the effect is very small, the slight energy absorption can be seen 

with a sensitive electronic amplifier. 

Just as in the Rabi molecular-beam experiment, the energy absorption will be 

seen only when the oscillating field is in resonance, that is, when 

It is often more convenient to search for the resonance by varying B while keeping 

co fixed. The energy absorption will evidently appear when 

gq, 
A typical nuclear magnetic resonance apparatus is shown in Fig. 35-8. A 

high-frequency oscillator drives a small coil placed between the poles of a large 

electromagnet. Two small auxiliary coils around the pole tips are driven with a 

60-cycle current so that the magnetic field is “wobbled” about its average value by 

a very small amount. As an example, say that the main current of the magnet is set 

to give a field of 5000 gauss, and the auxiliary coils produce a variation of ± 1 gauss 

about this value. If the oscillator is set at 21.2 megacycles per second, it will then be 

at the proton resonance each time the field sweeps through 5000 gauss [using Eq. 

(34.13) with g = 5.58 for the proton]. 

The circuit of the oscillator is arranged to give an additional output signal 

proportional to any change in the power being absorbed from the oscillator. This 

signal is fed to the vertical deflection amplifier of an oscilloscope. The horizontal 

sweep of the oscilloscope is triggered once during each cycle of the field-wobbling 

frequency. (More usually, the horizontal deflection is made to follow in proportion 

to the wobbling field.) 

Before the water sample is placed inside the high-frequency coil, the power 

drawn from the oscillator is some value. (It doesn’t change with the magnetic field ) 

When a small bottle of water is placed in the coil, however, a signal appears on the 

oscilloscope, as shown in the figure. We see a picture of the power being absorbed 

by the flipping over of the protons! 

In practice, it is difficult to know how to set the main magnet to exactly 5000 

gauss. What one does is to adjust the main magnet current until the resonance 

signal appears on the oscilloscope. It turns out that this is now the most con¬ 

venient way to make an accurate measurement of the strength of a magnetic field. 

Of course, at some time someone had to measure accurately the magnetic field and 

frequency to determine the g-value of the proton. But now that this has been done, 

a proton resonance apparatus like that of the figure can be used as a “proton reso¬ 

nance magnetometer.” 

We should say a word about the shape of the signal. If we were to wobble the 

magnetic field very slowly, we would expect to see a normal resonance curve. 

The energy absorption would read a maximum when arrived exactly at the 

Fig 35-8. A nuclear magnetic reso¬ 

nance apparatus. 
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oscillator frequency. There would be some absorption at nearby frequencies 

because all the protons are not in exactly the same field—and different fields mean 

slightly different resonant frequencies. 

One might wonder, incidentally, whether at the resonance frequency we should 

see any signal at all. Shouldn’t we expect the high-frequency field to equalize the 

populations of the two states—so that there should be no signal except when the 

water is first put in? Not exactly, because although we are trying to equalize the 

two populations, the thermal motions on their part are trying to keep the proper 

ratios for the temperature T. If we sit at the resonance, the power being absorbed 

by the nuclei is just what is being lost to the thermal motions. There is, however, 

relatively little “thermal contact” between the proton magnetic moments and the 

atomic motions The protons are relatively isolated down in the center of the 

electron distributions. So m pure water, the resonance signal is, in fact, usually 

too small to be seen. To increase the absorption, it is necessary to increase the 

“thermal contact.” This is usually done by adding a little iron oxide to the water. 

The iron atoms are like small magnets; as they jiggle around in their thermal dance, 

they make tiny jiggling magnetic fields at the protons. These varying fields “couple” 

the proton magnets to the atomic vibrations and tend to establish thermal equi¬ 

librium. It is through this “coupling” that protons in the higher energy states can 

lose their energy so that they are again capable of absorbing energy from the 

oscillator. 

In practice the output signal of a nuclear resonance apparatus does not look 

like a normal resonance curve. It is usually a more complicated signal with oscilla¬ 

tions—like the one drawn in the figure. Such signal shapes appear because of the 

changing fields. The explanation should be given in terms of quantum mechanics, 

but it can be shown that m such experiments the classical ideas of precessing mo¬ 

ments always give the correct answer. Classically, we would say that when we ar¬ 

rive at resonance we start driving a lot of the precessing nuclear magnets synchro¬ 

nously. In so doing, we make them precess together. These nuclear magnets, all 

rotating together, will set up an induced emf in the oscillator coil at the frequency 

o)p. But because the magnetic field is increasing with time, the precession frequency 

is increasing also, and the induced voltage is soon at a frequency a little higher than 

the oscillator frequency. As the induced emf goes alternately m phase and out of 

phase with the oscillator, the “absorbed” power goes alternately positive and 

negative. So on the oscilloscope we see the beat note between the proton frequency 

and the oscillator frequency. Because the proton frequencies are not all identical 

(different protons are in slightly different fields) and also possibly because of the 

disturbance from the iron oxide in the water, the freely precessing moments soon 

get out of phase, and the beat signal disappears. 

These phenomena of magnetic resonance have been put to use in many ways 

as tools for finding out new things about matter—especially in chemistry and 

nuclear physics. It goes without saying that the numerical values of the magnetic 

moments of nuclei tell us something about their structure. In chemistry, much has 

been learned from the structure (or shape) of the resonances. Because of magnetic 

fields produced by nearby nuclei, the exact position of a nuclear resonance is 

shifted somewhat, depending on the environment in which any particular nucleus 

finds itself. Measuring these shifts helps determine which atoms are near which 

other ones and helps to elucidate the details of the structure of molecules Equally 

important is the electron spin resonance of free radicals. Although not present 

to any very large extent m equilibrium, such radicals are often intermediate states 

of chemical reactions. A measurement of an electron spin resonance is a delicate 

test for the presence of free radicals and is often the key to understanding the 

mechanism of certain chemical reactions. 
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36 

Ferromagnetism 

36-1 Magnetization currents 

In this chapter we will discuss some materials in which the net effect of the 

magnetic moments in the material is much greater than in the case of paramagnetism 

or diamagnetism. The phenomenon is called ferromagnetism. In paramagnetic and 

diamagnetic materials the induced magnetic moments are usually so weak that 

we don’t have to worry about the additional fields produced by the magnetic 

moments. For ferromagnetic materials, however, the magnetic moments induced 

by applied magnetic fields are quite enormous and have a great effect on the fields 

themselves. In fact, the induced moments are so strong that they are often the 

dominant effect in producing the observed fields. So one of the things we will 

have to worry about is the mathematical theory of large induced magnetic moments. 

That is, of course, just a technical question. The real problem is, why are the 

magnetic moments so strong—how does it all work? We will come to that question 

in a little while. 

Finding the magnetic fields of ferromagnetic materials is something like the 

problem of finding the electrostatic field in the presence of dielectrics. You will 

remember that we first described the internal properties of a dielectric in terms of 

a vector field P, the dipole moment per unit volume. Then we figured out that the 

effects of this polarization are equivalent to a charge density ppoi given by the di¬ 

vergence of P: 

Ppoi=-V-P. (36.1) 

36-1 Magnetization currents 

36-2 The field H 

36-3 The magnetization curve 

36-4 Iron-core inductances 

36-5 Electromagnets 

36-6 Spontaneous magnetization 

Review: Chapter 10, Dielectrics 

Chapter 17, The Law of In¬ 

duction 

The total charge in any situation can be written as the sum of this polarization 

charge plus all other charges, whose density we write* pothor. Then the Maxwell 

equation which relates the divergence of E to the charge density becomes 

or 

E = £- 
eo 

Ppol 4“ Pother 

^0 

V E = 
Y ' P _|_ Pother 

€() C0 

We can then pull out the polarization part of the charge and put it on the other 

side of the equation, to get the new law 

V • (e0E + P) = Pother- (36.2) 

The new law says the divergence of the quantity (e0E + P) is equal to the density 

of the other charges. 

Pulling E and P together as in Eq. (36.2), of course, is useful only if we know 

some relation between them. We have seen that the theory which relates the 

induced electric dipole moment to the field was a relatively complicated business 

and can really only be applied to certain simple situations, and even then as an 

approximation. We would like to remind you of one of the approximate ideas 

we used. To find the induced dipole moment of an atom inside a dielectric, it is 

necessary to know the electric field that acts on an individual atom. We made the 

approximation—which is not too bad in many cases—that the field on the atom 

* If all of the “other” charges were on conductors, pother would be the same as our 
pfree of Chapter 10. 
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Fig. 36-1. The electric field in a 

cavity in a dielectric depends on the 

shape of the cavity. 

is the same as it would be at the center of the small hole which would be left if we 

took out the atom (keeping the dipole moments of all the neighboring atoms the 

same). You will also remember that the electric field in a hole in a polarized di¬ 

electric depends on the shape of the hole. We summarize our earlier results in 

Fig. 36-1. For a thin, disc-shaped hole perpendicular to the polarization, the 

electric field in the hole is given by 

P 
-Fhole ~ ^dielectric ’ 

Co 

which we showed by using Gauss’ law. On the other hand, in a needle-shaped 

slot parallel to the polarization, we showed—by using the fact that the curl of E is 

zero—that the electric fields inside and outside of the slot are the same. Finally, 

we found that for a spherical hole the electric field was one-third of the way between 

the field of the slot and the field of the disc: 

1 P 
E]i0ic ~ ^dielectric w ~~ (spherical hole). (36.3) 

d to 

This was the field we used in thinking about what happens to an atom insidT a 

polarized dielectric. 

Now we have to discuss the analog of all this for the case of magnetism. 

One simple, short-cut way of doing this is to say the M, the magnetic moment per 

unit volume, is just like P, the electric dipole moment per unit volume, and that, 

therefore, the negative of the divergence of M is equivalent to a “magnetic charge 

density” pm—whatever that may mean. The trouble is, of course, that there isn’t 

any such thing as a “magnetic charge” in the physical world. As we know, the 

divergence of B is always zero. But that does not stop us from making an artificial 

analog and writing 

V M = -p^ (36.4) 

where it is to be understood that pm is purely mathematical. Then we could make 

a complete analogy with the electrostatic case and use all our old equations from 

electrostatics. People have often done something like that. In fact, historically, 

people even believed that the analogy was right. They believed that the quantity 

pm represented the density of “magnetic poles.” These days, however, we know 

that the magnetization of materials comes from circulating currents within the 

atoms—either from the spinning electrons or from the motion of the electrons in 

the atom. It is therefore nicer from a physical point of view to describe things 

realistically in terms of the atomic currents, rather than in terms of a density of 

some mythical “magnetic poles.” Incidentally, these currents are sometimes called 

“Amperian” currents, because Ampere first suggested that the magnetism of 

matter came from circulating atomic currents. 

The actual microscopic current density in magnetized matter is, of course, 

very complicated. Its value depends on where you look in the atom—it’s large in 

some places and small in others; it goes one way in one part of the atom and the 

opposite way in another part (just as the microscopic electric field varies enor¬ 

mously inside a dielectric). In many practical problems, however, we are interested 

only in the fields outside of the matter or in the average magnetic field inside of the 

matter—where we mean an average taken over many, many atoms. It is only for 

such macroscopic problems that it is convenient to describe the magnetic state of 

the matter in terms of M, the average dipole moment per unit volume. What we 

want to show now is that the atomic currents of magnetized matter can give rise 

to certain large-scale currents which are related to Af. 

What we are going to do, then, is to separate the current density j—which is 

the real source of the magnetic fields—into various parts: one part to describe the 

circulating currents of the atomic magnets, and the other parts to describe what 

other currents there may be. It is usually most convenient to separate the currents 

into three parts. In Chapter 32 we made a distinction between the currents which 

flow freely on conductors and the ones which are due to the back and forth motions 
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of the bound charges in dielectrics. In Section 32-2 we wrote 

j Jpol “f~ ./other) 

where jpoi represented the currents from the motion of the bound charges in di¬ 

electrics and /other took care of all other currents. Now we want to go further. 

We want to separate /other into one part, /inag, which describes the average currents 

inside of magnetized materials, and an additional term which we can call /con,i for 

whatever is left over. The last term will generally refer to currents in conductors, 

but it may also include other currents—for example the currents from charges 

moving freely through empty space. So we will write for the total current density: 

/ “ /pol H- /mag + /cond* (36.5) 

Of course it is this total current which belongs in the Maxwell equation for the 

curl of B: 

c2VX5=t + ^. (36.6) 
Co at 

Now we have to relate the current jmag to the magnetization vector M. So 

that you can see where we are going, we will tell you that the result is going to 

be that 

/mag = v X M. (36.7) 

If we are given the magnetization vector M everywhere in a magnetic material, 

the circulation current density is given by the curl of M. Let’s see if we can under¬ 

stand why this is so. 

First, let’s take the case of a cylindrical rod which has a uniform magnetization 

parallel to its axis. Physically, we know that such a uniform magnetization really 

means a uniform density of atomic circulating currents everywhere inside the 

material. Suppose we try to imagine what the actual currents would look like in 

a cross section of the material. We would expect to see currents something like 

those shown in Fig. 36-2. Each atomic current goes around and around in a little 

circle, with all the circulating currents going around in the same direction. Now 

what is the effective current of such a thing? Well, in most of the bar there is no 

effect at all, because right next to each current there is another current going in 

the opposite direction. If we imagine a small surface—but one still quite a bit 

larger than a single atom—such as is indicated in Fig. 36-2 by the line AB, 

the net current through such a surface is zero. There is no net current any¬ 

where inside the material. Note, however, that at the surface of the material there 

are atomic currents which are not cancelled by neighboring currents going the 

other way. At the surface there is a net current always going in the same direction 

around the rod. Now you see why we said earlier that a uniformly magnetized 

rod is equivalent to a long solenoid carrying an electric current. 

How does this view fit with Eq. (36.7) 9 First, inside the material the magne¬ 

tization Mis constant, so all its derivatives are zero. This agrees with our geometric 

picture. At the surface, however, M is not really constant—it is constant up to 

the edge and then suddenly collapses to zero. So, right at the surface there are 

terrific gradients which, according to (36.7), will give a high current density. 

Suppose we look at what happens near the point C in Fig. 36-2. Taking the x- 

and .y-directions as in the figure, the magnetization Mis in the z-direction. Writing 

out the components of Eq. (36.7), we have 

a Mz 

dy 

dMz 
dx 

(jmagb) 

{jmag)y 

(36.8) 

At the point C, the derivative dMz/dy is zero, but dMz/dx is large and positive. 

Equation (36.7) says that there is a large current density in the minus ^-direction. 

This agrees with our picture of a surface current going around the bar. 

Fig, 36-2. Schematic diagram of the 

circulating atomic currents as seen in a 

cross section of an iron rod magnetized in 

the z-direction. 
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Now we want to find the current density for a more complicated case in which 

the magnetization varies from point to point in a material. It is easy to see quali¬ 

tatively that if the magnetization is different in two neighboring regions, there will 

not be a perfect cancellation of the circulating currents so that there will be a net 

current in the volume of the material. It is this effect that we want to work out 

quantitatively. 

First, we need to recall the results of Section 14-5 that a circulating current 

/ has a magnetic moment fx given by 

M = IA, (36.9) 

Fig. 36-3. The dipole moment fx of a 

current loop is IA. 

x 

where A is the area of the current loop (see Fig. 36-3). Now let’s consider a small 

rectangular block inside of a magnetized material, as sketched in Fig. 36-4. We 

take the block so small that we can consider that the magnetization is uniform 

inside it. If this block has a magnetization Mz in the z-direction, the net effect 

will be the same as a surface current going around on the vertical faces, as shown. 

We can find the magnitude of these currents from Eq. (36.9). The total magnetic 

moment of the block is equal to the magnetization times the volume: 

fx = Mz{abc), 

from which we get (remembering that the area of the loop is ac) 

/ = MJb. 

In other words, the current per unit length (vertically) on each of the vertical 

surfaces is equal to Mz. 

Fig. 36-4. A small magnetized block 

is equivalent to a circulating surface 

current. 

Fig. 36-5. If the magnetization of 

two neighboring blocks is not the same, 

there is a net surface current in between. 
X 

Now suppose that we imagine two such little blocks next to each other, as 

shown in Fig. 36-5, Because block 2 is slightly displaced from block 1, it will have 

a slightly different vertical component of magnetization, which we call Mz + AMZ. 

Now on the surface between the two blocks there will be two contributions to the 

total current. Block 1 will produce a current Ix flowing in the positive y-direction, 

and block 2 will produce a surface current /2 flowing in the negative y-direction. 

The total surface current in the positive y-direction is the sum: 

I = Ix - I2 = MJb - (Mz + AMz)b 

= -AMzb. 

We can write AMZ as the derivative of Mz m the .v-direction times the displacement 

from block 1 to block 2, which is just a\ 

A Mz 
dMz 

dx 
a. 

The current flowing between the two blocks is then 

/ - 
dMz 

dx 
ab. 
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To relate the current / to an average volume current density j, we must realize 

that this current / is really spread over a certain cross-sectional area. If we imagine 

the whole volume of the material to be filled with such little blocks, one such side 

face (perpendicular to the x-axis) can be associated with each block.* Then we 

see that the area to be associated with the current / is just the area ab of one of 

the front faces. We get the result 

. __ I dMz 

Jy~ab~ dx ' 

We have at least the beginning of the curl of Af. 

There should be another term in jy from the variation of the ^-component of 

the magnetization with z. This contribution to j will come from the surface between 

two little blocks stacked one on top of the other, as shown in Fig. 36-6. Using 

the same arguments we have just made, you can show that this surface will con¬ 

tribute to jy the amount dMx/dz. These are the only surfaces which can contribute 

to the ^-component of the current so we have that the total current density in the 

y-direction is 

d Mx (9 M z 

J'< = -dT--eT- 

Working out the currents on the remaining faces of a cube—or using the fact 

that our z-di recti on is completely arbitrary—we can conclude that the vector 

current density is indeed given by the equation 

j = V X M. 

So if we choose to describe the magnetic situation in matter m terms of the Fig. 36-6. Two blocks, one above the 

average magnetic moment per unit volume M, we find that the circulating atomic other, may also contribute to /y. 

currents are equivalent to an average current density in matter given by Eq. (36.7). 

If the material is also a dielectric, there may be, in addition, a polarization current 

jv0i = dP/dt. And if the material is also a conductor, we may have a conduction 

currenty(nnd as well. We can write the total current as 

] J eon<i -h v X M H- 
dP 

dt 
(36.10) 

36-2 The field H 

Next, we want to insert the current as written in Eq. (36.10) into Maxwell’s 

equations. We get 

dE 
= — l /„.i + V V M -4- , , 

dt/ ' dt 
c2V X B = — -r — 

€o dt 
- Y0 (joona + V X M + + dE 

We can move the term in M to the left-hand side: 

^ x -'if + a(* + fj- <“•"> 
As we remarked in Chapter 32, many people like to write (E + P/e0) as a new 

vector field D/e0. Similarly, it is often convenient to write (B — M/e0c2) as a 

single vector field. We choose to define a new vector field H by 

H = B 

Then Eq. (36.11) becomes 

M 

e0c2 

2— w > rr - . 0D 
€oC~V X H = jcond + 

dt 

(36.12) 

(36.13) 

It looks simple, but all the complexity is just hidden in the letters D and H. 

* Or, if you prefer, the current I in each face should be split 50-50 with the blocks on 
the two sides. 
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Table 36-1 

Units of magnetic quantities 

[5] - weber/meter2 = 104 gauss 
[//] = weber/meter2 = 104 gauss 

or 104 oersted 
[M] = ampere/meter 
[//'] = ampere/meter 

Convenient conversions 

B (gauss) - 104 B (weber/meter2) 
H (gauss) = H (oersted) 

= 0.0126 H! (amp/meter) 

Now we have to give you a warning. Most people who use the mks units 

have chosen to use a different definition of H. Calling their field Hf (of course, 

they still call it H without the prime), it is defined by 

H' = 6qc2B - M. (36.14) 

(Also, they usually write e0c2 as a new number 1/ulq: then they have one more 

constant to keep track of!) With this definition, Eq. (36.13) looks even simpler: 

V X H’ = jmml + ~ • (36.15) 
at 

But the difficulties with this definition of Hf are, first, that it doesn’t agree with the 

definition of people who don’t use the mks units, and second, that it makes H' 

and B have different units. We think it is more convenient for H to have the same 

units as B—rather than the units of M, as Hf does. But if you are going to be an 

engineer and work on the design of transformers, magnets, and such, you will have 

to watch out. You will find many books which use for H the definition of Eq. 

(36.14) rather than our definition of Eq. (36.12), and many other books—especially 

handbooks about magnetic materials—that relate B and H the way we have done. 

You’ll have to be careful to figure out which convention they are using. 

One way to tell is by the units they use. Remember that in the mks system, 

B—and therefore our H—are measured with the unit: one weber per square meter, 

equal to 10,000 gauss. In the mks system, a magnetic moment (a current times an 

area) has the unit: one ampere-meter2. The magnetization TV/, then, has the unit: 

one ampere per meter. For H' the units are the same as for M. You can see that 

this also agrees with Eq. (36.15), since V has the dimensions of one over a length. 

People who are working with electromagnets also get in the habit of calling the 

unit of H (with the H' definition) “one ampere turn per meter”—thinking of the 

turns of wire on a winding. But a “turn” is really a dimensionless number, so that 

doesn’t need to confuse you. Since our H is equal to Hf/e0c2, if you are using the 

mks system, H (in webers/meter2) is equal to 47t X 10~~7 times Hf (in amperes 

per meter). It is perhaps more convenient to remember that H (in gauss) = 

0.0126 Hf (in amp/meter). 

There is one more horrible thing. Many people who use our definition of 

H have decided to call the units of H and B by different names\ Even though they 

have the same dimensions, they call the unit of B one gauss, and the unit of H one 

oersted (after Gauss and Oersted, of course). So, in many books you will find 

graphs with B plotted in gauss and H in oersteds. They are really the same unit— 

10“4 of the mks unit. We have summarized the confusion about magnetic units 

in Table 36-1. 

36-3 The magnetization curve 

Now we will look at some simple situations m which the 

constant, or in which the fields change slowly enough that we can 

comparison with yCOI1(I. Then the fields obey the equations 

magnetic field is 

neglect dD/dt in 

<
 

bo
 

11 ©
 

(36.16) 

^ X H jcond/^oC > (36.17) 

H = B - M/e0c2. (36.18) 

Suppose we have a torus (a donut) of iron wrapped with a coil of copper wire, 

as shown in Fig. 36-7(a). A current / flows in the wire. What is the magnetic 

field? The magnetic field will be mainly inside the iron; there, the lines of B will 

be circles, as drawn in Fig. 36-7(b). Since the flux of B is continuous, its divergence 

is zero, and Eq (36.16) is satisfied Next, we write Eq (36.17) in another form by 
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integrating around the closed loop r drawn in Fig. 36—7(b). 

theorem, we have that 

f H ds = —1/ 7cond * n da, 
Jr CqC2 Js 

From Stokes’s 

(36.19) 

where the integral of j is to be carried out over any surface S bounded by I\ This 

surface is cut once by each turn of the winding. Each turn contributes the current 

/ to the integral, and, if there are N turns in all, the integral is NI. From the 

symmetry of our problem, B is the same all around the curve F; if we assume that 

the magnetization, and therefore, the field H is also constant along F, Eq, (36.19) 

becomes 

where / is the length of the curve r. So, 

1 NI 
H = -L ^ • (36.20) 

€0C2 l 

It is because H is directly proportional to the magnetizing current in cases like 

this one that H is sometimes called the magnetizing field. 

Now all we need is an equation which relates H to B. But there isn’t any such 

equation! There is, of course, Eq. (36.18), but it is no help because there is no 

direct relation between M and B for a ferromagnetic material like iron. The mag¬ 

netization M depends on the whole past history of the iron, and not only on what 

B is at the moment. 

All is not lost, though. We can get solutions in certain simple cases. If we 

start out with unmagnetized iron—let’s say with iron that has been annealed at 

high temperatures—then in the simple geometry of the torus, all the iron will have 

the same magnetic history. Then we can say something about M—and therefore 

about the relation between B and H—from experimental measurements. The 

field B in the torus is, from Eq. (36.20), given as a constant times the current / 

in the winding. The field B can be measured by integrating over time the emf in 

the coil (or in an extra coil wound over the magnetizing coil shown in the figure). 

This emf is equal to the rate of change of the flux of B, so the integral of the emf 

with time is equal to B times the cross-sectional area of the torus. 

Figure 36-8 shows the relation between B and H, observed with a torus of 

soft iron. When the current is first turned on, B increases with increasing H along 

the curve a. Note the different scales on B and H; initially, it takes only a relatively 

small H to make a large B. Why is B so much larger with the iron than it would 

be with air? Because there is a large magnetization M which is equivalent to a 

large surface current on the iron—the field B comes from the sum of this current 

and the conduction current in the winding. Why M should be so large, we will 

discuss later. 

At higher values of H, the magnetization curve levels off. We say that the 

iron saturates. With the scales of our figure, the curve appears to become hori¬ 

zontal. Actually, it continues to rise slightly—for large fields, B becomes propor¬ 

tional to H, and with a unit slope. There is no further increase of M. Incidentally, 

we should point out that if the torus were made of some nonmagnetic material, 

M would be zero and B would equal H for all fields. 

The first thing we notice is that curve a in Fig. 36-8—which is the so-called 

magnetization curve—is highly nonlinear. But it’s worse than that. If, after reaching 

saturation, we decrease the current in the coil to bring H back to zero, the magnetic 

field B falls along curve b. When H reaches zero, there is still some B left. Even 

with no magnetizing current there is a magnetic field m the iron—it has become 

permanently magnetized. If we now turn on a negative current in the coil, the 

B-H curve continues along b until the iron is saturated in the negative direction. 

If we then bring the current back to zero again, B goes along curve c. If we alternate 

the current between large positive and negative values, the B-H curve goes back 

and forth along very nearly the curves b and c. If we vary H in some arbitrary 
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Fig. 36-7. (a) A torus of iron wound 

with a coil of insulated wire, (b) Cross 

section of torus showing field lines. 

Fig. 36-8. Typical magnetization 

and hysteresis curves for soft iron. 



way, however, we can get more complicated curves which will, in general, lie 

somewhere between the curves b and c. The loop made by repeated oscillation 

of the fields is called a hysteresis loop of the iron. 

We see then that we cannot write a functional relationship like B — f(H\ 

because the value of B at any instant depends not only on what H is at that time, 

but on its whole past history. Naturally, the magnetization and hysteresis curves 

are different for different substances. The shape of the curves depends critically on 

the chemical composition of the material, and also on the details of its preparation 

and subsequent physical treatment. We will discuss some of the physical explana¬ 

tions for these complications in the next chapter. 

36-4 Iron-core inductances 

One of the most important applications of magnetic materials is in electrical 

circuits—for example, in transformers, electric motors, and so on. One reason is 

that with iron we can control where the magnetic fields go, and also get much 

larger fields for a given electric current. For example, the typical “toroidal” 

inductance is made very much like the object shown in Fig. 36-7. For a given in¬ 

ductance, it can be much smaller in volume and use much less copper than an 

equivalent “air-core” inductance. For a given inductance, we get a much smaller 

resistance in the winding, so the inductance is more nearly “ideal”—particularly 

for low frequencies. It is very easy to understand, qualitatively, how such an 

inductance works. If / is the current in the winding, then the field H which is 

produced in the inside is proportional to /—as given by Eq. (36.20). The voltage 

V across the terminals is related to the magnetic field B. Neglecting the resistance 

of the winding, the voltage V is proportional to dB/dt. The inductance £, which 

is the ratio of to dl/dt (see Section 17-7), thus involves the relation between B 

and H in the iron. Since the B is so much bigger than the H, we get a large factor 

in the inductance. Physically, what happens is that a small current in the coil, 

which would ordinarily produce a small magnetic field, causes the little “slave” 

magnets in the iron to line up and produce a tremendously greater “magnetic” 

current than the external current in the winding. It is as if we had a lot more current 

going through the coil than we really have. When we reverse the current, all the 

little magnets flip over—all those internal currents reverse—and we get a much 

higher induced emf than we would get without the iron. If we want to calculate 

the inductance, we can do so through the energy—as described in Section 17-8. 

The rate at which energy is delivered from the current source is IV. The voltage V 

is the cross-sectional area A of the core, times N, times dB/dt. From Eq. (36.20), 

/ = (e0c2l/N)H. So we have 

dU 

dt 
= VI = (e0c2IA)H 

dB 

dt 

Integrating over time, we have 

U = (e0c2!A) j H dB. (36.21) 

Notice that IA is the volume of the torus, so we have shown that the energy density 

u = U/vol in a magnetic material is given by 

u = €0c2 j H dB. (36.22) 

An interesting feature is involved here. When we use alternating currents, 

the iron is driven around a hysteresis loop. Since B is not a single-valued function 

of //, the integral of J H dB around one complete cycle is not equal to zero. It 

is the area enclosed insicfe the hysteresis curve. Thus, the driving source delivers 

a certain net energy each cycle—an energy proportional to the area inside the 

hysteresis loop. And that energy is “lost.” It is lost from the electromagnetic 

goings on, but turns up as heat m the iron. It is called the hysteresis loss. To keep 

such energy losses small, we would like the hysteresis loop to be as narrow as 
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possible. One way to decrease the area of the loop is to reduce the maximum field 

that is reached during each cycle. For smaller maximum fields, we get a hysteresis 

curve like the one shown in Fig. 36-9. Also, special materials are designed to have 

a very narrow loop. The so-called transformer irons—which are iron alloys with 

a small amount of silicon—have been developed to have this property. 

When an inductance is run over a small hysteresis loop, the relationship 

between B and H can be approximated by a linear equation. People usually write 

B = pH. (36.23) 

The constant p is not the magnetic moment we have used before. It is called the 

permeability of the iron. (It is also sometimes called the “relative permeability.”) 

The permeability of ordinary irons is typically several thousand. There are special 

alloys alike “supermalloy” which can have permeabilities as high as a million. 

If we use the approximation that B = pH in Eq. (36.21), we can write the 

energy in a toroidal inductance as 

U = (eoC2lA)p j HdH = (e0c2lA)^f-- (36.24) 

So the energy density is approximately 

We can now set the energy of Eq. (36.24) equal to the energy £l2/2 of an inductance, 

and solve for £. We get 

£ - (e0c2lA)p * 

Using H/I from Eq. (36.20), we have 

pN2A 

e0c2l 
(36.25) 

The inductance is proportional to p. If you want inductances for such things as 

audio amplifiers, you will try to operate them on a hysteresis loop where the 

B-H relationship is as linear as possible. (You will remember that we spoke in 

Chapter 50, Vol. I, about the generation of harmonics in nonlinear systems.) 

For such purposes, Eq. (36.23) is a useful approximation. On the other hand, 

if you want to generate harmonics, you may use an inductance which is intention¬ 

ally operated in a highly nonlinear way. Then you will have to use the complete 

B-H curves, and analyze what happens by graphical or numerical methods. 

A “transformer” is often made by putting two coils on the same torus—or 

core—of a magnetic material. (For the larger transformers, the core is made with 

rectangular proportions for convenience.) Then a varying current in the “primary” 

winding causes the magnetic field in the core to change, which induces an emf in 

the “secondary” winding. Since the flux through each turn of both windings is 

the same, the emf’s in the two windings are in the same ratio as the number of 

turns on each. A voltage applied to the primary is transformed to a different 

voltage at the secondary. Since a certain net current around the core is needed to 

produce the required change in the magnetic field, the algebraic sum of the currents 

in the two windings will be fixed and equal to the required “magnetizing” current. 

If the current drawn from the secondary increases, the primary current must in¬ 

crease in proportion—there is a “transformation” of currents as well as voltage. 

36-5 Electromagnets 

Now let’s discuss a practical situation which is a little more complicated. 

Suppose we have an electromagnet of the rather standard form shown in Fig. 

36-10—there is a “C-shaped” yoke of iron, with a coil of many turns of wire 

wrapped around the yoke. What is the magnetic field B in the gap? 

b i 
(gauss) 

Fig. 36-9. A hysteresis loop that 

doesn’t reach saturation. 

Fig. 36-10. An electromagnet. 
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Fig. 36-11. Cross section of an electromagnet. 

If the gap thickness is small compared with all the other dimensions, we can, 

as a first approximation, assume that the lines of B will go around through the 

loop, just as they did in the torus They will look more or less as shown in Fig. 

36-11(a). They tend to spread out somewhat in the gap, but if the gap is narrow, 

this will be a small effect. It is a fair approximation to assume that the flux of 

B through any cross section of the yoke is a constant If the yoke has a uniform 

cross-sectional area—and if we neglect any edge effects at the gaps or aCtne corners 

—we can say that B is uniform around the yoke. 

Also, B will have the same value in the gap. This follows from Eq. (36.16). 

Imagine the closed surface S, shown in Fig. 36-11(b), which has one face in the 

gap and the other in the iron. The total flux of B out of this surface must be zero. 

Calling Bi the field in the gap and B2 the field in the iron, we have that 

BxAx — B2A2 : 0. 

Fig. 36-12. Solving for the field in 

an electromagnet. 

Since Ax = A2(to our approximation), it follows that Bx — B2. 

Now let’s look at H. We can again use Eq. (36.19), taking the line integral 

around the curve T in Fig. 36-11(b). As before, the right-hand side is AT, the 

number of turns times the current. Now, however, H wfll be different in the iron 

and in the air. Calling H2 the field in the iron and l2 the path length around the 

yoke, this part of the curve will contribute the amount H2h t0 the integral. Calling 

Hi the field in the gap and lx the gap thickness, we get the contribution Hxli from 

the gap. We have that 

HA + H2l2 = ^ . (36.26) 
60C 

Now we know something else: that in the air gap, the magnetization is negligi¬ 

ble, so that = Hi. Since Bx — B2, Eq. (36.26) becomes 

BA + H2l2 = • (36.27) 

We still have two unknowns. To find B2 and H2, we need another relationship— 

namely, the one which relates B to H m the iron. 

If we can make the approximation that B2 = (iH2, we can solve the equation 

algebraically. However, let’s do the general case, in which the magnetization curve 

of the iron is one like that shown in Fig. 36-8. What we want is the simultaneous 

solution of this functional relationship together with Eq. (36.27). We can find it 

by plotting a graph of Eq. (36.27) on the same graph with the magnetization curve, 

as is done in Fig. 36-12. Where the two curves intersect, we have our solution. 

For a given current /, the function (36.27) is the straight line marked / > 0 

in Fig. 36-12. The line intersects the //-axis (B2 = 0) at H2 = A///e()c2/2, and 

the slope is —/2//i. Different currents just shift the line horizontally. From Fig. 
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36-12, we see that for a given current there are several different solutions, depending 

on how you got there. If you have just built the magnet and turned the current 

up to /, the field B2 (which is also B{) will have the value given by point a. If 

you have run the current to some very high value and come down to /, the field 

will be given by point b. Or, if you have just had a high negative current in the 

magnet and then come up to /, the field is the one at point c. The field in the gap 

will depend on what you have done in the past. 

When the current in the magnet is zero, the relation between B2 and H2 in 

Eq. (36.27) is shown by the line marked / = 0 in the figure. There are still various 

possible solutions. If you have first saturated the iron, there may be a considerable 

residual field in the magnet as given by point d. You can take the coil off, and you 

have a permanent magnet. You can see that for a good permanent magnet, you 

would want a material with a wide hysteresis loop. Special alloys, such as Alnico 

V, have very wide loops. 

36-6 Spontaneous magnetization 

We now turn to the question of why it is that in ferromagnetic materials a 

small magnetic field produces such a large magnetization. The magnetization of 

ferromagnetic materials like iron and nickel comes from the magnetic moment 

of the electrons in the inner shell of the atom. Each electron has a magnetic moment 

fju equal to q/2m times its ^-factor, times its angular momentum J. For a single 

electron with no net orbital motion, g = 2, and the component of / in any direc¬ 

tion—say the z-direction—is =±h/2t so the component of ju along the z-axis is 

M* = = 0.928 X 10-23 arnp-m2. (36.28) 

In an iron atom, there are actually two electrons that contribute to the ferro¬ 

magnetism, so to keep the discussion simpler we will talk about nickel, which is 

ferromagnetic like iron but which has only one electron in the inner shell. (It is 

easy to extend the arguments to iron.) 

Now the point is that in the presence of an external field B, the atomic magnets 

tend to line up with the field, but are knocked about by thermal motions just as 

we described for paramagnetic materials. In the last chapter we found out that the 

balance between a magnetic field trying to line up the atomic magnets and the 

thermal motions trying to derange them produced the result that the mean mag¬ 

netic moment per unit volume will end up as 

M = Np tanh * (36.29) 

By Ba we mean the field acting at the atom, and kT is the Boltzmann energy. 

In tjie theory of paramagnetism we used for Ba just B itself, neglecting the part of 

the field at any given atom contributed by the atoms nearby. In the ferromagnetic 

case, there is a complication. We shouldn’t use the average field in the iron for 

the Ba acting on an individual atom. Instead, we must do as we did in the case of 

dielectrics—we have to find the local field acting at a single atom. For an exact 

calculation we should add up the fields at the atom m question contributed by all 

of the other atoms in the crystal lattice. But as we did for dielectrics, we will make 

the approximation that the field at an atom is the same as we would find in a small 

spherical hole in the material—assuming that the moments of the atoms in the 

neighborhood are not changed by the presence of the hole. 

Following the arguments we made in Chapter 11, we might think that we 

could write 

film],- = B + | , (wrong!). 
J 6(,C“ 

But that is not light. We can, however, make use of the results of Chapter 11 if 

we make a careful comparison of the equations of Chapter 11 with the equations 
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for ferromagnetism in this chapter. Let’s put together the corresponding equations. 

For regions where there are no conduction currents or charges we have: 

Electrostatics 

(£+£)-° 
V X E = 0 

Static ferromagnetism 

V ■ B = 0 

(36.30) 

These two sets of equations can be thought of as analogous if we make the follow¬ 

ing purely mathematical correspondences: 

B 
M 

60C2 e + t *0 
B. 

This is the same as making the analogy 

E -> H, P —> A//c2. 

In other words, if we write the equations of ferromagnetism as 

t (h+S)-°- 

V X H = 0, 

(36.31) 

(36.32) 

they look like the equations of electrostatics. 

This purely algebraic correspondence has led to some confusion in the past. 

People tended to think that H was “the magnetic field.” But, as we have seen, 

B and E are physically the fundamental fields, and H is a derived idea. So although 

the equations are analogous, the physics is not analogous. However, that doesn’t 

need to stop us from using the principle that the same equations have the same 

solutions. 

We can use our earlier results for the electric field inside of holes of various 

shapes m dielectrics—summarized in Fig. 36-1—to find the field H inside of 

corresponding holes. Knowing H, we can determine B. For instance (using the 

results we summarized in Section 1), the field /fin a needle-shaped hole parallel 

to M is the same as the H in the material, 

^fhole = ^/material* 

But since M in the hole is zero, we have 

^hole ■^material 

M 

e0c^ 
(36.33) 

On the other hand, for a disc-shaped hole, perpendicular to M, we have 

^hole lcleetri e + 

which translates into 

Or, in terms of B, 

Co 

M 
^hole //material <> * 

Co Cl 

/^hole /^material* (36.34) 

Finally, for a spherical hole, by making our analogy with Eq. (36.3) we would have 

it _ it I 3/ 
■“hole “material \ ^ 

or 

/^hole ^inatfrial 

3e0c2 

2 M 

3 €0c2 

This result is quite different from what we got for E. 
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It is, of course, possible to get these results in a more physical way, by using 

the Maxwell equations directly. For example, Eq. (36.34) follows directly from 

V * B = 0. (You use a gaussian surface that is half in the material and half out.) 

Similarly, you can get Eq. (36.33) by using a line integral along a curve that goes 

up inside the hole and returns through the material. Physically, the field in the 

hole is reduced because of the surface currents—which are given by V X M. 

We will leave it for you to show that Eq. (36.35) can also be obtained by considering 

the effects of the surface currents on the boundary of the spherical cavity. 

In finding the equilibrium magnetization from Eq. (36.29), it turns out to be 

most convenient to deal with H; so write 

Ba = H + X ^5 • (36.36) 
€qC- 

In the spherical hole approximation, we would have A = but, as you will see, 

we will want later to use some other value, so we leave it as an adjustable parameter. 

Also, we will take all the fields in the same direction so that we won’t need to worry 

about the vector directions. If we were now to substitute Eq. (36.36) into Eq. 

(36.29), we would have one equation that relates the magnetization M to the mag¬ 

netizing field H: 

It is, however, an equation that cannot be solved explicitly, so we will do it graph¬ 

ically. 

Let’s put the problem in a generalized form by writing Eq. (36.29) as 

= tanh x, (36.37) 
A/ Sat 

where MSilt is the saturation value of the magnetization, namely, Np, and * represents 

pBJkT. The dependence of M/Mslli on x is shown by curve a in Fig. 36-13. 

We can also write x as a function of M—using Eq. (36.36) for Ba—as 

pBa __ fiH fp\MSil\ M 

~kT kT ^ \e0c2kTj A/sat 
(36.38) 

For any given value of H, this is a straight-line relationship between M/M^t and 

x. The x intercept is at x = pH/kT, and the slope is tpc2kT/p For any 

particular H, we would have a line like the one marked b in Fig. 36-13. The 

intersection of curves a and b gives us the solution for M/MSIlt. We have solved 

the problem. 

Let’s look at how the solutions will go for various circumstances. We start 

with H = 0. There are two possible situations, shown by the lines b i and b2 

in Fig. 36-14. You will notice from Eq. (36.38) that the slope of the line is pro¬ 

portional to the absolute temperature T. So, at high temperatures we would have 

a line like b\. The solution is M/Msat — 0. When the magnetizing field H is zero, 

the magnetization is also zero. But at low temperatures, we would have a line like b2, 

and there are two solutions for M/MSclt—one with M/Mslx% = 0 and one with 

M/M^it near one. It turns out that only the upper solution is stable—as you can 

see by considering small variations about these solutions. 

According to these ideas, then, a magnetic material should magnetize itself 

spontaneously at sufficiently low temperatures. In short, when the thermal motions 

are small enough, the coupling between the atomic magnets causes them all to 

line up parallel to each other—we have a permanently magnetized material anal¬ 

ogous to the ferroelectrics we discussed in Chapter 11. 

If we start at high temperatures and come down, there is a critical temperature, 

called the Curie temperature Tc, where the ferromagnetic behavior suddenly sets in. 

This temperature corresponds to the line bs of Fig. 36-14, which is tangent to the 

curve a, and has, therefore, a slope of 1. The Curie temperature is given by 

€0c2kTo 

p\M&at 
(36.39) 

Fig. 36-13. A graphical solution of 

Eqs. (36.37) and (36.38). 

M ' 

Msat _ 
HIGH T TC LOW T 

Fig. 36-14. Finding the magnetiza¬ 

tion when H — 0. 
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We can, if we wish, write Eq. (36.38) more simply in terms of Tc as 
\ 

kT ' T 
(36.40) 

Now we want to see what happens for small magnetizing fields H. We can 

see from Fig. 36-14 how things will go if we shift our straight lines a little to the 

right. For the low-temperature case, the intersection point will move out a little 

bit along the low-slope part of curve a, and M will change relatively little. For the 

high-temperature case, however, the intersection point runs up the steep part of 

curve a, and M will change relatively rapidly. In fact, we can approximate this 

part of curve a by a straight line of unit slope, and write: 

M _ nH Te( M\ 

Af„at x kT^ T \MSJ 

Now we can solve for M/Ms.lt: 

M _ fx H 

Ms at k(T - TV) ' 
(36.41) 

We have a law that is something like the one we had for paramagnetism. For 

paramagnetism, we had 

M = }xB 

M^t ~~ kT 
(36.42) 

One difference now is that we have the magnetization in terms of 77, which includes 

some of the effects of the interaction of the atomic magnets, but the main difference 

is that the magnetization is inversely proportional to the difference between T 

and Tc, instead of to the absolute temperate T, alone. Neglecting the interactions 

between neighboring atoms corresponds to taking X = 0, which from Eq. (36.39) 

means taking Tc = 0. Then the results are just what we had in Chapter 35. 

We can check our theoretical picture with the experimental data for nickel. 

It is observed experimentally that the ferromagnetic behavior of nickel disappears 

when its temperature is raised above 631°K. We can compare this with Tc cal¬ 

culated from Eq. (36.39). Remembering that A/hllt = juiV, we have 

Tc = X 
Nt 

ke0c2 

From the density and atomic weight of nickel, we get 

N = 9.1 X 1028 m~3. 

Taking ju from Eq. (36.28), and setting X = we get 

Tc = 0.24°K. 

There is a discrepancy of a factor of about 2600! Our theory of ferromagnetism 

fails completely. 

We can try to “patch up” the theory as Weiss did by saying that for some 

unknown reason X is not one-third, but (2600) X ^—or about 900. It turns out 

that one gets similar values for other ferromagnetic materials like iron. To see 

what this means, let’s go back to Eq. (36.36). We see that a large X means that 

Ba, the local field on the atom, appears to be much, much larger than we would 

think. In fact, writing H = B — M/€0c2, we have 

B. - B + 
(X - 1 )M 

€0c2 

According to our original idea—with X = ^—the local magnetization M reduces 

the effective field Ba by the amount — fM/eQ. Even if our model of a spherical 

hole were not very good, we would still expect some reduction. Instead, to explain 
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the phenomenon of ferromagnetism, we have to imagine that the magnetization 

of the field enhances the local field by some large factor—like one thousand or 

more. There doesn’t seem to be any reasonable way to manufacture such tremen¬ 

dous fields at an atom—nor even fields of the proper sign! Clearly, our “magnetic” 

theory of ferromagnetism is a dismal failure. We must conclude, then, that ferro¬ 

magnetism has to do with some nonmagnetic interaction between the spinning 

electrons in neighboring atoms. This interaction must generate a strong tendency 

for all of the nearby spins to line up in one direction. We will see later that it has 

to do with quantum mechanics and the Pauli exclusion principle. 

Finally, we look at what happens at low temperatures—for T < Tr. We 

have seen that there will then be a spontaneous magnetization—even with H = 0— 

given by the intersection of the curves a and b2 of Fig. 36-14. If we solve for M 

for various temperatures—by varying the slope of the line b 2—we get the theoretical 

curve shown in Fig. 36-15. This curve should be the same for all ferromagnetic 

materials for which the atomic moment comes from a single electron. The curves 

for other materials are only slightly different. 

In the limit, as T goes to absolute zero, M goes to As the temperature 

is increased, the magnetization decreases, falling to zero at the Curie temperature. 

The points in Fig. 36-15 are the experimental observations for nickel. They fit the 

theoretical curve fairly well. Even though we don’t understand the basic mecha¬ 

nism, the general features of the theory seem to be correct. 

Finally, there is one more disturbing discrepancy in our attempt to under¬ 

stand ferromagnetism. We have found that above some temperature the material 

should behave like a paramagnetic substance with a magnetization M propor¬ 

tional to H (or B), and that below that temperature it should become spontane¬ 

ously magnetized. But that’s not what we found when we measured the mag¬ 

netization curve for iron. It only became permanently magnetized ajter we had 

“magnetized” it. According to the ideas just discussed, it would magnenze itself! 

What is wrong? Well, it turns out that if you look at a small enough crystal of iron 

or nickel, it is indeed completely magnetized! But in large pieces of iron, there are 

many small regions or “domains” that are magnetized in different directions, so 

that on a large scale the average magnetization appears to be zero. In each small 

domain, however, the iron has a locked-in magnetization with M nearly equal to 

The consequences of this domain structure are that gross properties of 

large pieces of material are quite different from the microscopic properties that 

we have really been treating. We will take up in the next lecture the story of the 

practical behavior of bulk magnetic materials. 

Fig. 36-15. Spontaneous magnetiza¬ 

tion as a function of temperature for 

nickel. 
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37 

Magnetic Materials 

37-1 Understanding ferromagnetism 

In this chapter we will discuss the behavior and peculiarities of ferromagnetic 

materials and of other strange magnetic materials. Before proceeding to study 

magnetic materials, however, we will review very quickly some of the things about 

the general theory of magnets that we learned in the last chapter. 

First, we imagine the atomic currents inside the material that are responsible 

for the magnetism, and then describe them in terms of a volume current density 

jm*R = V X M. We emphasize that this is not supposed to represent the actual 

currents. When the magnetization is uniform the currents do not really cancel 

out precisely; that is, the whirling currents of one electron in one atom and the 

whirling currents of an electron m another atom do not overlap in such a way 

that the sum is exactly zero. Even within a single atom the distribution of 

magnetism is not smooth. For instance, in an iron atom the magnetization 

is distributed in a more or less spherical shell, not too close to the nucleus and 

not too far away. Thus, magnetism in matter is quite a complicated thing in its 

details; it is very irregular. However, we are obliged now to ignore this detailed 

complexity and discuss phenomena from a gross, average point of view. Then 

it is true that the average current in the interior region, over any finite area that 

is big compared with an atom, is zero when M = 0. So, what we mean by 

magnetization per unit volume and ylllaB and so on, at the level we are now 

considering, is an average over regions that are large compared with the space 

occupied by a single atom. 

In the last chapter, we also discovered that a ferromagnetic material has the 

following interesting property: above a certain temperature it is not strongly 

magnetic, whereas below this temperature it becomes magnetic. This fact is 

easily demonstrated. A piece of nickel wire at room temperature is attracted by a 

magnet. However, if we heat it above its Curie temperature with a gas flame, it 

becomes nonmagnetic and is not attracted toward the magnet—even when brought 

quite close to the magnet. If we let it lie near the magnet while it cools off, at the 

instant its temperature falls below the critical temperature it is suddenly attracted 

again by the magnet! 

The general theory of ferromagnetism that we will use supposes that the spin 

of the electron is responsible for the magnetization. The electron has spin one-half 

and carries one Bohr magneton of magnetic moment p = pb = qeh/2m. The 

electron spin can be pointed either “up” or “down.” Because the electron has a 

negative charge, when its spin is “up” it has a negative moment, and when its spin 

is “down” it has a positive moment. With our usual conventions, the moment p 

of the electron is opposite its spin. We have found that the energy of orientation 

of a magnetic dipole in a given applied field B is —p - B, but the energy of the 

spinning electrons depends on the neighboring spin alignments as well. In iron, 

if the moment of a nearby atom is “up,” there is a very strong tendency that the 

moment of the one next to it will also be “up.” That is what makes iron, cobalt, 

and nickel so strongly magnetic—the moments all want to be parallel. The first 

question we have to discuss is why. 

Soon after the development of quantum mechanics, it was noticed that there 

is a very strong apparent force—not a magnetic force or any other kind of actual 

force, but only an apparent force—trying to line the spins of nearby electrons 

opposite to one another. These forces are closely related to chemical valence forces. 

There is a principle in quantum mechanics—called the exclusion principle—that 
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two electrons cannot occupy exactly the same state, that they cannot be in exactly 

the same condition as to location and spin orientation.* For example, if they are 

at the same point, the only alternative is to have their spins opposite. So, if there 

is a region of space between atoms where electrons like to congregate (as in a chem¬ 

ical bond) and we want to put another electron on top of one already there, the 

only way to do it is to have the spin of the second one pointed opposite to the spin 

of the first one. To have the spins parallel is against the law, unless the electrons 

stay away from each other. This has the effect that a pair of parallel-spin electrons 

near to each other have much more energy than a pair of opposite-spin electrons; 

the net effect is as though there were a force trying to turn the spin over. Some¬ 

times this spin-turning force is called the exchange force, but that only makes it 

more mysterious—it is not a very good term. It is just because of the exclusion 

principle that electrons have a tendency to make their spins opposite. In fact, 

that is the explanation of the lack of magnetism in almost all substances! The 

spins of the free electrons on the outside of the atoms have tremendous tendency 

to balance in opposite directions. The problem is to explain why for materials 

like iron it is just the reverse of what we should expect. 

We have summarized the supposed alignment effect by adding a suitable term 

in the energy equation, by saying that if the electron magnets in the neighborhood 

have a mean magnetization M, then the moment of an electron has a strong 

tendency to be in the same direction as the average magnetization of the atoms in 

the neighborhood. Thus, we may write for the two possible spin orientations,! 

Spin "up” energy = + 11 1 H H- 
V Cl cl 

Spin "down” energy = — ^ [ H + 

When it was clear that quantum mechanics could supply a tremendous spin- 

orientating force—even if, apparently, of the wrong sign—it was suggested that 

ferromagnetism might have its origin in this same force, that due to the complexi¬ 

ties of iron and the large number of electrons involved, the sign of the interaction 

energy would come out the other way around. Since the time this was thought of— 

in about 1927 when quantum mechanics was first being understood—many people 

have been making various estimates and semicalculations, trying to get a theoretical 

prediction for X. The most recent calculations of the energy between the two elec¬ 

tron spins in iron—assuming that the interaction is a direct one between the two 

electrons m neighboring atoms—still give the wrong sign. The present understand¬ 

ing of this is again to assume that the complexity of the situation is somehow 

responsible and to hope that the next man who makes the calculation with a more 

complicated situation will get the right answer! 

It is believed that the up-spin of one of the electrons in the inside shell, which 

is making the magnetism, tends to make the conduction electrons which fly around 

the outside have the opposite spin. One might expect this to happen because the 

conduction electrons come into the same region as the “magnetic” electrons. Since 

they move around, they can carry their prejudice for being upside down over to 

the next atom; that is, one "magnetic” electron tries to force the conduction elec¬ 

trons to be opposite, and the conduction electron then makes the next "magnetic” 

electron opposite to it. The double interaction is equivalent to an interaction which 

tries to line up the two "magnetic” electrons. In other words, the tendency to make 

parallel spins is the result of an intermediary that tends to some extent to be op¬ 

posite to both. This mechanism does not require that the conduction electrons be 

completely “upside down.” They could just have a slight prejudice to be down, 

just enough to load the "magnetic” odds the other way. This is the mechanism that 

* See Chapter 43. 
f We write these equations with H = B — M/enc'J instead of B to agree with the work 

of the last chapter. You might prefer to write U = ±fiBa = ^fi(B -f X'M/eoc2\ where 
X' — X — 1. It’s the same thing. 
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the people who have calculated such things now believe is responsible for ferro¬ 

magnetism. But we must emphasize that to this day nobody can calculate the 

magnitude of X simply by knowing that the material is number 26 in the periodic 

table. In short, we don’t thoroughly understand it. 

Now let us continue with the theory, and then come back later to discuss a 

certain error involved in the way we have set it up. If the magnetic moment of a 

certain electron is “up,” energy comes both from the external field and also from 

the tendency of the spins to be parallel. Since the energy is lower when the spins 

are parallel, the effect is sometimes thought of as due to an “effective internal 

field.” But remember, it is not due to a true magnetic force; it is an interaction 

that is more complicated. In any case, we take Eqs. (37.1) as the formulas for the 

energies of the two spin states of a “magnetic” electron. At a temperature T, the 

relative probability of these two states is proportional to e~enorgy^r, which we 

can write as e{s, with x = fi(H + \M/e0c2)/kT. Then, if we calculate the 

mean value of the magnetic moment, we find (as in the last chapter) that it is 

M = Nfi tanh x. (37.2) 

Now we would like to calculate the internal energy of the material. We note 

that the energy of an electron is exactly proportional to the magnetic moment, 

so that the calculation of the mean moment and the calculation of the mean energy 

are the same—except that in place of fx in Eq. (37.2) we would write — ixB, which 

is ~\x(H + XA//e0c2). The mean energy is then 

(U)„ = -N„(h+ XM) tanh X 

Now this is not quite correct. The term \M/e0c2 represents interactions of 

all possible pairs of atoms, and we must remember to count each pair only once. 

(When we consider the energy of one electron in the field of the rest and then the 

energy of a second electron in the field of the rest, we have counted part of the 

first energy once more.) Thus, we must divide the mutual interaction term by two, 

and our formula for the energy then turns out to be 

= -Nn (h + 2~s) tanh x (37.3) 

In the last chapter we discovered an interesting thing—that below a certain 

temperature the material finds a solution to the equations in which the magnetic 

moment is not zero, even with no external magnetizing field. When we set H — 0 

in Eq. (37.2), we found that 

where M^lt = TVju, and Tc = iJ,\Ms.lt/k€0c2. When we solve this equation 

(graphically or otherwise), we find that the ratio Af/Msat as a function of T/Tc is 

a curve like that labeled “quantum theory” in Fig. 37-1. The dashed curve marked 

“cobalt, nickel” shows the experimental results for crystals of these elements. 

The theory and experiment are in reasonably good agreement. The figure also 

shows the result of the classical theory in which the calculation is carried out 

assuming that the atomic magnets can have all possible orientations in space. 

You can see that this assumption gives a prediction that is not even close to the 

experimental facts. 

Even the quantum theory deviates from the observed behavior at both high 

and low temperatures. The reason for the deviations is that we have made a rather 

sloppy approximation in the theory: We have assumed that the energy of an 

atom depends upon the mean magnetization of its neighboring atoms. In other 

words, for each one that is “up” in the neighborhood of a given atom, there will 

be a contribution of energy due to that quantum mechanical alignment effect. 

But how many are there pointed “up”? On the average, that is measured by the 
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Fig. 37-1. The spontaneous magne¬ 

tization [H = 0) of ferromagnetic crystals 

as a function of temperature. [Permission 

from Encyclopaedia Britannica.] 

magnetization M—but only on the average. A particular atom somewhere might 

find all its neighbors “up.” Then its energy will be larger than the average. Another 

one might find some up and some down, perhaps averaging to zero, and it would 

have no energy from that term, and so on. What we ought to do is to use some more 

complicated kind of average, because the atoms in different places have different 

environments, and the numbers up and down are different for different ones. 

Instead of just taking one atom subjected to the average influence, we should 

take each one in its actual situation, compute its energy, and find the average 

energy. But how do we find out how many are “up” and how many are “down” 

in the neighborhood? That is, of course, just what we are trying to calculate— 

the number “up” and “down”—so we have a very complicated interconnected 

problem of correlations, a problem which has never been solved. It is an intriguing 

and exciting one which has existed for years and on which some of the greatest 

names in physics have written papers, but even they have not completely solved it. 

It turns out that at low temperatures, when almost all the atomic magnets are 

“up” and only a few are “down,” it is easy to solve; and at high temperatures, far 

above the Curie temperature Tc when they are almost all random, it is again easy. 

It is often easy to calculate small departures from some simple, idealized situation, 

so it is fairly well understood why there are deviations from the simple theory at 

low temperature. It is also understood physically that for statistical reasons the 

magnetization should deviate at high temperatures. But the exact behavior near 

the Curie point has never been thoroughly figured out. That’s an interesting 

problem to work out some day if you want a problem that has never been solved. 

37-2 Thermodynamic properties 

In the last chapter we laid the groundwork necessary for calculating the 

thermodynamic properties of ferromagnetic materials. These are, naturally, related 

to the internal energy of the crystal, which includes interactions of the various 

spins, given by Eq. (37.3). For the energy of the spontaneous magnetization below 

the Curie point, we can set H = 0 in Eq. (37.3), and—noticing that tanh x = 

M/Msat—we find a mean energy proportional to M2: 

NpXM2 
(37.5) 

Fig. 37-2. The energy per uni* vol¬ 

ume and specific heat of a ferromagnetic 

crystal. 

If we now plot the energy due to the magnetism as a function of temperature, we 

get a curve which is the negative of the square of the curve of Fig. 37-1, as drawn 

in Fig. 37-2(a). If we were to measure then the specific heat of such a material 

we would obtain a curve which is the derivative of 37-2(a). It is shown in Fig. 
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37—2(b). It rises slowly with increasing temperature, but falls suddenly to zero at 
T = Tc. The sharp drop is due to the change in slope of the magnetic energy and 
is reached right at the Curie point. So without any magnetic measurements at 
all we could have discovered that something was going on inside of iron or nickel 
by measuring this thermodynamic property. However, both experiment and 
improved theory (with fluctuations included) suggest that this simple curve is 
wrong and that the true situation is really more complicated. The curve goes 
higher at the peak and falls to zero somewhat slowly. Even if the temperature is 
high enough to randomize the spins on the average, there are still local regions 
where there is a certain amount of polarization, and in these regions the spins still 
have a little extra energy of interaction—which only dies out slowly as things get 
more and more random with further increases in temperature So the actual curve 
looks like Fig. 37-2(c). One of the challenges of theoretical physics today is to 
find an exact theoretical description of the character of the specific heat near the 
Curie transition—an intriguing problem which has not yet been solved. Naturally, 
this problem is very closely related to the shape of the magnetization curve m the 
same region. 

Now we want to describe some experiments, other than thermodynamic ones, 
which show that there is something right about our interpretation of magnetism 
When the material is magnetized to saturation at low enough temperatures, M is 
very nearly equal to t—nearly all the spins are parallel, as well as their mag¬ 
netic moments. We can check this by an experiment. Suppose we suspend a bar 
magnet by a thin fiber and then surround it by a coil so that we can reverse the 

' magnetic field without touching the magnet or putting any torque on it. This is a 
'4very difficult experiment because the magnetic forces are so enormous that any 

irregularities, any lopsidedness, or any lack of perfection in the iron will produce 
accidental torques. However, the experiment has been done under careful con¬ 
ditions in which such accidental torques are minimized. By means of the magnetic 
field from a coil that surrounds the bar, we turn all the atomic magnets over at 
once. When we do this we also change the angular momenta of all the spins from 
“up” to “down” (see Fig. 37-3). If angular momentum is to be conserved when the 
spins all turn over, the rest of the bar must have an opposite change in angular 
momentum. The whole magnet will start to spin. And sure enough, when we do 
the experiment, we find a slight turning of the magnet. We can measure the 
total angular momentum given to the whole magnet, and this is simply N times h, 

the change in the angular momentum of each spin. The ratio of angular momentum 
to magnetic moment measured this way comes out to within about 10 percent of 
what we calculate. Actually, our calculations assume that the atomic magnets are 
due purely to the electron spin, but there is, in addition, some orbital motion also in 
most materials. The orbital motion is not completely free of the lattice and does 
not contribute much more than a few percent to the magnetism. As a matter of 
fact, the saturation magnetic field that one gets taking Msat = Ny and using the 
density of iron of 7.9 and the moment y of the spinning electron is about 20,000 
gauss. But according to experiment, it is actually in the neighborhood of 21,500 
gauss. This is a typical magnitude of error—5 or 10 percent—due to neglecting 
the contributions of the orbital moments that have not been included in making 
the analysis. Thus, a slight discrepancy with the gyromagnetic measurements is 
quite understandable. 

37-3 The hysteresis curve 

Fig. 37-3. When the magnetization 

of a bar of iron Is reversed, the bar is 

given some angular velocity. 

(a) (b) <c> 

<d) <0 

We have concluded from our theoretical analysis that a ferromagnetic material Fig. 37-4. The formation of domains 

should spontaneously become magnetized below a certain temperature so that in a single crystal of iron. [From Charles 

all the magnetism would be in the same direction. But we know that this is not true Kittel, Introduction to Solid State Physics, 

for an ordinary piece of unmagnetized iron. Why isn’t all iron magnetized? We John^ Wiley and S°nS' lnC/ NeW Y°rk' 2"d 

can explain it with the help of Fig. 37-4. Suppose the iron were all a big single e *' 
crystal of the shape shown in Fig. 37-4(a) and spontaneously magnetized all in one 
direction. Then there would be a considerable external magnetic field, which would 
have a lot of energy. We can reduce that field energy if we arrange that one side of 
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the block is magnetized “up" and the other side magnetized “down," as in Fig. 
37-4(b). Then, of course, the fields outside the iron would extend over less volume, 
so there would be less energy there. 

Ah, but wait! In the layer between the two regions we have up-spinning 
electrons adjacent to down-spinning electrons. But ferromagnetism appears only 
in those materials for which the energy is reduced if the electrons are parallel rather 
than opposite. So, we have added some extra energy along the dotted line in Fig. 
37-4(b); this energy is sometimes called wall energy. A region having only one 
direction of magnetization is called a domain. At the interface—the “wall"— 
between two domains, where we have atoms on opposite sides which are spinning 
in different directions, there is an energy per unit area of the wall. We have de¬ 
scribed it as though two adjacent atoms were spinning exactly opposite, but it 
turns out that nature adjusts things so that the transition is more gradual. But 
we don’t need to worry about such fine details at this point. 

Now the question is: When is it better or worse to make a wall? The answer 
is that it depends on the size of the domains. Suppose that we were to scale up a 
block so that the whole thing was twice as big. The volume in the space outside 
filled with a given magnetic field strength would be eight times bigger, and the 
energy in the magnetic field, which is proportional to the volume, would also be 
eight times greater. But the surface area between two domains, which will give the 
wall energy, would be only four times as big. Therefore, if the piece of iron is big 
enough, it will pay to split it into more domains. This is why only the very tmy 
crystals can have but a single domain. Any large object—one more than about a 
hundredth of a millimeter in size—will have at least one domain wall; and any 
ordinary, “centimeter-size" object will be split into many domains, as shown in the 
figure. Splitting into domains goes on until the energy needed to put in one extra 

wall is as large as the energy decrease in the magnetic field outside the crystal. 

Actually nature has discovered still another way to lower the energy: It is not 
necessary to have the field go outside at all, if a little triangular region is magnetized 
sideways, as in Fig. 37-4(d).* Then with the arrangement of Figrx37-4(d) we see 
that there is no external field, but instead only a little more domain wall. 

But that introduces a new kind of problem. It turns out that when a single 
crystal of iron is magnetized, it changes its length in the direction of magnetization, 
so an “ideal" cube with its magnetization, say, “up," is no longer a perfect cube. 
The “vertical” dimension will be different from the “horizontal" dimension. This 
effect is called magnetostriction. Because of such geometric changes, the little 
triangular pieces of Fig. 37-4(d) do not, so to speak, “fit" into the available space 
anymore—the crystal has got too long one way and too short the other way. Of 
course, it does fit, really, but only by being squashed in; and this involves some 
mechanical stresses. So, this arrangement also introduces an extra energy. It 
is the balance of all these various energies which determines how the domains 
finally arrange themselves in their complicated fashion in a piece of unmagnetized 
iron. 

Now, what happens when we put on an external magnetic field? To take a 
simple case, consider a crystal whose domains are as shown in Fig. 37-4(d). If 
we apply an external magnetic field in the upward direction, in what manner does 
the crystal become magnetized? First, the middle domain wall can move over 

sideways (to the right) and reduce the energy. It moves over so that the region which 
is “up” becomes bigger than the region which is “down". There are more elemen¬ 
tary magnets lined up with the field, and this gives a lower energy. So, for a piece 
of iron in weak fields—at the very beginning of magnetization—the domain walls 
begin to move and eat into the regions which are magnetized opposite to the field. 
As the field continues to increase, a whole crystal shifts gradually into a single 

* You may be wondering how spins that have to be either “up*’ or “down” can also 
be “sideways”! That’s a good question, but we won’t worry about it right now. We’ll 
simply adopt the classical point of view, thinking of the atomic magnets as classical 
dipoles which can be polarized sideways. Quantum mechanics requires considerable 
expertness to understand how things can be quantized both “up-and-down,” and “right- 
and-left,” all at the same time. 
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large domain which the external field helps to keep lined up. In a strong field the 

crystal “likes’’ to be all one way just because its energy in the applied field is reduced 

—it is no longer merely the crystal’s own external field which matters. 

What if the geometry is not so simple? What if the axes of the crystal and its 

spontaneous magnetization are in one direction, but we apply the magnetic field 

in some other direction—say at 45° ? We might think that domains would reform 

themselves with their magnetization parallel to the field, and then as before, they 

could all grow into one domain. But this is not easy for the iron to do, for the 

energy needed to magnetize a crystal depends on the direction of magnetization 

relative to the crystal axis. It is relatively easy to magnetize iron in a direction 

parallel to the crystal axes, but it takes more energy to magnetize it in some other 

direction—like 45° with respect to one of the axes. Therefore, if we apply a mag¬ 

netic field in such a direction, what happens first is that the domains which point 

along one of the preferred directions which is near to the applied field grow until 

the magnetization is all along one of these directions. Then with much stronger 

fields, the magnetization is gradually pulled around parallel to the field, as sketched 

in Fig. 37-5. 

In Fig. 37-6 are shown some observations of the magnetization curves of 

single crystals of iron. To understand them, we must first explain something about 

the notation that is used in describing directions in a crystal. There are many 

ways in which a crystal can be sliced so as to produce a face which is a plane of 

atoms. Everyone who has driven past an orchard or vineyard knows this—it is 

fascinating to watch. If you look one way, you see lines of trees—if you look an¬ 

other way, you see different lines of trees, and so on. In a similar way, a crystal 

has definite families of planes that hold many atoms, and the planes have this 

important characteristic (we consider a cubic crystal to make it easier): If we 

observe where the planes intersect the three coordinate axes—we find that the 

reciprocals of the three distances from the origin are in the ratio of simple whole 

numbers. These three whole numbers are taken as the definition of the planes. 

For example, in Fig. 37-7(a), a plane parallel to the _yz-plane is shown. This is 

called a [100] plane; the reciprocals of its intersection of the y- and z-axes are both 

zero. The direction perpendicular to such a plane (in a cubic crystal) is given the 

same set of numbers. It is easy to understand the idea in a cubic crystal, for then 

the indices [100] mean a vector which has a unit component in the x-direction and 

none in the y- or z-directions. The [110] direction is in a direction 45° from the 

x- and >>-axes, as in Fig. 37—7(b); and the [111] direction is in the direction of the 

cube diagonal, as in Fig. 37-7(c). 

M 

V* 

Fig. 37-5. A magnetizing field H at 

an angle with respect to the crystal axis 

will gradually change the direction of the 

magnetization without changing its magni¬ 

tude. 

Fig. 37-6. The component of A1 par¬ 

allel to H, for different directions of H 
(with respect to the crystal axes). [From 

F. Bitter, Introduction to Ferromagnetism, 

McGraw-Hill Book Co., Inc., 1937.] 

Returning now to Fig. 37-6, we see the magnetization curves of a single 

crystal of iron for various directions. First, note that for very tiny fields—so weak 

that it is hard to see them on the scale at all—the magnetization increases extremely 

rapidly to quite large values. If the field is in the [100] direction—namely along 

one of those nice, easy directions of magnetization—the curve goes up to a high 

value, curves around a little, and then is saturated. What happened is that the 
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Fig. 37-7. The way the crystal planes are labeled. 

domains which were already there are very easily removed. Only a small field is 
required to make the domain walls move and eat up all of the “wrong-way” 
domains. Single crystals of iron are enormously permeable (magnetic sense), 
much more so than ordinary polycrystalline iron. A perfect crystal magnetizes 
extremely easily. Why is it curved at all? Why doesn’t it just go right up to satura¬ 
tion? We are not sure. You might study that some day. We do understand why it 
is flat for high fields. When the whole block is a single domain, the extra magnetic 
field cannot make any more magnetization—it is already at AfHat, with all the elec¬ 
trons lines up. 

Now, if we try to do the same thing in the [110] direction—which is at 45° 
to the crystal axes—what will happen? We turn on a little bit of field and the 
magnetization leaps up as the domains grow. Then as we increase the field some 
more, we find that it takes quite a lot of field to get up to saturation, because 
now the magnetization is turning away from an “easy” direction. If this explanation 
is correct, the point at which the [110] curve extrapolates back to the vertical axis 
should be at \/\/2 of the saturation value. It turns out, in fact, to be very, very 
close to l/\/2. Similarly, in the [111] direction—which is along the cube diagonal 
—we find, as we would expect, that the curve extrapolates back to nearly l/\/3 
of saturation. 

Figure 37-8 shows the corresponding situation for two other materials, nickel 
and cobalt. Nickel is different from iron. In nickel, it turns out that the [111] 
direction is the easy direction of magnetization. Cobalt has a hexagonal crystal 
form, and people have botched up the system of nomenclature for this case. They 
want to have three axes on the bottom of the hexagon and one perpendicular to 
these, so they have used four indices. The [0001] direction is the direction of the 
axis of the hexagon, and [1010] is perpendicular to that axis. We see that crystals 
of different metals behave in different ways. 

Now we must discuss a polycrystalline material, such as an ordinary piece of 
iron. Inside such materials there are many, many little crystals with their crystal¬ 
line axes pointing every which way. These are not the same as domains. Remember 
that the domains were all part of a single crystal, but in a piece of iron there are 

Fig. 37-8. Magnetization curves for 
single crystals of iron, nickel, and cobalt. 
[From Charles Kittel, Introduction to Solid 
State Physics, John Wiley and Sons, Inc., 
New York, 2nd ed., 1956.] H (gauss) —► 
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many different crystals with axes at different orientations, as shown in Fig. 37-9. 

Within each of these crystals, there will also generally be some domains. When 

we apply a small magnetic field to a piece of polycrystalline material, what happens 

is that the domain walls begin to move, and the domains which have a favorable 

direction of easy magnetization grow larger. This growth is reversible so long as 

the field stays very small—if we turn the field off, the magnetization will return to 

zero. This part of the magnetization curve is marked a in Fig. 37-10. 

For larger fields—in the region b of the magnetization curve shown—things 

get much more complicated. In every small crystal of the material, there are strains 

and dislocations; there are impurities, dirt, and imperfections. And at all but the 

smallest fields, the domain wall, in moving, gets stuck on these. There is an inter¬ 

action energy between the domain wall and a dislocation, or a grain boundary, 

or an impurity. So when the wall gets to one of them, it gets stuck; it sticks there 

at a certain field. But then if the field is raised some more, the wall suddenly snaps 

past. So the motion of the domain wall is not smooth the way it is in a perfect 

crystal—it gets hung up every once in a while and moves in jerks. If we were to 

look at the magnetization on a microscopic scale, we would see something like the 

insert of Fig. 37-10. 

Now the important thing is that these jerks in the magnetization can cause an 

energy loss. In the first place, when a boundary finally slips past an impediment, 

it moves very quickly to the next one, since the field is already above what would 

be required for the unimpeded motion. The rapid motion means that there are 

rapidly changing magnetic fields which produce eddy currents in the crystal. These 

currents loose energy in heating the metal. A second effect is that when a domain 

suddenly changes, part of the crystal changes its dimensions from the magneto¬ 

striction. Each sudden shift of a domain wall sets up a little sound wave that carries 

away energy. Because of such effects, the second part of magnetization curve 

is irreversible, and there is energy being lost. This is the origin of the hysteresis 

effect, because to move a boundary wall forward—snap—and then to move it back¬ 

ward—snap—produces a different result. It’s like “jerky” friction, and it takes 

energy. 

Eventually, for high enough fields, when we have moved all the domain walls 

and magnetized each crystal m its best direction, there are still some crystallites 

which happen to have their easy directions of magnetization not in the direction 

of our external magnetic field. Then it takes a lot of extra field to turn those 

magnetic moments around. So the magnetization increases slowly, but smoothly, 

for high fields—namely in the region marked c in the figure. The magnetization 

does not come sharply to its saturation value, because in the last part of the curve 

the atomic magnets are turning in the strong field. So we see why the magnetization 

curve of an ordinary polycrystalline materials, such as the one shown in Fig. 37-10, 

rises a little bit and reversibly at first, then rises irreversibly, and then curves over 

slowly. Of course, there is no sharp break-point between the three regions—they 

blend smoothly, one into the other. 

It is not hard to show that the magnetization process in the middle part of the 

magnetization curve is jerky—that the domain walls jerk and snap as they shift 

All you need is a coil of wire—with many thousands of turns—connected to an 

amplifier and a loudspeaker, as shown in Fig. 37-11. If you put a few silicon steel 

sheets (of the type used in transformers) at the center of the coil and bring a bar 

magnet slowly near the stack, the sudden changes in magnetization will produce 

impulses of emf in the coil, which are heard as distinct clicks in the loudspeaker. 

As you move the magnet nearer to the iron you will hear a whole rush of clicks 

that sound something like the noise of sand grains falling over each other as a 

can of sand is tilted. The domain walls are jumping, snapping, and jiggling as the 

field is increased. This phenomenon is called the Barkhausen effect. 

As you move the magnet even closer to the iron sheets, the noise grows louder 

and louder for a while but then there is relatively little noise when the magnet gets 

very close. Why? Because nearly all the domain walls have moved as far as they 

can go. Any greater field is merely turning the magnetization in each domain, 

which is a smooth process. 

Fig. 37-9. The microscopic structure 

of an unmagnetized ferromagnetic ma¬ 

terial. Each crystal grain has an easy 

direction of magnetization and is broken 

up into domains which are spontaneously 

magnetized (usually) parallel to this 

direction. 

Fig. 37-10. The magnetization curve 

for polycrystalline iron. 

Fig. 37-11. The sudden changes in 

the magnetization of the steel strip are 

heard as clicks in the loudspeaker. 
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If you now withdraw the magnet, so as to come back on the downward branch 

of the hysteresis loop, the domains all try to get back to low energy again, and you 

hear another rush of backward-going jerks. You can also note that if you bring 

the magnet to a given place and move it back and forth a little bit, there is relatively 

little noise. It is again like tilting a can of sand—once the grains shift into place, 

small movements of the can don't disturb them. In the iron the small variations 

in the magnetic field aren’t enough to move any boundaries over any of the 

“humps.” 

37-4 Ferromagnetic materials 

Fig 37-12. The hysteresis curve of 

Alnico V. 

Now we would like to talk about the various kinds of magnetic materials that 

there are in the technical world and to consider some of the problems involved in 

designing magnetic materials for different purposes. First, the term “the magnetic 

properties of iron," which one often hears, is a misnomer—there is no such thing. 

“Iron” is not a well-defined material—the properties of iron depend critically on 

the amount of impurities and also on how the iron is formed. You can appreciate 

that the magnetic properties will depend on how easily the domain walls move and 

that this is a gross property, not a property of the individual atoms. So practical 

ferromagnetism is not really a property of an iron atom—it is a property of solid 

iron m a certain form. For example, iron can take on two different crystalline 

forms. The common form has a body-centered cubic lattice, but it can also have 

a face-centered cubic lattice, which is, however, stable only at temperatures above 

1100°C. Of course, at that temperature the body-centered cubic structure is 

already past the Curie point. However, by alloying chromium and nickel with 

the iron (one possible mixture is 18 percent chromium and 8 percent nickel) we 

can get what is called stainless steel, which, although it is mainly iron, retains the 

face-centered lattice even at low temperatures. Because its crystal structure is 

different, it has completely different magnetic properties. Most kindsTT^tainless 

steel are not magnetic to any appreciable degree, although there are some kinds 

which are somewhat magnetic—it depends on the composition of the alloy. Even 

when such an alloy is magnetic, it is not /<?m?magnetic like ordinary iron—even 

though it is mostly just iron. 

We would like now to describe a few of the special materials which have been 

developed for their particular magnetic properties. First, if we want to make a 

permanent magnet, we would like material with an enormously wide hysteresis 

loop so that, when we turn the current off and come down to zero magnetizing 

field, the magnetization will remain large. For such materials the domain bounda¬ 

ries should be “frozen” in place as much as possible One such material is the re¬ 

markable alloy “Alnico V” (51% Fe, 8% Al, 14% Ni, 24% Co, 3% Cu). (The 

rather complex composition of this alloy is indicative of the kind of detailed effort 

that has gone into making good magnets. What patience it takes to mix five things 

together and test them until you find the most ideal substance!) When Alnico 

solidifies, there is a “second phase” which precipitates out, making many tiny grains 

and very high internal strains. In this material, the domain boundaries have a 

hard time moving at all. In addition to having a precise composition, Alnico is 

mechanically “worked” in a way that makes the crystals appear in the form of 

long grains along the direction in which the magnetization is going to be. Then 

the magnetization will have a natural tendency to be lined up in these directions 

and will be held there from the anisotropic effects. Furthermore, the material is 

even cooled in an external magnetic field when it is manufactured, so that the grains 

will grow with the right crystal orientation. The hysteresis loop of Alnico V is 

shown in Fig 37-12. You see that it is about 500 times wider than the hysteresis 

curve for soft iron that we showed in the last chapter m Fig. 36-8. 

Let’s turn now to a different kind of material. For building transformers and 

motors, we want a material which is magnetically “soft”—one in which the mag¬ 

netism is easily changed so that an enormous amount of magnetization results 

from a very small applied field. To arrange this, we need pure, well-annealed 

material which will have very few dislocations and impurities so that the domain 
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walls can move easily. It would also be nice if we could make the anisotropy 

small. Then, even if a grain of the material sits at the wrong angle with respect to 

the field, it will still magnetize easily. Now we have said that iron prefers to mag¬ 

netize along the [100] direction, whereas nickel prefers the [111] direction; so if 

we mix iron and nickel in various proportions, we might hope to find that with 

just the right proportions the alloy wouldn't prefer any direction—the [100] and 

[111] directions would be equivalent. It turns out that this happens with a mixture 

of 70 percent nickel and 30 percent iron. In addition—possibly by luck or maybe 

because of some physical relationship between the anisotropy and the magneto¬ 

striction effects—it turns out that the magnetostriction of iron and nickel has the 

opposite sign. And in an alloy of the two metals, this property goes through zero 

at about 80 percent nickel. So somewhere between 70 and 80 percent nickel we get 

very “soft” magnetic materials—alloys that are very easy to magnetize. They are 

called the permalloys. Permalloys are useful for high-quality transformers (at low 

signal levels), but they would be no good at all for permanent magnets. Perm¬ 

alloys must be very carefully made and handled. The magnetic properties of a 

piece of permalloy are drastically changed if it is stressed beyond its elastic limit—it 

mustn’t be bent. Then, its permeability is reduced because of the dislocations, slip 

bands, and so on, which are produced by the mechanical deformations. The 

domain boundaries are no longer easy to move. The high permeability can, how¬ 

ever, be restored by annealing at high temperatures. 

It is often convenient to have some numbers to characterize the various 

magnetic materials. Two useful numbers are the intercepts of the hysteresis loop 

with the B- and H-axes, as indicated in Fig. 37-12. These intercepts are called the 

remanent magnetic jield Br and the coercive force H(. In Table 37-1 we list these 

numbers for a few magnetic materials. 

Table 37-1 

Properties of some ferromagnetic materials 

Bi Hr 
Residual Coercive 
magnetic force 

field (gauss) 
Material (gauss) 

Supermalloy 
Silicon steel 

(-5000) 0 004 

(transformer) 12,000 0 05 
Armco iron 400O 06 
Alnico V 13,000 550. 

(a) 

(C) 

(b) 

t 
i 
i 

(d) 

Fig. 37-13. Relative orientation of 

f electron spins in various materials: (a) 

I ferromagnetic, (b) antiferromagnetic, (c) 

| ferrite, (d) yttrium-iron alloy. (Broken 

arrows show direction of total angular 

momentum, including orbital motion.) 

37-5 Extraordinary magnetic materials 

We would now like to discuss some of the more exotic magnetic materials. 

There are many elements in the periodic table which have incomplete inner electron 

shells and hence have atomic magnetic moments For instance, right next to the 

ferromagnetic elements iron, nickel, and cobalt you will find chromium and manga¬ 

nese. Why aren’t they ferromagnetic9 The answer is that the X term in Eq. (37.1) 

has the opposite sign for these elements. In the chromium lattice, for example, the 

spins of the chromium atoms alternate atom by atom, as shown in Fig. 37-13(b). 

So chromium is “magnetic” from its own point of view, but it is not technically 

interesting because there are no external magnetic effects. Chromium, then, is an 

example of a material in which quantum mechanical effects make the spins alter¬ 

nate. Such a material is called antiferromagnetic. The alignment in antiferromag- 

netic materials is also temperature dependent. Below a critical temperature, all 

the spins are lined up m the alternating array, but when the material is heated above 

a certain temperature—which is again called the Curie temperature—the spins 

suddenly become random. There is, internally, a sudden transition. This transition 

can be seen in the specific heat curve. Also it shows up in some special “magnetic” 

effects. For instance, the existence of the alternating spins can be verified by scatter¬ 

ing neutrons from a crystal of chromium. Because a neutron itself has a spin 
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Fig. 37-14. Crystal structure of the 

mineral spinel (MgAI204); the Mg+2 ions 

occupy tetrahedral sites, each surrounded 

by four oxygen ions; the Al+3 ions occupy 

octahedral sites, each surrounded by six 

oxygen ions. [From Charles Kittel, Intro¬ 

duction to Solid State Physics, John Wiley 

and Sons, Inc , New York, 2nd ed., 1 956 ] 

(and a magnetic moment), it has a different amplitude to be scattered, depending on 

whether its spin is parallel or opposite to the spin of the scatterer. Thus, we get a 

different interference pattern when the spins in a crystal are alternating than we 

do when they have a random distribution 

There is another kind of substance in which quantum mechanical effects make 

the electron spins alternate, but which is nevertheless ferromagnetic—that is, the 

crystal has a permanent net magnetization. The idea behind such materials is 

shown in Fig. 37-14. The figure shows the crystal structure of spinel, a magnesium- 

aluminum oxide, which—as it is shown—is not magnetic. The oxide has two kinds 

of metal atoms: magnesium and aluminum. Now if we replace the magnesium 

and the aluminum by two magnetic elements like iron and zinc, or by zinc and 

manganese—in other words, if we put in magnetic atoms instead of the nonmagnetic 

ones—an interesting thing happens. Let’s call one kind of metal atom a and the 

other kind of metal atom b; then the following combination of forces nr^Sbe 

considered. There is an a-b interaction which tries to make the a atoms and the 

b atoms have opposite spins—because quantum mechanics always gives the oppo¬ 

site sign (except for the mysterious crystals of iron, nickel, and cobalt). Then, 

there is a direct a-a interaction which tries to make the a's opposite, and also a 

b-b interaction which lues to make the 5’s opposite. Now, of course we cannot 

have everything opposite everything else—a opposite 6, a opposite a, and b op¬ 

posite b Presumably because of the distances between the a's and the presence of 

the oxygen (although we really don’t know why), it turns out that the a-b inter¬ 

action is stronger than the a-a or the b-b. So the solution that nature uses in this 

case is to make all the c/’s parallel to each other, and all the 5’s parallel to each other, 

but the two systems opposite That gives the lowest energy because of the stronger 

a-b interaction. The result: all the c/’s are spinning up and all the 5’s are spinning 

down—or vice versa, of course. But if the magnetic moments of the c/-type atom 

and the 5-type atom are not equal, we can get the situation shown in Fig. 37-13(c), 

and there can be a net magnetization in the material. The material will then be 

ferromagnetic—although somewhat weak Such materials are called ferrites. 

They do not have as high a saturation magnetization as iron—for obvious reasons 

—so they are only useful for smaller fields. But they have a very important differ¬ 

ence—they are insulators; the ferrites are ferromagnetic insulators. In high- 

frequency fields, they will have very small eddy currents and so can be used, for 

example, in microwave systems. The microwave fields will be able to get inside 

such an insulating material, whereas they would be kept out by the eddy currents 

in a conductor like iron. 

There is another class of magnetic materials which has only recently been 

discovered—members of the family of the orthosilicates called garnets. They are 

again crystals in which the lattice contains two kinds of metallic atoms, and we 

have again a situation in which two kinds of atoms can be substituted almost at 

will. Among the many compounds of interest there is one which is completely 

ferromagnetic. It has yttrium and iron in the garnet structure, and the reason it is 

ferromagnetic is very curious. Here again quantum mechanics is making the 

neighboring spins opposite, so that there is a locked-in system of spins with the 

electron spins of the iron one way and the electron spins of the yttrium the opposite 

way But the yttrium atom is complicated. It is a rare-earth element and gets a 

large contribution to its magnetic moment from orbital motion of the electrons. 

For yttrium, the orbital motion contribution is opposite that of the spin and also 

is bigger. Thus, although quantum mechanics, working through the exclusion 

principle, makes the spins of the yttrium opposite those of the iron, it makes the 

total magnetic moment of the yttnum atom parallel to the iron because of the 

orbital effect—as sketched m Fig. 37-13(d) The compound is therefore a regular 

ferromagnet. 

Another interesting example of ferromagnetism occurs in some of the rare- 

earth elements. It has to do with a still more peculiar arrangement of the spins. 

The material is not ferromagnetic in the sense that the spins are all parallel, nor is 

it antiferromagnetic in the sense that every atom is opposite. In these crystals all 

of the spins m one layer are parallel and lie in the plane of the layer. In the next 
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layer all spins are again parallel to each other, but point in a somewhat different 

direction. In the following layer they are in still another direction, and so on. 

The result is that the local magnetization vector varies in the form of a spiral—the 

magnetic moments of the successive layers rotate as we proceed along a line 

perpendicular to the layers. It is interesting to try to analyze what happens when a 

field is applied to such a spiral—all the twistings and turnings that must go on in 

all those atomic magnets. (Some people like to amuse themselves with the theory 

of these things!) Not only are there cases of “flat” spirals, but there are also cases 

in which the directions the magnetic moments of successive layers map out a cone, 

so that it has a spiral component and also a uniform ferromagnetic component 

in one direction! 

The magnetic properties of materials, worked out on a more advanced level 

than we have been able to do here, have fascinated physicists of all kinds. In the 

first place, there are those practical people who love to work out ways of making 

things in a better way—they love to design better and more interesting magnetic 

materials. The discovery of things like ferrites, or their application, immediately 

delights people who like to see clever new ways of doing things. Besides this, 

there are those who find a fascination in the terrible complexity that nature can 

produce using a few basic laws. Starting with one and the same general idea, 

nature goes from the ferromagnetism of iron and its domains, to the antiferro¬ 

magnetism of chromium, to the magnetism of ferrites and garnets, to the spiral 

structure of the rare earth elements, and on, and on. It is fascinating to discover 

experimentally all the strange things that go on in these special substances. Then, 

to the theoretical physicists, ferromagnetism presents a number of very interesting, 

unsolved, and beautiful challenges. One challenge is to understand why it exists 

at all. Another is to predict the statistics of the interacting spins in an ideal lattice. 

Even neglecting any possible extraneous complications, this problem has, so far, 

defied full understanding. The reason that it is so interesting is that it is such an 

easily stated problem: Given a lot of electron spins in a regular lattice, interacting 

with such-and-such a law, what do they do? It is simply stated, but it has defied 

complete analysis for years. Although it has been analyzed rather carefully for 

temperatures not too close to the Curie point, the theory of the sudden transition 

the Curie point still needs to be completed. 

Finally, the whole subject of the system of spinning atomic magnets—in 

ferromagnetic, or in paramagnetic materials and in nuclear magnetism, has also 

been a fascinating thing to advanced students in physics. The system of spins can 

be pushed on and pulled on with external magnetic fields, so one can do many 

tricks with resonances, with relaxation effects, with spin-echoes, and with other 

effects. It serves as a prototype of many complicated thermodynamic systems. 

But in paramagnetic materials the situation is often fairly simple, and people 

have been delighted both to do experiments and to explain the phenomena theo¬ 

retically. 

We now close our study of electricity and magnetism. In the first chapter, 

we spoke of the great strides that have been made since the early Greek observation 

of the strange behaviors of amber and of lodestone. Yet in all our long and in¬ 

volved discussion we have never explained why ii is ihai when we rub a piece of 

amber we get a charge on it, nor have we explained why a lodestone is magnetized1 

You may say, “Oh, we just didn’t get the right sign.” No, it is worse than that 

Even if we did get the right sign, we would still have the question: Why is the piece 

of lodestone in the ground magnetized? There is the earth’s magnetic field, of 

course, but where does the earth's field come from ? Nobody really knows—there 

have only been some good guesses. So you see, this physics of ours is a lot of 

fakery—we start out with the phenomena of lodestone and amber, and we end up 

not understanding either of them very well. But we have learned a tremendous 

amount of very exciting and very practical information in the process! 
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3S 

Elantieitff 

38-1 Hooke’s law 

The subject of elasticity deals with the behavior of those substances which 

have the property of recovering their size and shape when the forces producing 

deformations are removed. We find this elastic property to some extent in all 

solid bodies. If we had the time to deal with the subject at length, we would want 

to look into many things: the behavior of materials, the general laws of elasticity, 

the general theory of elasticity, the atomic machinery that determine the elastic 

properties, and finally the limitations of elastic laws when the forces become so 

great that plastic flow and fracture occur. It would take more time than we have 

to cover all these subjects m detail, so we will have to leave out some things 

For example, we will not discuss plasticity or the limitations of the elastic laws. 

(We touched on these subjects briefly when we were talking about dislocations in 

metals.) Also, we will not be able to discuss the internal mechanisms of elasticity— 

so our treatment will not have the completeness we have tried to achieve in the 

earlier chapters. Our aim is mainly to give you an acquaintance with some of the 

ways of dealing with such practical problems as the bending of beams. 

When you push on a piece of material, it “gives”—the material is deformed. 

If the force is small enough, the relative displacements of the various points in the 

material are proportional to the force—we say the behavior is elastic. We will 

discuss only the elastic behavior. First, we will write down the fundamental laws 

of elasticity, and then we will apply them to a number of different situations 

Suppose we take a rectangular block of material of length /, width w, and 

height /?, as shown in Fig. 38-1. If we pull on the ends with a force F, then the 

length increases by an amount A/. We will suppose in all cases that the change in 

length is a small fraction of the original length. As a matter of fact, for materials 

like wood and steel, the material will break if the change in length is more than a 

few percent of the original length. For a large number of materials, experiments 

show that for sufficiently small extensions the force is proportional to the extension 

F oc A/. (38.1) 

This relation is known as Hooke's law. 

The lengthening A/ of the bar will also depend on its length. We can figure out 

how by the following argument. If we cement two identical blocks together, end 

to end, the same forces act on each block, each will stretch by A/. Thus, the stretch 

of a block of length 21 would be twice as big as a block of the same cross section, 

but of length l. In order to get a number more characteristic of the material, and 

less of any particular shape, we choose to deal with the ratio A/// of the extension 

to the original length. This ratio is proportional to the force but independent of /: 

38-1 Hooke’s law 

38-2 Uniform strains 

38-3 The torsion bar; shear waves 

38-4 The bent beam 

38-5 Buckling 

Review: Chapter 47, Vol. I, Sound; 

the Wave Equation. 

A* 

^ + At 

Fig. 38-1. The stretching of a bar 

under uniform Tension. 

F oc 
A/ 

/ 
(38.2) 

The force F will also depend on the area of the block. Suppose that we put 

two blocks side by side. Then for a given stretch A/ we would have the force F 

on each block, or twice as much on the combination of the two blocks. The force, 

for a given amount of stretch, must be proportional to the cross-sectional area A 

of the block. To obtain a law in which the coefficient of proportionality is inde¬ 

pendent of the dimensions of the body, we write Hooke’s law for a rectangular 
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block in the form 

P 

Fig. 38-2. A bar under uniform 

hydrostatic pressure. 

Fig 38-3. Hydrostatic pressure is 

the superposition of three longitudinal 

compressions. 

F = YA-- (38.3) 

The constant T is a property only of the nature of the material; it is known as 

Young's modulus. (Usually you will see Young’s modulus called E. But we’ve 

used E for electric fields, energy, and emf’s, so we prefer to use a different letter.) 

The force per unit area is called the stress, and the stretch per unit length—the 

fractional stretch—is called the strain. Equation (38.3) can therefore be rewritten 

in the following way: 

Fa = YX~> (38.4) 

Stress = (Young’s modulus) X (Strain). 

There is another part to Hooke’s law: When you stretch a block of material 

in one direction it contracts at right angles to the stretch. The contraction in 

width is proportional to the width w and also to A///. The sideways contraction is 

m the same proportion for both width and height, and is usually written 

.Avc Ah A/ .-q 

w - T = ~ *7’ (38‘5) 

where the constant a is another property of the material called Poisson's ratio. It is 

always positive in sign and is a number less than 1 /2. (It is “reasonable” that a 

should be generally positive, but it is not quite clear that it must be so.) 

The two constants Y and a specify completely the elastic properties of a ho¬ 

mogeneous' isotropic (that is, noncrystalline) material. In crystalline materials the 

stretches and contractions can be different in different directions, so there can be 

many more elastic constants. We will restrict our discussion temporarily to homo¬ 

geneous’ isotropic materials whose properties can be described by Y and a. As usual 

there are different ways of describing things—some people like to describe the 

elastic properties of materials by different constants. It always takes two, and 

they can be related to a and Y. 

The last general Jaw we need is the principle of superposition. Since the two 

Jaws (38 4) and (38.5) are linear in the forces and in the displacements, superposition 

will work. If you have one set of forces and get some displacements, and then 

you add a new set of forces and get some additional displacements, the resulting 

displacements will be the sum of the ones you would get with the two sets of forces 

acting independently. 

Now we have all the general principles—the superposition principle and Eqs. 

(38.4) and (38.5)—and that’s all there is to elasticity. But that is like saying that 

once you have Newton’s laws that’s all there is to mechanics. Or, given Maxwell’s 

equations, that’s all there is to electricity. It is, of course, true that with these 

principles you have a great deal, because with your present mathematical ability 

you could go a long way. We will, however, work out a few special applications. 

38-2 Uniform strains 

As our first example let’s find out what happens to a rectangular block under 

uniform hydrostatic pressure Let’s put a block under water in a pressure tank. 

Then there will be a force acting inward on every face of the block proportional 

to the area (see Fig. 38-2). Since the hydrostatic pressure is uniform, the stress 

(force per unit area) on each face of the block is the same. We will work out first 

the change in the length. The change m length of the block can be thought of as 

the sum of changes in length that would occur in the three independent problems 

which are sketched m Fig. 38-3. 
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Problem L If we push on the ends of the block with a pressure p, the com- 

pressional strain is p/ Y, and it is negative, 

A/i p 

l Y ' 

Problem 2. If we push on the two sides of the block with pressure p, the com- 

pressional strain is again p/ Y, but now we want the lengthwise strain. We can get 

that from the sideways strain multiplied by —a. The sideways strain is 

so 

Avv 

w 
P_ . 
Y ’ 

Problem 3. If we push on the top of the block, the compressional strain is 

once more p/Y, and the corresponding strain in the sideways direction is again 

—crp/ Y. We get 

A/3 

/ 

Combining the results of the three problems—that is, taking A/ = A/i + 

A/2 + Alz—we get 

7 = - f 0 - 2ff). (38.6) 

The problem is, of course, symmetrical in all three directions; it follows that 

(38.7) 
Aw Ah p ( . 
~ = 7 = - y a - 2a). 

The change in the volume under hydrostatic pressure is also of some interest. 

Since V — Iwh, we can write, for small displacements, 

AV _ A/ Aw Ah 

V 1 w h 

Using (38.6) and (38.7), we have 

AV 
v = -3 f 0 - 2a). (38 8) 

People like to call AV/V the volume strain and write 

P = 
F 

The volume stress p is proportional to the volume strain—Hooke’s law once more. 

The coefficient K is called the bulk modulus; it is related to the other constants by 

K = (38.9) 

Since K is of some practical interest, many handbooks give Y and K instead of Y 

and a. If you wanter you can always get it from Eq. (38.9). We can also see from 

Eq. (38.9) that Poisson’s ratio, <7, must be less than one-half. If it were not, the 

bulk modulus K would be negative, and the material would expand under increas¬ 

ing pressure. That would allow us to get mechanical energy out of any old block— 

it would mean that the block was in unstable equilibrium. If it started to expand 

it would continue by itself with a release of energy. 

Now we want to consider what happens when you put a “shear” strain on 

something. By shear strain we mean the kind of distortion shown in Fig. 38-4. As a 

preliminary to this, let us look at the strains in a cube of material subjected to the 

forces shown in Fig. 38-5. Again we can break it up into two problems: the vertical 

F F 

Fig. 38-5. A cube with compressing 

forces on top and bottom and equal 

stretching forces on two sides. 
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pushes, and the horizontal pulls. Calling A the area of the cube face, we have for 

the change in horizontal length 

A/ 1 F 1 F _ 1 + cr F 

1 ~ Y A + Y A~ Y A' 

The change in the vertical height is just the negative of this. 

138.10) 

area=^“a 

Fig. 38-6. The two pairs of shear forces in (a) produce the same stress as 

the compressing and stretching forces of (b). 

Now suppose we have the same cube and subject it to the shearing forces 

shown in Fig. 38-6(a). Note that all the forces have to be equal if there are to be 

no net torques and the cube is to be in equilibrium. (Similar forces must also 

exist in Fig. 38-4, since the block is in equilibrium. They are provided through 

the “glue” that holds the block to the table.) The cube is then said to be in a state 

of pure shear. But note that if we cut the cube by a plane at 45°—say along the 

diagonal A in the figure—the total force acting across the plane is normal to plane 

and is equal to \/2G. The area over which this force acts is \/2A; therefore, the 

tensile stress normal to this plane is simply G/A. Similarly, if we examine a plane 

at an angle of 45° the other way—the diagonal B in the figure—we see that there 

is a compressional stress normal to this plane of —G/A. From this, we see that 

the stress in a “pure shear” is equivalent to a combination of tension and com¬ 

pression stresses of equal strength and at right angles to each other, and at 45° to 

the original faces of the cube The internal stresses and strains are the same as 

we would find in the larger block of material with the forces shown in Fig. 38-6(b). 

But this is the problem we have already solved. The change in length of the diagonal 

is given by Eq. (38.10), 

AD _ 1 + a G 

D Y A 
(38.11) 

(One diagonal is shortened; the other is elongated.) 

It is often convenient to express a shear strain in terms of the angle by which 

the cube is twisted—the angle 6 in Fig. 38-7. From the geometry of the figure you 

can see that the horizontal shift 5 of the top edge is equal to \/2 AD. So 

6 _ \/2 AD _ ^ AD 

1 ~ l ~ D 
(38.12) 

The shear stress g is defined as the tangential force on one face divided by the 

area, g ~ G/A. Using Eq. (38.11) in (38.12), we get 

Fig, 38-7. The shear strain 6 is Or, writing this in the form “stress = constant times strain,” 
2 AD/D. 

g = fxd. (38.13) 

38-4 



The proportionality coefficient ju is called the shear modulus (or, sometimes, the 

coefficient of rigidity). It is given in terms of Y and a by 

Y 

~ 2(1 + Or) 
(38.14) 

Incidentally, the shear modulus must be positive—otherwise you could get work 

out of a self-shearing block. From Eq. (38.14), <r must be greater than —1. We 

know, then, that a must be between — 1 and +£; in practice, however, it is always 

greater than zero. 

As a last example of the type of situation where the stresses are uniform through 

the material, let’s consider the problem of a block which is stretched, while it is 

at the same time constrained so that no lateral contraction can take place. (Tech¬ 

nically, it’s a little easier to compress it while keeping the sides from bulging out— 

but it’s the same problem.) What happens? Well, there must be sideways forces 

which keep it from changing its thickness—forces we don’t know off-hand but 

will have to calculate. It’s the same kind of problem we have already done, only 

with a little different algebra. We imagine forces on all three sides, as shown in 

Fig. 38-8; we calculate the changes in dimensions, and we choose the transverse 

forces to make the width and height remain constant. Following the usual argu¬ 

ments, we get for the three strains: 

A4 

4 

A1h 

A h 

h 

1 Fx <T Fy <x Fz \ [Fx 

Y Ax Y Ay Y ~AZ Y [ax <38151 

(38.16) 

(38.17) 

Fy 

1_1_L 
o oF* O 

Fig. 38-8. 

contraction. 

Stretching without lateral 

Now since Alu and A4 are supposed to be zero, Eqs. (38.16) and (38.17) give 

two equations relating Fy and Fz to Fx. Solving them together, we get that 

Fy = Ft 

Av Az 

cr Fx 

— a Ax 

Substituting in (38.15), we have 

Alx 1 / 2<r2 \ Fx _ 1 (l - a - 2tr2\ Fx 

4 ~y V l ~<r) Ax V V 1-ff / Ax 

(38.18) 

(38.19) 

Often, you will see this turned around, and with the quadratic in a- factored out, it 

is then written 

F _ l-o- A/ 

A ~ (1 + <r)(l -2a) r 1‘ 
(38.20) 

When we constrain the sides, Young’s modulus gets multiplied by a complicated 

function of <r. As you can most easily see from Eq. (38.19), the factor in front of 

Y is always greater than 1. It is harder to stretch the block when the sides are 

held—which also means that a block is stronger when the sides are held than 

when they are not. 

38-3 The torsion bar; shear waves 

Let’s now turn our attention to an example which is more complicated because 

different parts of the material are stressed by different amounts. We consider a 

twisted rod such as you would find in a drive shaft of some machinery, or in a 

quartz fiber suspension used in a delicate instrument. As you probably know from 

experiments with the torsion pendulum, the torque on a twisted rod is proportional 

to the angle—the constant of proportionality obviously depending upon the 

length of the rod, on the radius of the rod, and on the properties of the material. 

The question is: In what way? We are now in a position to answer this question; 

it’s just a matter of working out some geometry. 
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Fig. 38-9. (a) A cylindrical bar in torsion, (b) A cylindrical shell in torsion, 

(c) Each small piece of the shell is in shear. 

Fig. 38-9(a) shows a cylindrical rod of length L, and radius a, with one end 

twisted by the angle <j> with respect to the other. If we want to relate the strains to 

what we already know, we can think of the rod as being made up of many cylindrical 

shells and work out separately what happens to each shell. We start by looking at 

a thin, short cylinder of radius r (less than a) and thickness Ar—as drawn in Fig. 

38-9(b). Now if we look at a piece of this cylinder that was originally a small 

square, we see that it has been distorted into a parallelogram. Each such element 

of the cylinder is in shear, and the shear angle 6 is 

r<t> 
L 

The shear stress g in the material is, therefore [from Eq. (38.13)], 

(38.21) 

The shear stress is the tangential force AF on the end of the square divided 

by the area Al Ar of the end [see Fig. 3 8—9(c)] 

AF 

8 ~ A/A/-' 

The force AF on the end of such a square contributes a torque Ar around the axis 

of the rod equal to 

Ar = r AF = rg Al Ar. (38.22) 

The total torque r is the sum of such torques around a complete circumference of 

the cylinder. So putting together enough pieces so that the A/’s add up to 27rr, 

we find that the total torque, for a hollow tube, is 

Or, using (38.21), 

rg(lTrr) Ar. 

T = 2lTfX 
r3 Ar<p 

L 

(38.23) 

(38.24) 

We get that the rotational stiffness, r/4>, of a hollow tube is proportional to the 

cube of the radius r and to the thickness Ar, and inversely proportional to the 

length L. 

We can now imagine a solid rod to be made up of a series of concentric tubes, 

each twisted by the same angle <f> (although the internal stresses are different for 

each tube). The total torque is the sum of the torques required to rotate each 

shell; for the solid rod 

r6 dr, 
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where the integral goes from r — 0 to r = a, the radius of the rod. Integrating, 

we have 

r = ** IT *■ (38'25) 

For a rod in torsion, the torque is proportional to the angle and is proportional to 

the fourth power of the diameter—a rod twice as thick is sixteen times as stiff 

for torsion. 

Before leaving the subject of torsion, let us apply what we have just learned 

to an interesting problem: torsional waves. If you take a long rod and suddenly 

twist one end, a wave of twist works it way along the rod, as sketched in Fig. 

38-10(a). That’s a little more exciting than a steady twist—let’s see whether we 

can work out what happens. 

Let z be the distance to some point down the rod. For a static torsion the 

torque is the same everywhere along the rod, and is proportional to 4>/Ls the total 

torsion angle over the total length. What matters to the material is the local 

torsional strain, which is, you will appreciate, d<j>/dz. When the torsion along the 

rod is not uniform, we should replace Eq. (38.25) by 

r(z) = ^ | • (38.26) 

Now let’s look at what happens to an element of length Az shown magnified in 

Fig. 38-10(b). There is a torque r(z) at end 1 of the little hunk of rod, and a differ¬ 

ent torque r(z + Az) at end 2. If Az is small enough, we can use a Taylor ex¬ 

pansion and write 

r(z + Az) = r(z) + Az. (38.27) 

The net torque At acting on the little piece of rod between z and z + Az is 

clearly the difference between t(z) and r(z + Az), or At = (dr/dz) Az. Differ¬ 

entiating Eq. (38.26), we get 

Ar = M ^ 0 Az. (38.28) 

The effect of this net torque is to give an angular acceleration to the little 

slice of the rod. The mass of the slice is 

AM ~ (7ra2 Az)p, 

where p is the density of the material. We worked out in Chapter 19, Vol. I, that 

the moment of inertia of a circular cylinder is mr2/2; calling the moment of inertia 

of our piece A/, we have 

Al = Z pa4 Az. (38.29) 

Newton’s law says the torque is equal to the moment of inertia times the angular 

acceleration, or 
2 

at = a/ U • (38-3°) 
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Pulling everything together, we get 

or 

7ra4 d2(j} 

2 dz2 
A z = 

ir 4 . d2<t> 

2pa AZ W 

d2(j> p d2<j> 

dz2 p dt2 
(38.31) 

You will recognize this as the one-dimensional wave equation. We have found 

that waves of torsion will propagate down the rod with the speed 

Qh ear (38.32) 

The denser the rod—for the same stiffness—the slower the waves; and the stiffer 

the rod, the quicker the waves work their way down. The speed does not depend 

upon the diameter of the rod. 

Torsional waves are a special example of shear waves. In general, shear waves 

are those in which the strains do not change the volume of any part of the material. 

In torsional waves, we have a particular distribution of such shear stresses—namely, 

distributed on a circle. But for any arrangement of shear stresses, waves will 

propagate with the same speed—the one given in Eq. (38.32). For example, the 

seismologists find such shear waves travelling in the interior of the earth. 

We can have another kind of a wave in the elastic world inside a solid material. 

If you push something, you can start “longitudinal” waves—also called^ compres- 

sional” waves. They are like the sound waves in air or in water—the displace¬ 

ments are in the same direction as the wave propagation. (At the surfaces of an 

elastic body there can also be other types of waves—called “Rayleigh waves” or 

“Love waves.” In them, the strains are neither purely longitudinal nor purely 

transverse. We will not have time to study them.) 

While we’re on the subject of waves, what is the velocity of the pure com- 

pressional waves m a large solid body like the earth9 We say “large” because the 

speed of sound in a thick body is different from what it is, for instance, along a 

thin rod. By a “thick” body we mean one in which the transverse dimensions are 

much larger than the wavelength of the sound. Then, when we push on the object, 

it cannot expand sideways—it can only compress in one dimension. Fortunately, 

we have already worked out the special case of the compression of a constrained 

elastic material. We have also worked out in Chapter 47, Vol. I, the speed of 

sound waves in a gas. Following the same arguments you can see that the speed 

of sound in a solid is equal to \/YrJpi where Yf is the “longitudinal modulus”— 

or pressure divided by the relative change in length—for the constrained case. 

This is just the ratio of Al/l to F/A we got in Eq- (38.20). So the speed of the 

longitudinal waves is given by 

c2 
'-'long 

r = 1 - <r Y 

P (1 + <7)(1 ~ 2(7) p 
(38.33) 

So long as cr is between zero and 1/2, the shear modulus p is less than Young’s 

modulus 7, and also Y' is greater than Y, so 

P < Y < r. 

This means that longitudinal waves travel faster than shear waves. One of the most 

precise ways of measuring the elastic constants of a substance is by measuring the 

density of the material and the speeds of the two kinds of waves. From this 

information one can get both Y and <7. It is, incidentally, by measuring the differ¬ 

ence in the arrival times of the two kinds of waves from an earthquake that a 

seismologist can estimate—even from the signals at only one station—the distance 

to the quake. 
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38-4 The bent beam 

We want now to look at another practical matter—the bending of a rod or a 

beam. What are the forces when we bend a bar of some arbitrary cross section? 

We will work it out thinking of a bar with a circular cross section, but our answer 

will be good for any shape. To save time, however, we will cut some corners, so 

our theory we will work out is only approximate. Our results will be correct only 

when the radius of the bend is much larger than the thickness of the beam. 

Suppose you grab the two ends of a straight bar and bend it into some curve 

like the one shown in Fig. 38-11. What goes on inside the bar? Well, if it is curved, 

that means that the material on the inside of the curve is compressed and the ma¬ 

terial on the outside is stretched. There is some surface which goes along more or 

less parallel to the axis of the bar that is neither stretched nor compressed. This is 

called the neutral surface. You would expect this surface to be near the “middle” 

of the cross section. It can be shown (but we won’t do it here) that, for small 

bending of simple beams, the neutral surface goes through the “center of gravity” 

of the cross section. This is true only for “pure” bending—if you are not stretching 

or compressing the beam at the same time. 

For pure bending, then, a thin transverse slice of the bar is distorted as shown 

in Fig. 38-12(a). The material below the neutral surface has a compressional 

strain which is proportional to the distance from the neutral surface; and the material 

above is stretched, also in proportion to its distance from the neutral surface. So 

the longitudinal stretch A/ is proportional to the height y. The constant of pro¬ 

portionality is just / over the radius of curvature of the bar—see Fig. 38-12: 

Al y 
l ~ R 

So the force per unit area—the stress—in a small strip at y is also proportional to 

the distance from the neutral surface 

AF = y_ 

A A R’ 
(38.34) 

Now let’s look at the forces that would produce such a strain. The forces 

acting on the little segment drawn in Fig. 38-12 are shown in the figure. If we 

think of any transverse cut, the forces acting across it are one way above the 

neutral surface and the other way below. They come in pairs to make a “bending 

moment” 3TZ—by which we mean the torque about the neutral line. We can com¬ 

pute the total moment by integrating the force times the distance from the neutral 

surface for one of the faces of the segment of Fig. 38-12: 

cross 
sect 

(38.35) 

From Eq. (38.34), dF = Yy/R dA, so 

3Tl = J y2dA. (b) 

Fig. 38-12. (a) Small segment of a 

The integral of y2 dA is what we can call the “moment of inertia” of the geometric bent beam, (b) Cross section of the beam, 

cross section about a horizontal axis through its “center of mass”;* we will call 

it /: 

3TC = ~ (38.36) 
K 

I (38.37) 

It is, of course, really the moment of inertia of a slice with unit mass per unit area. 
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Fig. 38-13. An “I” beam. 

Equation (38.36), then, gives us the relation between the bending moment 9TC 

and the curvature \/R of the beam. The “stiffness” of the beam is proportional 

to Y and to the moment of inertia /. In other words, if you want the stiffest 

possible beam with a given amount of, say, aluminum, you want to put as much 

of it as possible as far as you can from the neutral surface, to make a large moment 

of inertia. You can’t carry this to an extreme, however, because then the thing 

will not curve as we have supposed—it will buckle or twist and become weaker 

again. But now you see why structural beams are made in the form of an I or an 

H—as shown in Fig. 38-13. 

As an example of the use of our beam equation (38.36), let’s work out the 

deflection of a cantilevered beam with a concentrated force W acting at the free 

end, as sketched in Fig. 38-14. (By “cantilevered” we simply mean that the beam 

is supported in such a way that both the position and the slope are fixed at one 

end—it is stuck into a cement wall.) What is the shape of the beam? Let’s call 

the deflection at the distance * from the fixed end z; we want to know z(x). We’ll 

work it out only for small deflections. We will also assume that the beam is long 

in comparison with its cross section. Now, as you know from your mathematics 

courses, the curvature \/R of any curve z(x) is given by 

1 _ d2z/dx2 ,,0 

R [1 + (rfz/rfx)2]3'2' 1 

Since we are interested only in small slopes—this is usually the case in engineering 

structures—we neglect (dz/dx)2 in comparison with 1, and take 

l = d^z 
R dx2 

(38.39) 

Fig. 38-14. A cantilevered beam We also need to know the bending moment 9fll. It is a function of x because it is 
with a weight at one end. equal to the torque about the neutral axis of any cross section. Let’s neglect the 

weight of the beam and take only the downward force W at the end of the beam. 

(You can put in the beam weight yourself if you want.) Then the bending moment 

at x is 

<M(x) = W(L - x). 

because that is the torque about the point at x, exerted by the weight W—the 

torque which the beam must support of x. We get 

W(L 
Yl d2z 

or 

d2z 

= 17 3^ 

w 
IZ-TiV-* 

This one we can integrate without any tricks; we get 

W (Lx2 x3\ 

Yl V 2 6 / ’ 

(38.40) 

(38.41) 

using our assumptions that z(0) — 0 and that dz/dx is also zero at x = 0. That 

is the shape of the beam. The displacement of the end is 

W L3 
Z(L) = Tl T (38.42) 

the displacement of the end of a beam increases as the cube of the length. 

In deriving our approximate beam theory, we have assumed that the cross 

section of the beam did not change when the beam was bent. When the thickness 

of the beam is small compared to the radius of curvature, the cross section changes 

very little and our result is O.K. In general, however, this effect cannot be neglected, 

as you can easily demonstrate for yourselves by bending a soft-rubber eraser in 

your fingers. If the cross section was originally rectangular, you will find that when 
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it is bent it bulges at the bottom (see Fig. 38-15). This happens because when we 

compress the bottom, the material expands sideways—as described by Poisson’s 

ratio. Rubber is easy to bend or stretch, but it is somewhat like a liquid in that 

it’s hard to change the volume—as shows up nicely when you bend the eraser. For 

an incompressible material, Poisson’s ratio would be exactly 1/2—for rubber it is 

nearly that. 

38-5 Buckling 

We want now to use our beam theory to understand the theory of the “buck¬ 

ling” of beams, or columns, or rods. Consider the situation sketched in Fig. 

38-16 in which a rod that would normally be straight is held in its bent shape by 

two opposite forces that push on the ends of the rod. We would like to calculate 

the shape of the rod and the magnitude of the forces on the ends. 

Let the deflection of the rod from the straight line between the ends be X*), 

where x is the distance from one end. The bending moment at the point P 

in the figure is equal to the force F multiplied by the moment arm, which is the 

perpendicular distance y, 

m(x) = Fy. (38.43) 

Fig. 38-15 (a) A bent eraser; (b) 

cross section. 

Using the beam equation (38.36), we have 

Y1 

~R 

Fy. (38.44) 

For small deflections, we can take \/R 

curvature is downward). We get 

d2y 

dx2 

~d2y/dx2 (the minus sign because the 

(38.45) 

which is the differential equation of a sine wave. So for small deflections, the curve 

of such a bent beam is a sine curve. The “wavelength” X of the sine wave is twice 

the distance L between the ends, if the bending is small, this is just twice the 

unbent length of the rod. So the curve is 

y = AT sin ttx/L. 

Taking the second derivative, we get 

A 
dx'1 

T 
2 

I2 
y- 

Comparing this to Eq. (38.45), we see that the force is 

F = 7T 
YI 

l2 ' 
(38.46) 

For small bendings the force is independent of the bending displacement yf 

We have, then, the following thing physically If the force is less than the F 

given in Eq. (38.46), there will be no bending at all. But if it is slightly greater 

than this force, the material will suddenly bend a large amount—that is, for 

forces above the critical force it2YI/L2 (often called the “Euler force”) the beam 

will “buckle.” If the loading on the second floor of a building exceeds the Euler 

force for the supporting columns, the building will collapse. Another place where 

the buckling force is most important is in space rockets. On one hand, the rocket 

must be able to hold its own weight on the launching pad and endure the stresses 

during acceleration, on the other hand, it is important to keep the weight of the 

structure to a minimum, so that the payload and fuel capacity may be made as 

large as possible. 

Actually a beam will not necessarily collapse completely when the force 

exceeds the Euler force. When the displacements get large, the force is larger than 
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Fig. 38-17. The coordinates S and 6 

for the curve of a bent beam. 

Fig. 38-18. Curves of a bent rod 

what we have found because of the terms in \/R in Eq. (38.38) that we have ne¬ 

glected. To find the forces for a large bending of the beam, we have to go back to 

the exact equation, Eq. (38.44), which we had before we used the approximate 

relation between R and y. Equation (38.44) has a rather simple geometrical prop¬ 

erty.* It’s a little complicated to work out, but rather interesting. Instead of 

describing the curve in terms of x and y, we can use two new variables: S', the 

distance along the curve, and 6 the slope of the tangent to the curve. See Fig. 38-17. 

The curvature is the rate of change of angle with distance: 

]_ = de 

R dS' 

We can, therefore write the exact equation (38.44) as 

dl _ 
dS YI y‘ 

If we take the derivative of this equation with respect to S and replace dy/dS by 

sin 0, we get 

'"»• <3M7> 
[If 0 is small, we get back Eq. (38.45). Everything is O.K.] 

Now it may or may not delight you to know that Eq. (38.47) is exactly the 

same one you get for the large amplitude oscillations of a pendulum—with F/ YI 

replaced by another constant, of course. We learned way back in Chapter 9, Vol. I, 

how to find the solution of such an equation by a numerical calculation, f The 

answers you get are some fascinating curves—known as the curves of the “Elastica.” 

Figure 38-18 shows three curves for different values of F/YI. 

* The same equation appears, incidentally, in other physical situations—for example, 
the meniscus at the surface of a liquid contained between parallel planes—and the same 
geometrical solution can be used. 

t The solutions can also be expressed in terms of some functions, called the "Jacobian 
elliptic functions,” that someone else has already computed. 
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39 

Elastic Materials 

39-1 The tensor of strain 

In the last chapter we talked about the distortions of particular elastic objects. 

In this chapter we want to look at what can happen in general inside an elastic 

material. We would like to be able to describe the conditions of stress and strain 

inside some big glob of jello which is twisted and squashed in some complicated 

way. To do this, we need to be able to describe the local strain at every point m an 

elastic body; we can do it by giving a set of six numbers—which are the components 

of a symmetric tensor—for each point. Earlier, we spoke of the stress tensor 

(Chapter 31); now we need the tensor of strain. 

Imagine that we start with the material initially unstrained and watch the 

motion of a small speck of “dirt” embedded in the material when the strain is 

applied. A speck that was at the point P located at r = (x, y, z) moves to a new 

position Pr at r' = (x'9 y:, z') as shown in Fig. 39-1. We will call u the vector 

displacements from P to / *. Then 

ii = r' - r. (39.1) 

39-1 The tensor of strain 

39-2 The tensor of elasticity 

39-3 The motions in an elastic body 

39-4 Nonelastic behavior 

39-5 Calculating the elastic constants 

Reference: C. Kittel, Introduction to 

Solid State Physics, John 

Wiley and Sons, Inc., New 

York, 2nd ed., 1956. 

The displacement u depends, of course, on which point P we start with, so u is a 

vector function of r—or, if you prefer, of (x, y, z). 

Let's look first at a simple situation in which the strain is constant over the 

material—so we have what is called a homogeneous strain. Suppose, for instance, 

that we have a block of material and we stretch it uniformly. We just change its 

dimensions uniformly in one direction—say, in the ^-direction, as shown in Fig. 

39-2. The motion ux of a speck at x is proportional to x. In fact, 

Fig. 39-1. A speck of the material at the point P in an unstrained block Fig. 39-2. A homogeneous stretch-type strain, 

moves to Pf where the block is strained. 
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The proportionality constant exx is, of course, the same thing as A///. (You will 

see shortly why we use a double subscript.) 

If the strain is not uniform, the relation between ux and x will vary from place 

to place m the material. For the general situation, we define the exx by a kind of 

local A///, namely by 

exx = dujdx. (39.2) 

This number—which is now a function of x, y, and z—describes the amount of 

stretching in the x-direction throughout the hunk of jello. There may, of course, 

also be stretching in the y- and z-directions. We describe them by the numbers 

eyy dy ’ 

= duz 

dz 
(39.3) 

We need to be able to describe also the shear-type strains. Suppose we imagine 

a little cube marked out in the initially undisturbed jello. When the jello is pushed 

out of shape, this cube may get changed into a parallelogram, as sketched in Fig. 

39-3.* In this kind of a strain, the x-motion of each particle is proportional to 

its ^-coordinate, 

a, = I y. (39.4) 

And there is also a y-motion proportional to x, 

uy = | x. (39.5) 

So we can describe such a shear-type strain by writing 

with 

Ux — ^xyy> Uy C^X 

?xy €yx 2 * 

Now you might think that when the strains are not homogeneous we could 

describe the generalized shear strains by defining the quantities exy and e„*by 

GXy Cyx 

dUy 

dx 
(39.6) 

BEFORE 

Fig. 39-3. A homogeneous shear strain. 

But there is one difficulty. Suppose that the displacements ux and uy were given by 

e e 
Ux — 2 y> Uy — 2 

* We choose for the moment to split the total shear angle 6 into two equal parts and 
make the strain symmetric with respect to x and y. 
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Fig. 39—4. A homogeneous rotation—there is no strain. 

They are like Eqs. (39.4) and (39.5) except that the sign of uy is reversed. With 

these displacements a little cube in the jello simply gets shifted by the angle 0/2, 

as shown in Fig. 39-4. There is no strain at all—just a rotation in space. There is 

no distortion of the material; the relative positions of all the atoms are not changed 

at all. We must somehow make our definitions so that pure rotations are not 

included in our definitions of a shear strain. The key point is that if Buy/dx and 

Bux/By are equal and opposite, there is no strain; so we can fix things up by defining 

r exy = eyx = i(duy/dx + dux/dy). 

For a pure rotation they are both zero, but for a pure shear we get that exy is 

equal to eyXi as we would like. 

In the most general distortion—which may include stretching or compression 

as well as shear—we define the state of strain by giving the nine numbers 

Bux 

_ BUy 

eyy ~ ’ 
(39.7) 

exy = i(duy/dx + BujBy), 

These are the terms of a tensor of strain. Because it is a symmetric tensor—our 

definitions make exy = eyx, always—there are really only six different numbers. 

You remember (see Chapter 31) that the general characteristic of a tensor is that 

the terms transform like the products of the components of two vectors. (If 

A and B are vectors, Ct3 — AZB3 is a tensor.) Each term of et3 is a product 

(or the sum of such products) of the components of the vector u = (ux> uy, uz), and 

of the operator V = (d/dx, B/By, B/Bz), which we know transforms like a vector. 

Let’s let xu x2, and x3 stand for x, y, and z and u\, u2, and u3 stand for ux, uy, 

and u2; then we can write the general term eZ3 of the strain tensor as 

et3 = i(du3/dxt + duz/dx3\ (39.8) 

where i and j can be 1,2, or 3. 

When we have a homogeneous strain—which may include both stretching 

and shear—all of the e%3 are constants, and we can write 

ttx ~ ~f" &xyy "f~ ex2z, (39.9) 

(We choose our origin of x, y, z at the point where u is zero.) In this case, the strain 

tensor e%3 gives the relationship between two vectors: the coordinate vector r — 

(x, y, z) and the displacement vector u — (uXi uy> uz). 
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When the strains are not homogeneous, any piece of the jello may also get 

somewhat twisted—there will be a local rotation. If the distortions are all small, 

we would have 

Aux = ^2 (etJ — o)lJ)AxJi (39.10) 

3 

where 03ZJ is an antisymmetric tensor, 

&ij = ^{du3/dxt — dufdxff (39.11) 

which describes the rotation. We will, however, not worry any more about rota¬ 

tions, but only about the strains described by the symmetric tensor ei3. 

39-2 The tensor of elasticity 

Now that we have described the strains, we want to relate them to the internal 

forces—the stresses in the material. For each small piece of the material, we 

assume Hooke’s law holds and write that the stresses are proportional to the 

strains. In Chapter 31 we defined the stress tensor Sl3 as the /th component of the 

force across a unit area perpendicular to the y'-axis. Hooke’s law says that each 

component of Sl3 is linearly related to each of the components of strain. Since 

S and e each have nine components, there are 9X9 = 81 possible coefficients 

which describe the elastic properties of the material. They are constants if the 

material itself is homogeneous. We write these coefficients as CX3ki and define 

them by the equation 

St3 = ^2 Cirt&ki, (39.12) 
k,i 

where i,j, k, / all take on the values 1, 2, or 3. Since the coefficients Ctjki relate 

one tensor to another, they also form a tensor—a tensor of the fourth rank. We 

can call it the tensor of elasticity. 

Suppose that all the C’s are known and that you put a complicated force on 

an object of some peculiar shape. There will be all kinds of distortion, and the 

thing will settle down with some twisted shape. What are the displacements? 

You can see that it is a complicated problem. If you knew the strains, you could 

find the stresses from Eq. (39.12)—or vice versa. But the stresses and strains you 

end up with at any point depend on what happens in all the rest of the material. 

The easiest way to get at the problem is by thinking of the energy. When there 

is a force F proportional to a displacement x, say F = kx, the work required for 

any displacement x is kx2/l. In a similar way, the work w that goes into each 

unit volume of a distorted material turns out to be 

w = i ^2 CwkiCi)eki- (39.13) 
ijkl 

The total work W done in distorting the body is the integral of w over its volume: 

w = / i C„kietJekidVoL (39.14) 
Ijkl 

This is then the potential energy stored in the internal stresses of the material. 

Now when a body is in equilibrium, this internal energy must be at a minimum. 

So the problem of finding the strains in a body can be solved by finding the set of 

displacements u throughout the body which will make W a minimum. In Chapter 

19 we gave some of the general ideas of the calculus of variations that are used in 

tackling minimization problems like this. We cannot go into the problem in any 

more detail here. 

What we are mainly interested in now is what we can say about the general 

properties of the tensor of elasticity. First, it is clear that there are not really 81 

different terms in Ct3ki. Since both St3 and el3 are symmetric tensors, each with 

only six different terms, there can be at most 36 different terms in Cl3ki. There are, 

however, usually many fewer than this. 
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Let’s look at the special case of a cubic crystal. In it, the energy density w 

starts out like this: 

w 2 {flxXXX^XX + Cxxxy*?, 
+ CXXVxC. 

I + CXXXZ^XX^XZ 

xxyx^xx'-'xy “1“ CxxyyCxx^yy 

Cyyyyeyy ■ Ctc . . . etc 

etc .. . 

}, (39.15) 

with 81 terms in all! Now a cubic crystal has certain symmetries. In particular, if 

the crystal is rotated 90°, it has the same physical properties. It has the same 

stiffness for stretching in the ^-direction as for stretching in the x-direction. There¬ 

fore, if we change our definition of the coordinate directions x and y in Eq. (39.15), 

the energy wouldn’t change. It must be that for a cubic crystal 

Cyyyy Cz (39,16) 

Next we can show that the terms like Cxxxy must be zero. A cubic crystal has 

the property that it is symmetric under a reflection about any plane perpendicular 

to one of the axes. If we replace y by —y, nothing is different. But changing y to 

—y changes exy to — exy—a displacement which was toward ~\-y is now toward —y. 

If the energy is not to change, Cxxxy must go into — CXXXy when we make a reflec¬ 

tion, But a reflected crystal is the same as before, so Cxxxy must be the same as 

— Cxxxy. This can happen only if both are zero. 

You say, “But the same argument will make Cyyyy = 0!” No, because there 

are four y9 s. The sign changes once for each y, and four minuses make a plus. If 

there are two or four y9s, the term does not have to be zero. It is zero only when 

there is one, or three. So, for a cubic crystal, any nonzero term of C will have only 

an even number of identical subscripts. (The arguments we have made for y ob¬ 

viously hold also for x and z.) We might then have terms like Cxxyy, Cxyxy, Cxyyx, 
and so on. We have already shown, however, that if we change all x’s to y9s and 

vice versa (or all z’s and x’s, and so on) we must get—for a cubic crystal—the same 

number. This means that there are only three different nonzero possibilities: 

CXXXX ( == Cyyyy 

Cxxyy ( “ Cyyxx 
CXyXy ( ~ Cyxyx 

Czzzz)> 

~ CxXzzf CtC.), 
= CXzxz, etc.). 

(39.17) 

For a cubic crystal, then, the energy density will look like this: 

w = ^{Cxxxxfexx + £yy ~b &zz) 

T-2CXXyy(exxeyy T- £yyCzz H- *?zz^xx) (39.18) 

ACxyxy(exy + (?yz + ^ zx)} • 

For an isotropic—that is, noncrystalline—material, the symmetry is still 

higher. The C’s must be the same for any choice of the coordinate system. Then 

it turns out that there is another relation among the C’s, namely, that 

CXxxx Cxxyy T" C: xyxy (39.19) 

We can see that this is so by the following general argument. The stress tensor 

Sl3 has to be related to el3 in a way that doesn’t depend at all on the coordinate 

directions—it must be related only by scalar quantities. “That’s easy,” you say. 

“The only way to obtain StJ from el3 is by multiplication by a scalar constant. 

It’s just Hooke’s law. It must be that Sl3 = (const)c^.” But that’s not quite 

right; there could also be the unit tensor di3 multiplied by some scalar, linearly 

related to etJ. The only invariant you can make that is linear in the c’s is 

(It transforms like x2 + y2 + z2, which is a scalar.) So the most general form 

for the equation relating Sl3 to el3—for isotropic materials—is 

Sl3 = 2\xel3 + X eu^ h%3. (39.20) 

(The first constant is usually written as two times fi; then the coefficient (i is equal 
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Fig. 39-5. A small volume element V 
bounded by the surface A. 

to the shear modulus we defined in the last chapter.) The constants p and \ are 

called the Lame elastic constants. Comparing Eq. (39.20) with Eq. (39.12), you 

see that 

Cxxyy — X, y 

CXyxy ~ 2M, > (39.21) 

Cxxxx = 2/a T" Y 

So we have proved that Eq. (39.19) is indeed true. You also see that the elastic 

properties of an isotropic material are completely given by two constants, as we 

said in the last chapter. 

The C’s can be put in terms of any two of the elastic constants we have used 

earlier—for instance, in terms of Young’s modulus Y and Poisson’s ratio cr. We 

will leave it for you to show that 

Cxx“ = (i + | _ 2o.) ’ 

Cxxyy = Y+~ff (l - 2a) ’ ^9'22) 

c - ■ y - 
^xvxy (1 + (T) 

39-3 The motions in an elastic body 

We have pointed out that for an elastic body in equilibrium the internal 

stresses adjust themselves to make the energy a minimum. Now we take a look at 

what happens when the internal forces are not in equilibrium. Let’s say we have 

a small piece of the material inside some surface A. See Fig. 39-5. If the piece is in 

equilibrium, the total force F acting on it must be zero. We can think of this force 

as being made up of two parts. There could be one part due to “external” forces 

like gravity, which act from a distance on the matter in the piece to produce a 

force per unit volume /ext. The total external force Fext is the integral of /oxt over 

the volume of the piece: 

(39.23) 

In equilibrium, this force would be balanced by the total force FUit from the neigh¬ 

boring material which acts across the surface A. When the piece is not in equili¬ 

brium—if it is moving—the sum of the internal and external forces is equal to the 

mass times the acceleration. We would have 

Fext + Fint = f prdV, (39.24) 

where p is the density of the material, and r is its acceleration. We can now com¬ 

bine Eqs. (39.23) and (39.24), writing 

Flit = / (-/ext + p'r)dv. 
J V 

(39.25) 

We will simplify our writing by defining 

/ = -/ext + P'r. (39.26) 

Then Eq. (39.25) is written 
r 

Fmt = / fdV. 
J V 

(39.27) 

What we have called Fini is related to the stresses in the material. The stress 

tensor StJ was defined (Chapter 31) so that the ^-component of the force dF across 

a surface element da, whose unit normal is «, is given by 

dFx = (Sxxnx + Sxyny + Sxznz) da. (39.28) 

39-6 



The x-component of Fllit on our little piece is then the integral of dFx over the 

surface. Substituting this into the x-component of Eq. (39.27), we get 

/ (Sxxnx + Sx^ty + SX2nz) da = fx dV. (39.29) 
J A J v 

We have a surface integral related to a volume integral—and that reminds 

us of something we learned in electricity. Note that if you ignore the first subscript 

x on each of the S’s in the left-hand side of Eq. (39.29), it looks just like the integral 

of a quantity “S” ■ n—that is, the normal component of a vector—over the 

surface. It would be the flux of “S” out of the volume. And this could be written, 

using Gauss law, as the volume integral of the divergence of It is, in fact, 

true whether the x-subscript is there or not—it is just a mathematical theorem 

you get by integrating by parts. In other words, we can change Eq. (39.29) into 

(39.30) 

Now we can leave off the volume integrals and write the differential equation for 

the general component of / as 

/•-'L’-k- 
3 J 

This tells us how the force per unit volume is related to the stress tensor Sl3. 

The theory of the motions inside a solid works this way. If we start out know¬ 

ing the initial displacements—given by, say, u—we can work out the strains etJ. 

From the strains we can get the stresses from Eq. (39.12). From the stresses we 

can get the force density/in Eq. (39.31). Knowing/, we can get, from Eq. (39.26), 

the acceleration r of the material, which tells us how the displacements will be 

changing. Putting everything together, we get the horrible equation of motion 

for an elastic solid. We will just write down the results that come out for an 

isotropic material. If you use (39.20) for S%0i and write the el3 as ^dut/dx3 + 

dUj/dXi, you end up with the vector equation 

/= (X + M)V(V«) + mV2«. (39.32) 

You can, in fact, see that the equation relating/and u must have this form. 

The force must depend on the second derivatives of the displacements u What 

second derivatives of u are there that are vectors? One is V(V • «); that’s a true 

vector. The only other one is V2«. So the most general form is 

/ = a V(V • «) + Z> V2«, 

which is just (39.32) with a different definition of the constants. You may be 

wondering why we don’t have a third term using V X V X «, which is also a 

vector. But remember that V X V X u is the same thing as V2u — V(V * «), 

so it is a linear combination of the two terms we have. Adding it would add nothing 

new. We have proved once more that isotropic material has only two elastic 

constants. 

For the equation of motion of the material, we can set (39.32) equal to 

p d2u/dt2—neglecting for now any body forces like gravity—and get 

p § = (x + v(v 'u) + M v2“- (3933) 

It looks something like the wave equation we had in electromagnetism, except 

that there is an additional complicating term. For materials whose elastic proper¬ 

ties are everywhere the same we can see what the general solutions look like in the 

following way. You will remember that any vector field can be written as the sum 

of two vectors: one whose divergence is zero, and the other whose curl is zero. In 
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Fig. 39-6. Measuring internal 

stresses with polarized light. 

Fig, 39-7. A stressed plastic model 

as seen between crossed polaroids. 

[From F. W. Sears, Optics, Addison- 

Wesley Publishing Co., Reading, Mass., 

1 949.] 

other words, we can put 
u — ux + «2, (39.34) 

where 
V * ux = 0, V X «2 = 0. (39.35) 

Substituting ux -f- u2 for u in (39.33), we get 

p d2/dt2\u\ + u2] = (X + p) V(V • u2) + pV2(«i + u2). (39.36) 

We can eliminate ux by taking the divergence of this equation, 

p d2/dt2(V ■ u2) = (X + m) V2(V ' »2) + ' V2w2. 

Since the operators (V2) and (V-) can be interchanged, we can factor out the di¬ 
vergence to get 

V * {p d2u2/dt2 - (X 4- 2fx) V2w2} - 0. (39.37) 

Since V X w2 is zero by definition, the curl of the bracket { } is also zero; so the 
bracket itself is identically zero, and 

p d2u2/dt2 = (X + 2p) V2«2. y (39.38) 

This is the vector wave equation for waves which move at the speed 
C2 = V(X + 2p)/p. Since the curl of u2 is zero, there is no shearing associated 
with this wave; this wave is just the compressional—sound-type—wave we discussed 
m the last chapter, and the velocity is just what we found for CionK- 

In a similar way—by taking the curl of Eq. (39.36)—we can show that ux 

satisfies the equation 
pd2ux/dt2 = pV2ux. (39.39) 

This is again a vector wave equation for waves with the speed C2 = Vp7p. 
Since V • ux is zero, ux produces no changes in density; the vector ux corresponds 
to the transverse, or shear-type, wave we saw in the last chapter, and C2 = CshGar- 

If we wished to know the static stresses in an isotropic material, we could, 
in principle, find them by solving Eq. (39.32) with/equal to zero—or equal to the 
static body forces from gravity such as pg—under certain conditions which are 
related to the forces acting on the surfaces of our large block of material. This is 
somewhat more difficult to do ihan the corresponding problems in electromagne¬ 
tism. It is more difficult, first, because the equations are a little more difficult to 
handle, and second, because the shape of the elastic bodies we are likely to be 
interested in are usually much more complicated. In electromagnetism, we are 
often interested in solving Maxwell’s equations around relatively simple geometric 
shapes such as cylinders, spheres, and so on, since these are convenient shapes 
for electrical devices. In elasticity, the objects we would like to analyze may have 
quite complicated shapes—like a crane hook, or an automobile crankshaft, or the 
rotor of a gas turbine. Such problems can sometimes be worked out approxi¬ 
mately by numerical methods, using the minimum energy principle we mentioned 
earlier. Another way is to use a model of the object and measure the internal strains 
experimentally, using polarized light. 

It works this way: When a transparent isotropic material—for example, a 
clear plastic like lucite—is put under stress, it becomes birefnngent. If you put 
polarized light through it, the plane of polarization will be rotated by an amount 
related to the stress: by measuring the rotation, you can measure the stress. Figure 
39-6 shows how such a setup might look. Figure 39-7 is a photograph of a 
photoelastic model of a complicated shape under stress. 

39-4 Nonelastic behavior 

In all that has been said so far, we have assumed that stress is proportional 
to strain; in general, that is not true. Figure 39-8 shows a typical stress-strain 
curve for a ductile material. For small strains, the stress is proportional to the 
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strain. Eventually, however, after a certain point, the relationship between stress 
and strain begins to deviate from a straight line. For many materials—the ones 
we would call “brittle” —the object breaks for strains only a little above the point 
where the curve starts to bend over. In general, there are other complications in 
the stress-strain relationship. For example, if you strain an object, the stresses 
may be high at first, but decrease slowly with time. Also if you go to high stresses, 
but still not to the “breaking” point, when you lower the strain the stress will 
return along a different curve. There is a small hysteresis effect (like the one we 
saw between B and H in magnetic materials). 

The stress at which a material will break varies widely from one material to 
another. Some materials will break when the maximum tensile stress reaches a 
certain value. Other materials will fail when the maximum shear stress reaches a 
certain value. Chalk is an example of a material which is much weaker in tension 
than in shear. If you pull on the ends of a piece of blackboard chalk, the chalk will 
break perpendicular to the direction of the applied stress, as shown in Fig. 39-9(a). 
It breaks perpendicular to the applied force because it is only a bunch of particles 
packed together which are easily pulled apart. The material is, however, much 
harder to shear, because the particles get in each other’s way. Now you will re¬ 
member that when we had a rod in torsion there was a shear all around it. Also, we 
showed that a shear was equivalent to a combination of a tension and compression 
at 45°. For these reasons, if you twist a piece of blackboard chalk, it will break 
along a complicated surface which starts out at 45° to the axis. A photograph of a 
piece of chalk broken in this way is shown in Fig. 39-9(b). The chalk breaks where 
the material is in maximum tension. 

Fig. 39-9. (a) A piece of chalk broken by pulling on the ends; (b) a piece broken by twisting. 

Fig. 39-8. A typical stress-strain re 

lotion for large strains. 

Other materials behave in strange and complicated ways. The more compli¬ 
cated the materials are, the more interesting their behavior. If we take a sheet of 
“Saran-Wrap” and crumple it up into a ball and throw it on the table, it slowly 
unfolds itself and returns toward its original flat form. At first sight, we might 
be tempted to think that it is inertia which prevents it from returning to its original 
form. However, a simple calculation shows that the inertia is several orders of 

, magnitude too small to account for. the effect. There appear to be two important 
competing effects: “something” inside the material “remembers” the shape it had 
initially and “tries” to get back there, but something else “prefers” the new shape 
and “resists” the return to the old shape. 

We will not attempt to describe the mechanism at play in the Saran plastic, 
but you can get an idea of how such an effect might come about from the following 
model. Suppose you imagine a material made of long, flexible, but strong, fibers 
mixed together with some hollow cells filled with a viscous liquid. Imagine also 
that there are narrow pathways from one cell to the next so the liquid can leak 
slowly from a cell to its neighbor. When we crumple a sheet of this stuff, we 
distort the long fibers, squeezing the liquid out of the cells in one place and forcing 
it into other cells which are being stretched. When we let go, the long fibers try to 
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return to their original shape. But to do this, they have to force the liquid back to 
its original location—which will happen relatively slowly because of the viscosity. 
The forces we apply in crumpling the sheet are much larger than the forces exerted 
by the fibers. We can crumple the sheet quickly, but it will return more slowly. 
It is undoubtedly a combination of large stiff molecules and smaller, movable ones 
in the Saran-Wrap that is responsible for its behavior. This idea also fits with the 
fact that the material returns more quickly to its original shape when it’s warmed 
up than when it’s cold—the heat increases the mobility (decreases the viscosity) 
of the smaller molecules. 

Although we have been discussing how Hooke’s law breaks down, the re¬ 
markable thing is perhaps not that Hooke’s law breaks down f<g: large strains but 
that it should be so generally true. We can get some idea of wt/y this might be by 
looking at the strain energy in a material. To say that the stress is proportional to 
the strain is the same thing as saying that the strain energy varies as the square of 
the strain. Suppose we have a rod and we twist it through a small angle 0. If 
Hooke’s law holds, the strain energy should be proportional to the square of 0. 
Suppose we were to assume that the energy were some arbitrary function of the 
angle; we could write it as a Taylor expansion about zero angle 

U(6) = *7(0) + U'(0)0 + iU"(0)82 + iU/ff(d)63 . . . (39.40) 

The torque r is the derivative of U with respect to angle; we would have 

t(e) = uf(0) + u"(0)e + iu'"(0)e2 + • • • (39.41) 

Now if we measure our angles from the equilibrium position, the first term is zero. 
So the first remaining term is proportional to 9; and for small enough angles, it 
will dominate the term in 02. [Actually, materials are sufficiently symmetric 
internally so that r(0) = —r(—0); the term in 02 will be zero, and the departures 
from linearity would come only from the 03 term. There is, however, no reason 
why this should be true for compressions and tensions.] The thing we have not 
explained is why materials usually break soon after the higher-order terms become 
significant. 

39-5 Calculating the elastic constants 

As our last topic on elasticity we would like to show how one could try to 
calculate the elastic constants of a material, starting with some knowledge of the 
properties of the atoms which make up the material. We will take only the simple 
case of an ionic cubic crystal like sodium chloride. When a crystal is strained, its 
volume or its shape is changed. Such changes result in an increase in the potential 
energy of the crystal. To calculate the change in strain energy, we have to know 
where each atom goes. In complicated crystals, the atoms will rearrange themselves 
in the lattice in very complicated ways to make the total energy as small as possible. 
This makes the computation of the strain energy rather difficult. In the case of a 
simple cubic crystal, however, it is easy to see what will happen. The distortions 
inside the crystal will be geometrically similar to the distortions of the outside 
boundaries of the crystal. 

We can calculate the elastic constants for a cubic crystal in the following way. 
First, we assume some force law between each pair of atoms in the crystal. Then, we 
calculate the change in the internal energy of the crystal when it is distorted from 
its equilibrium shape. This gives us a relation between the energy and the strains 
which is quadratic in all the strains. Comparing the energy obtained this way with 
Eq. (39.13), we can identify the coefficient of each term with the elastic constants 

Ct3ki- 

For our example we will assume a simple force law: that the force between 
neighboring atoms is a central force, by which we mean that it acts along the line 
between the two atoms. We would expect the forces in ionic crystals to be like 
this, since they are just primarily Coulomb forces. (The forces of covalent bonds 
are usually more complicated, since they can exert a sideways push on a nearby 
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atom; we will leave out this complication.) We are also going to include only the 
forces between each atom and its nearest and next-nearest neighbors. In other 
words, we will make an approximation which neglects all forces beyond the next- 
nearest neighbor. The forces we will include are shown for the xy-plane in Fig. 
39-10(a). The corresponding forces in the yz- and zx-planes also have to be 
included. 

Since we are only interested in the elastic coefficients which apply to small 
strains, and therefore only want the terms in the energy which vary quadraticaliy 
with the strains, we can imagine that the force between each atom pair varies 
linearly with the displacements. We can then imagine that each pair of atoms is 
joined by a linear spring, as drawn in Fig. 39-10(b). All of the springs between a 
sodium atom and a chlorine atom should have the same spring constant, say k\. 

The springs between two sodiums and between two chlorines could have different 
constants, but we will make our discussion simpler by taking them equal; we call 
them k2. (We could come back later and make them different after we have seen 
how the calculations go.) 

Now we assume that the crystal is distorted by a homogeneous strain de¬ 
scribed by the strain tensor In general, it will have components involving 

y, and z\ but we will consider now only a strain with the three components 
exx, Zxy, and eyy so that it will be easy to visualize. If we pick one atom as our 
origin, the displacement of every other atom is given by equations like Eq. (39.9): 

ux — &xxX T" &xyy> 
Uy = exyx + evvy. 

(39.42) 

Suppose we call the atom at x = y — 0 “atom 1” and number its neighbors in 
the xy-plane as shown in Fig. 39-11. Calling the lattice constant a, we get the x 
and y displacements ux and uy listed in Table 39-1. 

Now we can calculate the energy stored in the springs, which is k2/2 times 
the square of the extension for each spring. For example, the energy in the hori¬ 
zontal spring between atom 1 and atom 2 is 

kx {exxaf 

2 
(39.43) 

Note that to first order, the .y-displacement of atom 2 does not change the length of 
the spring between atom 1 and atom 2. To get the strain energy in a diagonal spring, 
such as that to atom 3, however, we need to calculate the change in length due to 
both the horizontal and vertical displacements. For small displacements from the 

(a) \ \ / \ 1 / \ 1 / 
Na —- 

Fig. 39-10. (a) The interatomic 

forces we are taking into account; (b) a 

model in which the atoms are connected 

by springs. 

f 

) i 

Fig. 39-11. The displacements of the 

nearest and next-nearest neighbors of 

atom 1 (exaggerated). 
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Table 39-1 

Atom 
Location 

x,y Ux Uy k 

1 0, a 0 0 — 

2 a, 0 exxa eyxa ki 

3 a, a (Cxx 4 exy)u (eyx 4 eyy)a k2 

4 0, a CxyU eyya ki 

5 — a, a (~exx 4 exy)a ( €yx 4 cyy)a k2 

6 — a, 0 cyxct ki 

7 — a, —a ~{exx 4 exy)a (eyx 4 €yy)a k2 

8 0, —a —exya ZyyQ ki 

9 a, —a (exx exy)a ieyx Byy)u k2 

original cube, we can write the change in the distance to atom 3 as the sum of the 
components of ux and uy in the diagonal direction, namely as 

— (ux + uy). 
V2 

Using the values of ux and uy from the table, we get the energy 

k2 (Ux + uyy _ k2a 

V2 
(exx 4 eyx 4 exy 4 evy) . (39.44) 

For the total energy for all the springs in the xy-plane, we need the sum of 
eight terms like (39.43) and (39.44), Calling this energy UQi we get 

Uo ^ \k\€xx 4 2 i^xx 4 €yx Qxy 4“ €yy) 

+ k\eyy + -y (exx — eyx — exy 4- eyy)2 

4~ k\exx H—~ (e XX 4" €yx 4” &xy 4~ €yy) 

4“ k\Byy + (&xx &yx &xy 4“ &yy) 1 (39.45) 

To get the total energy of all the springs connected to atom 1, we must make one 
addition to the energy in Eq. (39.45). Even though we have only jc- and y-com- 
ponents of the strain, there are still some energies associated with the next-nearest 
neighbors off the .xy-plane. This additional energy is 

k2(e£xa2 + e$ya2). (39.46) 

The elastic constants are related to the energy density w by Eq. (39.13). The 
energy we have calculated is the energy associated with one atom, or rather, it is 
twice the energy per atom, since one-half of the energy of each spring should be 
assigned to each of the two atoms it joins. Since there are 1/a3 atoms per unit 
volume, w and U0 are related by 

To find the elastic constants CX]ku we need only to expand out the squares in 
Eq. (39.45)—adding the terms of (39.46)—and compare the coefficients of eaeui 

with the corresponding coefficient in Eq. (39.13). For example, collecting the terms 
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in e%x and in e$y, we get the factor 

so 
Ik i + 2 k2)a2. 

= C. yyyy 
k\ lk2 

a 

For the remaining terms, there is a slight complication. Since we cannot distin¬ 
guish the product of two terms like exxeyy from eyyexx, the coefficient of such terms 
m our energy is equal to the sum of two terms in Eq. (39.13). The coefficient of 
exxeyy in Eq. (39.45) is 2k2, so we have that 

(Cxxyy + Cyyxx) = ~~~~ ' 

But because of the symmetry in our crystal, Cxxyy = Cyyxxs so we have that 

■yyxx 
hi. 
a 

By a similar process, we can also get 

Cxyxy — Cyxyx 
hi. 
a 

Finally, you will notice that any term which involves either x or y only once is 
zero—as we concluded earlier from symmetry arguments. Summarizing our results: 

c — ^xxxx c — 
^yyyy 

k 1 + 2/^2 
s 

a 

C — ^xyxy c = '-'yxyx 
hi 
a 

5 

c = y-’xzyy 
c — 
^yyxx C — C — xyyx ^yxxy 

Cxxxy ~ Cxyyy = etc . = 0. 

(39.47) 

We have been able to relate the bulk elastic constants to the atomic properties 
which appear in the constants kx and k2. In our particular case, Cxyxy = Cxxyy. 
It turns out—as you can perhaps see from the way the calculations went—that 
these terms are always equal for a cubic crystal, no matter how many force terms 
are taken into account, provided only that the forces act along the line joining 
each pair of atoms—that is, so long as the forces between atoms are like springs 
and don’t have a sideways part such as you might get from a cantilevered beam 
(and you do get in covalent bonds). 

We can check this conclusion with the experimental measurements of the 
elastic constants. In Table 39-2 we give the observed values of the three elastic 
coefficients for several cubic crystals.* You will notice that Cxxyy and Cxyxy are, 
in general, not equal. The reason is that in metals like sodium and potassium the 
interatomic forces are not along the line joining the atoms, as we assumed in our 
model. Diamond does not obey the law either, because the forces in diamond are 
covalent forces and have some directional properties—the bonds would prefer to 
be at the tetrahedral angle. The ionic crystals like lithium fluoride, sodium chloride, 
and so on, do have nearly all the physical properties assumed in our model, and 
the table shows that the constants Czxyy and Cxyxy are almost equal. It is not clear 
why silver chloride should not satisfy the condition that Cxxyy = Cxyxy. 

Table 39-2* 

Elastic Moduli of Cubic Crystals 
in 1012 dyneS’Cm2 

Cxxxx Cxxyy Cxyxy 

Na 0.055 0.042 0.049 

K 0.046 0.037 0 026 

Fe 2.37 1.41 1.16 

Diamond 10.76 1.25 5.76 

A! 1 08 0 62 0.28 

LiF 1.19 0.54 0.53 

NaCI 0.486 0.127 0.128 

KC1 0.40 0.062 0.062 

NaBr 0,33 0.13 0.13 

KI 0.27 0.043 0.042 

AgCl 0.60 0 36 0.062 

* From C. Kittel, Introduction to Solid 

State Physics, John Wiley and Sons, Inc , 
New York, 2nd. ed , 1956, p. 93. 

* In the literature you will often find that a different notation is used. For instance, 
people usually write Cxxxx — Cn, Cxxyy = C12, and Cxyxy = C44. 

39-13 



40 

The Flow of Dry Water 

40-1 Hydrostatics 

The subject of the flow of fluids, and particularly of water, fascinates every¬ 
body. We can all remember, as children, playing in the bathtub or in mud puddles 
with the strange stuff. As we get older, we watch streams, waterfalls, and whirl¬ 
pools, and we are fascinated by this substance which seems almost alive relative 
to solids. The behavior of fluids is in many ways very unexpected and interesting— 
it is the subject of this chapter and the next. The efforts of a child trying to dam a 
small stream flowing in the street and his surprise at the strange way the water 
works its way out has its analog in our attempts over the years to understand the 
flow of fluids. We have tried to dam the water up—in our understanding—by 
getting the laws and the equations that describe the flow. We will describe these 
attempts in this chapter. In the next chapter, we will describe the unique way in 
which water has broken through the dam and escaped our attempts to under¬ 
stand it. 

We suppose that the elementary properties of water are already known to 
you. The main property that distinguishes a fluid from a solid is that a fluid cannot 
maintain a shear stress for any length of time. If a shear is applied to a fluid, it 
will move under the shear. Thicker liquids like honey move less easily than fluids 
like air or water. The measure of the ease with which a fluid yields is its viscosity. 
In this chapter we will consider only situations in which the viscous effects can be 
ignored. The effects of viscosity will be taken up in the next chapter. 

We begin by considering hydrostatics, the theory of liquids at rest. When 
liquids are at rest, there are no shear forces (even for viscous liquids). The law 
of hydrostatics, therefore, is that the stresses are always normal to any surface 
inside the fluid. The normal force per unit area is called the pressure. From the 
fact that there is no shear in a static fluid it follows that the pressure stress is the 
same in all directions (Fig. 40-1). We will let you entertain yourself by proving 
that if there is no shear on any plane in a fluid, the pressure must be the same m 
any direction. 

The pressure in a fluid may vary from place to place. For example, in a static 
fluid at the earth’s surface the pressure will vary with height because of the weight 
of the fluid. If the density p of the fluid is considered constant, and if the pressure 
at some arbitrary zero level is called /?0 (Fig- 40-2), then the pressure at a height 
h above this point is p = p0 — pgh, where g is the gravitational force per unit 
mass. The combination 

P + Pgh 

is, therefore, a constant in the static fluid. This relation is familiar to you, but we 
will now derive a more general result of which it is a special case. 

If we take a small cube of water, what is the net force on it from the pressure? 
Since the pressure at any place is the same in all directions, there can be a net 
force per unit volume only because the pressure vanes from one point to another. 
Suppose that the pressure is varying in the x-direction—and we take the coordinate 
directions parallel to the cube edges. The pressure on the face at x gives the force 
p Ay Az (Fig. 40-3), and the pressure on the face at x + Ax gives the force 
— [p + (dp/dx) Ax] Ay Az, so that the resultant force is — (dp/dx) Ax Ay Az. If 
we take the remaining pairs of faces of the cube, we easily see that the pressure 
force per unit volume is — Vp. If there are other forces in addition—such as gravity 
—then the pressure must balance them to give equilibrium. 

40-1 Hydrostatics 

40-2 The equations of motion 

40-3 Steady flow—Bernoulli’s 
theorem 

40-4 Circulation 

40-5 Vortex lines 

Fig. 40-1. In a static fluid the force 

per uni+ area across any surface is 

normal to the surface and is the same for 

all orientations of the surface. 

SURFACE 

Fig. 40-2. The pressure in a static 

liquid. 
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Fig, 40-3, The net pressure force on 

a cube is — Vp per unit volume. 

Let’s take a circumstance in which such an additional force can be described 
by a potential energy, as would be true in the case of gravitation; we will let <t> 

stand for the potential energy per unit mass. (For gravity, for instance, $ is just gz.) 

The force per unit mass is given in terms of the potential by — V<f>, and if p is the 
density of the fluid, the force per unit volume is — p V0. For equilibrium this 
force per unit volume added to the pressure force per unit volume must give zero: 

-Vp-pV0 = 0. (40.1) 

Equation (40.1) is the equation of hydrostatics. In general, it has no solution. 

If the density varies in space in an arbitrary way, there is no way for the forces to 
be in balance, and the fluid cannot be in static equilibrium. Convection currents 
will start up. We can see this from the equation since the pressure term is a pure 
gradient, whereas for variable p the other term is not. Only when p is a constant 
is the potential term a pure gradient. Then the equation has a solution 

p + p<£ = const. 

Another possibility which allows hydrostatic equilibrium is for p to be a function 
only of p. However, we will leave the subject of hydrostatics because it is not 
nearly so interesting as the situation when fluids are in motion. 

40-2 The equations of motion 

First, we will discuss fluid motions in a purely abstract, theoretical way and 
then consider special examples. To describe the motion of a fluid, we must give 
its properties at every point. For example, at different places, the water (let us 
call the fluid “water”) is moving with different velocities. To specify the character 
of the flow, therefore, we must give the three components of velocity at every point 
and for any time. If we can find the equations that determine the velocity, then we 
would know how the liquid moves at all times. The velocity, however, is not the 
only property that the fluid has which varies from point to point. We have just 
discussed the variation of the pressure from point to point. And there are still 
other variables. There may also be a variation of density from point to point. 
In addition, the fluid may be a conductor and carry an electric current whose 
density j varies from point to point in magnitude and direction. There may be a 
temperature which varies from point to point, or a magnetic field, and so on. So 
the number of fields needed to describe the complete situation will depend on how 
complicated the problem is. There are interesting phenomena when currents and 
magnetism play a dominant part m determining the behavior of the fluid; the 
subject is called magnetohydrodynamics, and great attention is being paid to it at 
the present time. However, we are not going to consider these more complicated 
situations because there are already interesting phenomena at a lower level of 
complexity, and even the more elementary level will be complicated enough. 

We will take the situation where there is no magnetic field and no conductivity, 
and we will not worry about the temperature because we will suppose that the 
density and pressure determine in a unique manner the temperature at any point. 
As a matter of fact, we will reduce the complexity of our work by making the as¬ 
sumption that the density is a constant—we imagine that the fluid is essentially 
incompressible. Putting it another way, we are supposing that the variations of 
pressure are so small that the changes in density produced thereby are negligible. 
If that is not the case, we would encounter phenomena additional to the ones we 
will be discussing here—for example, the propagation of sound or of shock waves. 
We have already discussed the propagation of sound and shocks to some extent, 
so we will now isolate our consideration of hydrodynamics from these other 
phenomena by making the approximation that the density p is a constant. It is 
easy to determine when the approximation of constant p is a good one We can 
say that if the velocities of flow are much less than the speed of a sound wave in the 
fluid, we do not have to worry about variations in density. The escape that water 
makes in our attempts to understand it is not related to the approximation of 
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constant density. The complications that do permit the escape will be discussed 
in the next chapter. 

In the general theory of fluids one must begin with an equation of state for 
the fluid which connects the pressure to the density. In our approximation this 
equation of state is simply 

p = const. 

This then is the first relation for our variables. The next relation expresses the 
conservation of matter—if matter flows away from a point, there must be a decrease 
in the amount left behind. If the fluid velocity is v, then the mass which flows in a 
unit time across a unit area of surface is the component of pv normal to the sur¬ 
face. We have had a similar relation in electricity. We also know from electricity 
that the divergence of such a quantity gives the rate of decrease of the density per 
unit time. In the same way, the equation 

V • (pv) = - g (40.2) 

expresses the conservation of mass for a fluid; it is the hydrodynamic equation of 

continuity. In our approximation, which is the incompressible fluid approximation, 
p is a constant, and the equation of continuity is simply 

V ■ v = 0. (40.3) 

The fluid velocity v—like the magnetic field B—has zero divergence. (The hydro- 
dynamic equations are often closely analogous to the electrodynamic equations; 
that’s why we studied electrodynamics first. Some people argue the other way; 
they think that one should study hydrodynamics first so that it will be easier to 
understand electricity afterwards. But electrodynamics is really much easier than 
hydrodynamics.) 

We will get our next equation from Newton’s law which tells us how the 
velocity changes because of the forces, The mass of an element of volume of the 
fluid times its acceleration must be equal to the force on the element. Taking an 
element of unit volume, and writing the force per unit volume as /, we have 

p X (acceleration) = f. 

We will write the force density as the sum of three terms. We have already con¬ 
sidered the pressure force per unit volume, ~Vp. Then there are the “external” 
forces which act at a distance—like gravity or electricity. When they are con¬ 
servative forces with a potential per unit mass, 0, they give a force density —pV0. 
(If the external forces are not conservative, we would have to write /exT for the 
external force per unit volume.) Then there is another “internal” force per unit 
volume, which is due to the fact that in a flowing fluid there can also be a shearing 
stress. This is called the viscous force, which we will write/Vlfec. Our equation of 
motion is 

p X (acceleration) — —Vp ~ pV$ + /V1SC. (40.4) 

For this chapter we are going to suppose that the liquid is “thin” in the sense 
that the viscosity is unimportant, so we will omit/V1SC.. When we drop the viscosity 
term, we will be making an approximation which describes some ideal stuff rather 
than real water. John von Neumann was well aware of the tremendous difference 
between what happens when you don’t have the viscous terms and when you do, 
and he was also aware that, during most of the development of hydrodynamics 
until about 1900, almost the main interest was in solving beautiful mathematical 

problems with this approximation which had almost nothing to do with real fluids. 
He characterized the theorist who made such analyses as a man who studied 
“dry water ” Such analyses leave out an essential property of the fluid It is 
because we are leaving this property out of our calculations in this chapter that 
we have given it the title “The Flow of Dry Water.” We are postponing a dis¬ 
cussion of real water to the next chapter. 
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Fig. 40-4. 

fluid particle. 

If we leave out /V1SC, we have m Eq, (40.4) everything we need except an ex¬ 
pression for the acceleration. You might think that the formula for the accelera¬ 
tion of a fluid particle would be very simple, for it seems obvious that if v is the 
velocity of a fluid particle at some place in the fluid, the acceleration would just 
be dv/dt. It is not—and for a rather subtle reason. The derivative dv/dt, is the 
rate at which the velocity t>(x, y, z, t) changes at a fixed point m space. What we 
need is how fast the velocity changes for a particular piece of fluid. Imagine that 
we mark one of the drops of water with a colored speck so we can watch it. In 
a small interval of time At, this drop will move to a different location. If the drop 
is moving along some path as sketched in Fig. 40-4, it might in At move from 
P1 to P2. In fact, it will move in the x-direction by an amount vx At, in the y-direc- 
tion by the amount vy At, and in the z-direction by the amount vz At. We see 
that, if v(x, y, z, t) is the velocity of the fluid particle which is at (x, y, z) at the 
time t, then the velocity of the same particle at the time t + At is given by v(x + 
Ax, y + Ay, z + Az, t -f- A/)—with 

Ax = vx At, Ay = vy At, and Az = vz At. 

From the definition of the partial derivatives—recall Eq. (2.7)—we have, to first 
order, that 

v(x + vx At, y + vy At, z + vz At, t + At) 

= v(x, y, z, 0 + ^ vx At + ^ Vy At + dX vz At + ^ At. 

The acceleration Av/At is 

dv , dv . dv . dv 
Vx Vy — + Vz — T- ^r- 

dx dy dz dt 

We can write this symbolically-treating V as a vector—as 

dv 
(v • V)v + 

dt 
(40.5) 

Note that there can be an acceleration even though dv/dt — 0 so that velocity 
at a given point is not changing. As an example, water flowing in a circle at a 
constant speed is accelerating even though the velocity at a given point is not 
changing. The reason is, of course, that the velocity of a particular piece of water 
which is initially at one point on the circle has a different direction a moment 
later; there is a centripetal acceleration. 

The rest of our theory is just mathematical—finding solutions of the equation 
of motion we get by putting the acceleration (40,5) into Eq, (40.4). We get 

fj + (V ■ V)v = - 'SL _ . (40.6) 

where viscosity has been omitted. We can rearrange this equation by using the 
following identity from vector analysis: 

(v ■ V)u = (V X v) X v + %V(v • v). 
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If we now define a new vector field £2, as the curl of v. 

a = V X v, (40.7) 

the vector identity can be written as 

(v ■ V)u - Si X v + £ Vv2, 

*nd our equation of motion (40.6) becomes 

^ + QXi; + i Vi'2 = -*P- Vtp. (40.8) 
at l p 

You can verify that Eqs. (40.6) and (40.8) are equivalent by checking that the 
components of the two sides of the equation are equal—and making use of (40.7). 

The vector field £2 is called the vorticity. If the vorticity is zero everywhere, we 
say that the flow is irroiational. We have already defined in Section 3-5 a thing 
called the circulation of a vector field. The circulation around any closed loop in a 
fluid is the line integral of the fluid velocity, at a given instant of time, around that 
loop: 

(Circulation) = v • ds. 

The circulation per unit area for an infinitesimal loop is then—using Stokes’ 
theorem—equal to V X v. So the vorticity £2 is the circulation around a unit 
area (perpendicular to the direction of £2). It also follows that if you put a little 
piece of dirt—not an infinitesimal point—at any place in the liquid it will rotate 
with the angular velocity £2/2. Try to see if you can prove that. You can also 
check it out that for a bucket of water on a turntable, £2 is equal to twice the local 
angular velocity of the water. 

If we are interested only in the velocity field, we can eliminate the pressure 
from our equations. Taking the curl of both sides of Eq. (40.8), remembering that 
p is a constant and that the curl of any gradient is zero, and using Eq. (40.3), we get 

^+TX(flXv) = 0. (40.9) 
Ot 

This equation, together with the equations 

£2 = V X v (40.10) 
and 

V ' v — 0, (40.11) 

describes completely the velocity field u. Mathematically speaking, if we know £2 
at some time, then we know the curl of the velocity vector, and we also know 
that its divergence is zero, so given the physical situation we have all we need to 
determine v everywhere. (It is just like the situation in magnetism where we had 
V • B = 0 and V X B — j/e0c2.) Thus, a given £2 determines v just as a given 
j determines B. Then, knowing v, Eq. (40.9) tells us the rate of change of £2 from 
which we can get the new £2 for the next instant. Using Eq. (40.10), again we find 
the new v, and so on. You see how these equations contain all the machinery for 
calculating the flow. Note, however, that this procedure gives the velocity field 
only; we have lost all information about the pressure. 

We point out one special consequence of our equation. If £2 = 0 everywhere 
at any time /, <9£2/d/ also vanishes, so that £2 is still zero everywhere at t + At. 

We have a solution to the equation; the flow is permanently irrotational. If a 
flow was started with zero rotation, it would always have zero rotation. The 
equations to be solved then are 

V •!/ = 0, V X = 0. 

They are just like the equations for the electrostatic or magnetostatic fields in 
free space. We will come back to them and look at some special problems later. 
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40-3 Steady flow—Bernoulli’s theorem 

Now we want to return to the equation of motion, Eq. (40.8), but limit our¬ 
selves to situations in which the flow is “steady.” By steady flow we mean that 
at any one place m the fluid the velocity never changes. The fluid at any point is 
always replaced by new fluid moving in exactly the same way. The velocity picture 
always looks the same—v is a static vector field. In the same way that we drew 
“field lines” in magnetostatics, we can now draw lines which are always tangent 
to the fluid velocity as shown in Fig. 40-5. These lines are called streamlines. 

For steady flow, they are evidently the actual paths of fluid particles. (In unsteady 
flow the streamline pattern changes in time, and the streamline pattern at any 
instant does not represent the path of a fluid panicle.) 

A steady flow does not mean that nothing is happening—atoms in the fluid 
are moving and changing their velocities. It only means that dv/dt = 0. Then 
if we take the dot product of v into the equation of motion, the term v • (12 X v) 

drops out, and we are left with 

v • V 
o 2 

= 0. (40.12) 

Fig. 40-5. Streamlines in steady 

fluid flow. 

This equation says that for a small displacement in the direction of the fluid velocity 

the quantity inside the brackets doesn’t change. Now in steady flow all displace¬ 
ments are along streamlines, so Eq (40.12) tells us that for all the points along a 

streamline, we can write 

P , 1 2 
- + o o o l 

+ = const (streamline). (40.13) 

This is Bernoulli's theorem. The constant may in general be different for different 
streamlines; all we know is that the left-hand side of Eq. (40.13) is the same all 
along a given streamline. Incidentally, we may notice that for steady irrotational 

motion for which = 0, the equation of motion (40.8) gives us the relation 

so that 
v if + \1,2 + ^ = °’ 

— + ^ v2 + 0 = const (everywhere). (40.14) 

It’s just like Eq. (40.13) except that now the constant has the same value throughout 

the fluid. 

The theorem of Bernoulli is in fact nothing more than a statement of the con¬ 
servation of energy. A conservation theorem such as this gives us a lot of informa¬ 
tion about a flow without our actually having to solve the detailed equations. 
Bernoulli’s theorem is so important and so simple that we would like to show you 
how it can be derived in a way that is different from the formal calculations we 
have just used. Imagine a bundle of adjacent streamlines which form a stream 
tube as sketched in Fig. 40-6. Since the walls of the tube consist of streamlines, 
no fluid flows out through the wall. Let's call the area at one end of the stream 
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tube Au the fluid velocity there vx, the density of the fluid px, and the potential 

energy <f>i. At the other end of the tube, we have the corresponding quantities 

A 2, v2, p2, and </>2. Now after a short interval of time At, the fluid at A1 has moved 

a distance At, and the fluid at A2 has moved a distance v2 At [Fig. 40-6(b)]. 

The conservation of mass requires that the mass which enters through Ax must be 

equal to the mass which leaves through A2. These masses at these two ends must 

be the same: 

AM = piAiV\At — p2A2v2At. 

So we have the equality 

PiA1v1 = p2A2v2. (40.15) 

This equation tel [3 us that the velocity varies inversely with the area of the stream 

tube if p is constant. 

Now we calculate the work done by the fluid pressure. The work done on the 

fluid entering at A1 is pxA At, and the work given up at A2 is p2A 2v2 At The 

net work on the fluid between Ax and A2 is, therefore, 

PiA1v1 At — p2A2v2 At, 

which must equal the increase in the energy of a mass AM of fluid in going from 

A! to A 2- In other words, 

p\AtV\ At — p2A2v2At = AM(E2 — Ei), (40.16) 

where Ex is the energy per unit mass of fluid at Ax, and E2 is the energy per unit 

mass at A 2. The energy per unit mass of the fluid can be written as 

E = *T 0 -f~ U, 

where h>2 is the kinetic energy per unit mass, <f> is the potential energy per unit 

mass, and Uis an additional term which represents the internal energy per unit mass 

of fluid. The internal energy might correspond, for example, to the thermal 

energy in a compressible fluid, or to chemical energy. All these quantities can 

vary from point to point. Using this form for the energies in (40.16), we have 

PiAxvxAt p2A2r2At 1 2 , , , T! 
AM-AM~ = 2 '2 + + U* ~ — 4>i Ui 

But we have seen that AM — pAv At, so we get 

~ + 9 v\ + 0i + Ui = — + * v2 + 02 + U2, (40.17) 
pi 2 p2 2 

which is the Bernoulli result with an additional term for the internal energy. If 

the fluid is incompressible, the internal energy term is the same on both sides, and 

we get again that Eq. (40.14) holds along any streamline. 

We consider now some simple examples m which the Bernoulli integral gives 

us a description of the flow. Suppose we have water flowing out of a hole near 

the bottom of a tank, as drawn in Fig. 40-7. We take a situation in which the 

flow speed vmit at the hole is much larger than the flow speed near the top of the 

tank; in other words, we imagine that the diameter of the tank is so large that 

we can neglect the drop in the liquid level. (We could make a more accurate 

calculation if we wished.) At the top of the tank the pressure isp0, the atmospheric 

pressure, and the pressure at the sides of the jet is also p0. Now we write our 

Bernoulli equation for a streamline, such as the one shown in the figure. At the 

top of the tank, we take v equal to zero and we also take the gravity potential 

0 to be zero. At the speed vouU and </> = —gh, so that 

P o = Pa + §P^ut - pgh, 
or 

1 'o u t ~ V2gh- (40.18) 
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Fig. 40-8. Wirh a re-entrant dis¬ 

charge tube, the stream contracts to one- 

half the area of the opening. 

Fig. 40-9. The pressure is lowest 

where the velocity is highest. 

This velocity is just what we would get for something which falls the distance h. 

It is not too surprising, since the water at the exit gains kinetic energy at the ex¬ 
pense of the potential energy of the water at the top. Do not get the idea, however, 
that you can figure out the rate that the fluid flows out of the tank by multiplying 
this velocity by the area of the hole. The fluid velocities as the jet leaves the hole 
are not all parallel to each other but have components inward toward the center 
of the stream—the jet is converging. After the jet has gone a little way, the con¬ 
traction stops and the velocities do become parallel. So the total flow is the velocity 
times the area at that point. In fact, if we have a discharge opening which is just a 
round hole with a sharp edge, the jet contracts to 62 percent of the area of the hole. 
The reduced effective area of the discharge varies for different shapes of discharge 
tubes, and experimental contractions are available as tables of efflux coefficients. 

If the discharge tube is re-entrant, as shown in Fig. 40-8, it is possible to prove 
in a most beautiful way that the efflux coefficient is exactly 50 percent. We will 
give just a hint of how the proof goes. We have used the conservation of energy 
to get the velocity, Eq. (40.18), but there is also momentum conservation to 
consider. Since there is an outflow of momentum in the discharge jet, there must 
be a force applied over the cross section of the discharge tube Where does the 
force come from? The force must come from the pressure on the walls. As long 
as the efflux hole is small and away from the walls, the fluid velocity near the walls 
of the tank will be very small. Therefore, the pressure on every face is almost 
exactly the same as the static pressure in a fluid at rest—from Eq. (30.14). Then 
the static pressure at any point on the side of the tank must be matched by an 
equal pressure at the point on the opposite wall, except at the points on the wall 
opposite the charge tube. If we calculate the momentum poured out through the 
jet by this pressure, we can show that the efflux coefficient is 1/2. We cannot use 
this method for a discharge hole like that shown in Fi-*. 40-7, however, because 
the velocity increase along the wall right near the discharge area gives a pressure 
fall which we are not able to calculate. 

Let’s look at another example—a horizontal pipe with changing cross 
section, as shown in Fig. 40-9, with water flowing in one end and out the 
other. The conservation of energy, namely Bernoulli’s formula, says that the pres¬ 
sure is lower in the constricted area where the velocity is higher. We can easily 
demonstrate this effect by measuring the pressure at different cross sections with 
small vertical columns of water attached to the flow tube through holes small 
enough so that they do not disturb the flow. The pressure is then measured by 
the height of water in these vertical columns. The pressure is found to be less at 
the constriction than it is on either side. If the area beyond the constriction comes 
back to the same value it had before the constriction, the pressure rises again. 
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Bernoulli’s formula would predict that the pressure downstream of the con¬ 
striction should be the same as it was upstream, but actually it is noticeably less. 
The reason that our prediction is wrong is that we have neglected the frictional, 
viscous forces which cause a pressure drop along the tube. Despite this pressure 
drop the pressure is definitely lower at the constriction (because of the increased 
speed) than it is on either side of it—as predicted by Bernoulli. The speed v2 

must certainly exceed to get the same amount of water through the narrower 
tube. So the water accelerates in going from the wide to the narrow part. The 
force that gives this acceleration comes from the drop in pressure. 

We can check our results with another simple demonstration Suppose we 
have on a tank a discharge tube which throws a jet of water upward as shown in 
Fig 40-10. If the efilux velocity were exactly \/2gh, the discharge water should 
rise to a level even with the surface of the water in the tank. Experimentally, it 
falls somewhat short. Our prediction is roughly right, but again viscous friction 
which has not been included in our energy conservation formula has resulted in 
a loss of energy * 

Have you ever held two pieces of paper close together and tried to blow 
them apart? Try it! They come together. The reason, of course, is that the air has 
a higher speed going through the constricted space between the sheets than it 
does when it gets outside. The pressure between the sheets is lower than atmos¬ 
pheric pressure, so they come together rather than separating. 

Fig. 40-1 0. Proof that v is not equal 

to \/2 gh. 

40-4 Circulation 

We saw at the beginning of the last section that if we have an incompressible 
fluid with no circulation, the flow satisfies the following two equations: 

V • t; = 0, V X u = 0. (40.19) 

They are the same as the equations of electrostatics or magnetostatics in empty 
space. The divergence of the electric field is zero when there are no charges, and 
the curl of the electrostatic field is always zero. The curl of the magnetic field is 
zero if there are no currents, and the divergence of the magnetic field is always 
zero. Therefore, Eqs. (40.19) have the same solutions as the equations for E in 
electrostatics or for B in magnetostatics. As a matter of fact, we have already 
solved the problem of the flow of a fluid past a sphere, as an electrostatic analogy, 
in Section 12-5. The electrostatic analog is a uniform electric field plus a dipole 
field. The dipole field is so adjusted that the flow velocity normal to the surface 
of the sphere is zero. The same problem for the flow past a cylinder can be worked 
out in a similar way by using a suitable line dipole with a uniform flow field. This 
solution holds for a situation in which the fluid velocity at large distances is con¬ 
stant—both in magnitude and direction. The solution is sketched in Fig. 40-11(a). 

There is another solution for the flow around a cylinder when the conditions 
are such that the fluid at large distances moves m circles around the cylinder. The 
flow is, then, circular everywhere, as in Fig. 40-11(b). Such a flow has a circulation 
around the cylinder, although V X v is still zero in the fluid. How can there be 
circulation without a curl? We have a circulation around the cylinder because the 
line integral of v around any loop enclosing the cylinder is not zero. At the same 
time, the line integral of v around any closed path which does not include the cyl¬ 
inder is zero. We saw the same thing when we found the magnetic field around a 
wire. The curl of B was zero outside of the wire, although a line integral of B 

around a path which encloses the wire did not vanish. The velocity field in an ir- 
rotational circulation around a cylinder is precisely the same as the magnetic 
field around a wire. For a circular path with its center at the center of the cylinder, 
the line integral of the velocity is 

Fig. 40-1 1. (a) Ideal fluid flow past 

a cylinder. (b} Circulation around a 

cylinder. (c) The superposition of (a) 
For irrotational flow the integral must be independent of r. Let’s call the constant Qnd (b). 
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value C, then we have that 

C 

2wr 3 
(40.20) 

where v is the tangential velocity, and r is the distance from the axis. 
There is a nice demonstration of a fluid circulating around a hole. You take a 

transparent cylindrical tank with a drain hole in the center of the bottom. You fill 
it with water, stir up some circulation with a stick, and pull the dram plug. You 
get the pretty effect shown in Fig. 40-12. (You’ve seen a similar thing many 
times in the bathtub!) Although you put in some w at beginning, it soon dies down 
because of viscosity and the flow becomes irrotational—although still with some 
circulation around the hole. 

From the theory, we can calculate the shape of the inner surface of the water. 
As a particle of the water moves inward it picks up speed. From Eq. (40 20) the 
tangential velocity goes as 1/r—it’s just from the conservation of angular mo¬ 
mentum, like the skater pulling in her arms. Also the radial velocity goes as 
l/r. Ignoring the tangential motion, we have water going radially inward toward 
a hole; from V • v — 0, it follows that the radial velocity is proportional to l/r. 
So the total velocity also increases as 1 /r, and the water goes in along Archimedean 
spirals. The air-water surface is all at atmospheric pressure, so it must have—from 
Eq. (40.14)—the property that 

gz + Jmv2 = const. 

But v is proportional to 1 //*, so the shape of the surface is 

(z - z0) = ^ • 

An interesting point—which is not true in general but is true for incompressible, 
irrotational flow—is that if we have one solution and a second solution, then the 
sum is also a solution. This is true because the equations in (40,19) are linear. 
The complete equations of hydrodynamics, Eqs. (40.8), (40.9), and (40.10), are 
not linear, which makes a vast difference. For the irrotational flow about the 
cylinder, however, we can superpose the flow of Fig. 40-11(a) on the flow of 
Fig. 40-11(b) and get the new flow pattern shown in Fig. 40-11(c). This flow is 
of special interest. The flow velocity is higher on the upper side of the cylinder 
than on the lower side. The pressures are therefore lower on the upper side than 
on the lower side. So when we have a combination of a circulation around a 
cylinder and a net horizontal flow, there is a net vertical force on the cylinder—it 
is called a lift force. Of course, if there is no circulation, there is no net force on 
any body according to our theory of “dry” water. 

Fig. 40-12. Water with circulation 

draining from a tank. 

40-5 Vortex lines 

We have already written down the general equations for the flow of an in¬ 
compressible fluid when there may be vorticity. They are 

I. V • v = 0, 

II. £2 = V X v, 

III. ^ + v X (Q X v) = 0. 
dt 

The physical content of these equations has been described in words by Helmholtz 
in terms of three theorems. First, imagine that in the fluid we were to draw vortex 

lines rather than streamlines. By vortex lines we mean field lines that have the 
direction of £2 and have a density in any region proportional to the magnitude of 
£2. From II the divergence of £2 is always zero (remember—Section 3-7—that the 
divergence of a curl is always zero). So vortex lines are like lines of B—they never 
start or stop, and will tend to go in closed loops. Now Helmholtz described III 
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in words by the following statement: the vortex lines move with the fluid. This 
means that if you were to mark the fluid particles along some vortex lines—by 
coloring them with ink, for example—then as the fluid moves and carries those 
particles along, they will always mark the new positions of the vortex lines. In 
whatever way the atoms of the liquid move, the vortex lines move with them 
That is one way to describe the laws. 

It also suggests a method for solving any problems. Given the initial flow 
pattern—say v everywhere—then you can calculate £2. From the v you can also 
tell where the vortex lines are going to be a little later—they move with the speed 
v. With the new £2 you can use I and II to find the new v. (That’s just like the 
problem of finding B, given the currents.) If we are given the flow pattern at one 
instant we can in principle calculate it for all subsequent times. We have the general 
solution for nonviscous flow. 

We would like to show how Helmholtz’s statement—and, therefore, III—can 
be at least partly understood. It is really just the law of conservation of angular 
momentum applied to the fluid. Suppose we imagine a small cylinder of the liquid 
whose axis is parallel to the vortex lines, as in Fig. 40-13(a). At some time later, 
this same piece of fluid will be somewhere else. Generally it will occupy a cylinder 
with a different diameter and be in a different place. It may also have a different 
orientation, say as in Fig. 40-13(b). If the diameter has changed, however, the 
length will have increased to keep the volume constant (since we are assuming an 
incompressible fluid). Also, since the vortex lines are stuck with the material, 
their density will go up as the cross-sectional area goes down. The product of the 
vorticity £2 and area A of the cylinder will remain constant, so according to 
Helmholtz, we should have 

Q2A2 = fMi- (40.21) 

Now notice that with zero viscosity all the forces on the surface of the cy¬ 
lindrical volume (or any volume, for that matter) are perpendicular to the surface 
The pressure forces can cause the volume to be moved from place to place, or 
can cause it to change shape; but with no tangential forces the magnitude of the 
angular momentum of the material inside cannot change. The angular momentum 
of the liquid in the little cylinder is its moment of inertia / times the angular 
velocity of the liquid, which is proportional to the vorticity 12. For a cylinder, the 
moment of inertia is proportional to mr2. So from the conservation of angular 
momentum, we would conclude that 

Fig. 40-13. (a) A group of vortex 

lines at t; (b) the same lines at a later 

time f7. 

(A/ii^i)t2i = (M2Rf)£l2. 

But the mass is the same, M± ~ M2, and the areas are proportional to R2, so 
we get again just Eq. (40.21). Helmholtz’s statement—which is equivalent to 
III—is just a consequence of the fact that in the absence of viscosity the angular 
momentum of an element of the fluid cannot change. 

Fig. 40-14. Making a travelling vor¬ 

tex ring. 

There is a nice demonstration of a moving vortex which is made with the 
simple apparatus of Fig 40-14. It is a “drum” two feet in diameter and two feet 
long made by stretching a thick rubber sheet over the open end of a cylindrical 
“box.” The “bottom”—the drum is tipped on its side—is solid except for a 3-inch 
diameter hole. If you give a sharp blow on the rubber diaphragm with your hand, 
a vortex ring is projected out of the hole. Although the vortex is invisible, you can 
tell it’s there because it will blow out a candle 10 to 20 feet away. By the delay in 
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Fig. 40-15. A moving vortex ring 

(a smoke ring), (a) The vortex lines. (b) A 

cross section of the ring. 

the effect, you can tell that “something” is travelling at a finite speed. You can 

see better what is going on if you first blow some smoke into the box. Then you 

see the vortex as a beautiful round “smoke ring.” 

The smoke ring is a torus-shaped bundle of vortex lines, as shown m Fig 

40-15(a). Since £2 = V X v, these vortex lines represent also a cndilation of v 

as shown in part (b) of the figure. We can understand the forward motion of the 

ring in the following way: The circulating velocity around the bottom of the ring 

extends up to the top of the ring, having there a forward motion. Since the lines 

of £2 move with the fluid, they also move ahead with the velocity v. (Of course, 

the circulation of v around the top part of the ring is responsible for the forward 

motion of the vortex lines at the bottom. 

We must now mention a serious difficulty We have already noted that Eq. 

(40 9) says that, if £2 is initially zero, it will always be zero. This result is a great 

failure of the theory of “dry” water, because it means that once £2 is zero it is 

always zero—it is impossible to produce any vorticity tinder any circumstance. 

Yet, in our simple demonstration with the drum, we can generate a vortex ring 

starting with air which was initially at rest. (Certainly, v - 0, £2 = 0 everywhere 

in the box before we hit it.) Also, we all know that we can start some vorticity in a 

lake with a paddle. Clearly, we must go to a theory of “wet” water to get a complete 

understanding of the behavior of a fluid. 

Another feature of the dry water theory which is incorrect is the supposition 

we make regarding the flow at the boundary between it and the surface of a solid. 

When we discussed the flow past a cylinder—as in Fig. 40-11, for example—we 

permitted the fluid to slide along the surface of the solid. In our theory, the 

velocity at a solid surface could have any value depending on how it got started, 

and we did not consider any “friction” between the fluid and the solid. It is an 

experimental fact, however, that the velocity of a real fluid always goes to zero at 

the surface of a solid object. Therefore, our solution for the cylinder, with or 

without circulation, is wrong—ns is our result regarding the generation of vorticity. 

We will tell you about the more correct theories in the next chapter. 
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41 

The Flow of Wet Water 

41-1 Viscosity 

In the last chapter we discussed the behavior of water, disregarding the 

phenomenon of viscosity. Now we would like to discuss the phenomena of the 

flow of fluids, including the effects of viscosity. We want to look at the real behavior 

of fluids. We will describe qualitatively the actual behavior of the fluids under 

various different circumstances so that you will get some feel for the subject. Al¬ 

though you will see some complicated equations and hear about some complicated 

things, it is not our purpose that you should learn all these things. This is, in a 

sense, a “cultural” chapter which will give you some idea of the way the world is. 

There is only one item which is worth learning, and that is the simple definition of 

viscosity which we will come to in a moment. The rest is only for your entertain¬ 

ment. 

In the last chapter we found that the laws of motion of a fluid are contained 

in the equation 

^+(rV)i>=-^-V^ + ^- (41.1) 
dt p p 

In our “dry” water approximation we left out the last term, so we were neglecting 

all viscous effects. Also, we sometimes made an additional approximation by 

considering the fluid as incompressible; then we had the additional equation 

V ■ v = 0. 

This last approximation is often quite good—particularly when flow speeds are 

much slower than the speed of sound. But in real fluids it is almost never true that 

we can neglect the internal friction that we call viscosity; most of the interesting 

things that happen come from it in one way or another. For example, we saw that 

in “dry” water the circulation never changes—if there is none to start out with, 

there will never be any. Yet, circulation in fluids is an everyday occurrence. We 

must fix up our theory. 

We begin with an important experimental fact. When we worked out the 

flow of “dry” water around or past a cylinder—the so-called “potential flow”—we 

had no reason not to permit the water to have a velocity tangent to the surface; 

only the normal component had to be zero. We took no account of the possibility 

that there might be a shear force between the liquid and the solid. It turns out— 

although it is not at all self-evident—that in all circumstances where it has been 

experimentally checked, the velocity of a fluid is exactly zero at the surface of a 

solid. You have noticed, no doubt, that the blade of a fan will collect a thin layer of 

dust—and that it is still there after the fan has been churning up the air. You 

can see the same effect even on the great fan of a wind tunnel. Why isn’t the dust 

blown off by the air? In spite of the fact that the fan blade is moving at high speed 

through the air, the speed of the air relative to the fan blade goes to zero right at 

the surface. So the very smallest dust particles are not disturbed.* We must 

modify the theory to agree with the experimental fact that in all ordinary fluids, 

the molecules next to a solid surface have zero velocity (relative to the surface).f 

* You can blow large dust particles from a table top, but not the very finest ones. The 
large ones stick up into the breeze. 

t You can imagine circumstances when it is not true: glass is theoretically a “liquid,” 
but it can certainly be made to slide along a steel surface. So our assertion must break 
down somewhere. 
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Fig. 41—1. Viscous drag between two 

parallel plates. 
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We originally characterized a liquid by the fact that if you put a shearing 

stress on it—no matter how small—it would give way. It flows. In static situations, 

there are no shear stresses. But before equilibrium is reached—as long as you still 

push on it—there can be shear forces. Viscosity describes these shear forces which 

exist m a moving fluid. To get a measure of the shear forces during the motion 

of a fluid, we consider the following kind of experiment. Suppose that we have two 

solid plane surfaces with water between them, as in Fig. 41-1, and we keep one 

stationary while moving the other parallel to it at the slow speed *>„. If you measure 

the force required to keep the upper plate moving, you find that it is proportional 

to the area of the plates and to vu/d. where d is the distance between the plates. So 

the shear stress F/A is proportional to vQ/d: 

Fig, 41-2. The shear stress in a 

viscous fluid. 

The constant of proportionality ^ is called the coefficient of viscosity. 

If we have a more complicated situation, we can always consider a little, flat, 

rectangular cell in the water with its faces parallel to the flow, as in Fig. 41-2. The 

shear force across this cell is given by 

A F Avs dCj. 

A A V Ay V dy 
(41.2) 

Now, dvr/dy is the rate of change of the shear strain we defined in Chapter 38, so 

for a liquid, the shear stress is proportional to the rate of change of the shear strain. 

In the general case we write 

*xy (41.3) 

Fig. 41-3. The flow in a fluid be¬ 

tween two concentric cylinders rotating 

at different angular velocities. 

If there is a uniform rotation of the fluid, dvjdy is the negative of dvy/dx and SXii 

is zero—as it should be since there are no stresses in a uniformly rotating fluid. 

(We did a similar thing in defining exy in Chapter 39.) There are, of course, the 

corresponding expressions for Syz and S~x. 

As an example of the application of these ideas, we consider the motion of a 

fluid between two coaxial cylinders. Let the inner one have the radius a and the 

peripheral velocity va, and let the outer one have radius b and velocity ; See 

Fig. 41-3. We might ask, what is the velocity distribution between the cylinders? 

To answer this question, we begin by finding a formula for the viscous shear in 

the fluid at a distance r from the axis From the symmetry of the problem, we can 

assume that the flow is always tangential and that its magnitude depends only on 

r\ v = v(r). If we watch a speck in the water at the radius r, its coordinates as a 

function of time are 

x ~ r cos cot, y = r sin cot, 

where co = \fr. Then the x~ and ^-components of velocity are 

vx = — rw sin w/ = —coy and vy = no cos cot = cox. (41.4) 

From Eq. (41.3), we have 

>xy 

0 d * . dco doo 

[di ^ - ay (H 
= V 

* 3x y dy^ 
(41.5) 
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For a point at y = 0, dco/dy = 0, and x doo/dx is the same as r dco/dr. So at thai 
point 

(U-<» = vf • (41.6) 

(It is reasonable that S' should depend on dec/dr: when there is no change in co 

with r, the liquid is in uniform rotation and there are no stresses.) 
The stress we have calculated is the tangential shear which is the same all 

around the cylinder We can get the torque acting across a cylindrical surface at 
the radius r by multiplying the shear stress by the moment arm r and the area 
lirrL We get 

t - 2Trr2l(Sxy)y={) = lirrtlr3 * (41.7) 

Since the motion of the water is steady—there is no angular acceleration—the 
net torque on the cylindrical shell of water between r and r f dr must be zero; 
that is, the torque at r must be balanced by an equal and opposite torque at r + dr, 
so that r must be independent of r. In other words, rs doo/dr is equal to some con¬ 
stant, say A, and 

dco _ A 

dr = r3 
(41.8) 

Integrating, we find that co varies with r as 

CO (41.9) 

The constants A and B are to be determined to fit the conditions that co = coa 

at r = a, and co = coh at r = b. We get that 

A = 

B = 

2 azb 2j2 

b2 — a- 

b2 ooh 

, ((Cb 

(41.10) 

a2u)n 

b2 - aa 

So we know co as a function of r, and from it v = cor. 

If we want the torque, we can get it from Eqs. (41.7) and (41.8): 

or 
r — 2ttt]IA 

4Trvla2b~ 
7 = fr2~_ a> _ "»)■ (41.11) 

It is proportional to the relative angular velocities of the two cylinders. One stand¬ 
ard apparatus for measuring the coefficients of viscosity is built this way. One 
cylinder—say the outer one—is on pivots but is held stationary by a spring balance 
which measures the torque on it, while the inner one is rotated at a constant angular 
velocity. The coefficient of viscosity is then determined from Eq. (41.11). 

From its definition, you see that the units of are newton-sec/m2. For water 
at 20°C, 

r) = 103 newton-sec/m2. 

It is usually more convenient to use the specific viscosity, which is r\ divided by 
the density p. The values for water and air are then comparable: 

water at 20°C, 

air at 20°C, 

v/p = 10 ** m2/sec, 

■x]/p = 15 X 10"° m2/sec. 
(41.12) 

Viscosities usually depend strongly on temperature. For instance, for water just 
above the freezing point, iq/p is 1.8 times larger than it is at 20°C. 
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41-2 Viscous flow 

We now go to a general theory of viscous flow—at least in the most general 

form known to man We already understand that the shear stress components are 

proportional to the spatial derivatives of the various velocity components such 

as di'c/dy or dr,,/dx. However, in the general case of a compressible fluid there is 

another term in the stress which depends on other derivatives of the velocity. 

The general expression is 

s,j = ” (fe; + §) + Mv u)’ (4U3) 

where xt is any one of the rectangular coordinates v, y, or z, and vt is any one of 

the rectangular coordinates of the velocity. (The symbol Sn is the Kronecker 

delta which is 1 when / = / and 0 for / ^ j.) The additional term adds fV ■ v 

to all the diagonal elements Sn of the stress tensor. If the liquid is incompressible 

V • v = 0, and this extra term doesn’t appear. So it has to do with internal forces 

during compression. So two constants are required to describe the liquid, just 

as we had two constants to describe a homogeneous elastic solid. The coefficient 

j] is the “ordinary” coefficient of viscosity which we have already encountered. 

It is also called the first coefficient of viscosity or the “shear viscosity coefficient,” 

and the new coefficient f is called the second coefficient of viscosity. 

Now we want to determine the viscous force per unit volume,so we can 

put it into Eq (41 1) to get the equation of motion for a real fluid. The force on a 

small cubical volume element of a fluid is the resultant of the forces on all the six 

faces. Taking them two at a time, we will get differences that depend on the 

derivatives of the stresses, and, therefore, on the second derivatives of the velocity. 

This is nice because it will get us back to a vector equation. The component of 

the viscous force per unit volume in the direction of the rectangular coordinate 

xt is 

C/visc)s 
= £ dStJ 

j—i 
dx, 

a 

= 

j=i 

d 

dXj \dX, T dxjj 
(41 14) 

Usually, the variation of the viscosity coefficients with position is not significant 
and can be neglected. Then, the viscous force per unit volume contains only second 
derivatives of the velocity. We saw in Chapter 39 that the most general form of 
second derivatives that can occur in a vector equation is the sum of a term in the 
Laplacian (V • Vv = V2u), and a term in the gradient of the divergence (v(V ■ v)). 

Equation (41.14) is just such a sum with the coefficients 7) and (?? -f f). We get 

/v.s, - vV2v + (, + *') V(v • V). (41.15) 

In the incompressible case, V * v = 0, and the viscous force per unit volume is 
just rj V2v. That is all that many people use; however, if you should want to cal¬ 
culate the absorption of sound in a fluid, you would need the second term. 

We can now complete our general equation of motion for a real fluid. Sub¬ 
stituting Eq. (41 15) into Eq. (41.1), we get 

P + (v ■ V)l>J = - Tp - p v<t> + r, V2V + (v + V1) V(V ■ V) 

It’s complicated. But that’s the way nature is. 
If we introduce the vorticity £2 = V X v, as we did before, we can write our 

equation as 

Idv 1 9\ 9 
pj^- + OXv+2 Vv = -T/;-pV0+ij 

+ (V + f) V(V - v), (41.16) 

41-4 



We are supposing again that the only body forces acting are conservative forces 
like gravity. To see what the new term means, let’s look at the incompressible 
fluid case. Then, if we take the curl of Eq. (41.16), we get 

^+VX(QXi;) = - v2a. (41.17) 
at p 

This is like Eq. (40.9) except for the new term on the right-hand side. When the 
right-hand side was zero, we had the Helmholtz theorem that the vorticity stays 
with the fluid. Now, we have the rather complicated nonzero term on the right- 
hand side which, however, has straightforward physical consequences. If we 
disregard for the moment the term V X (ft X v), we have a diffusion equation. 

The new term means that the vorticity £1 diffuses through the fluid. If there is a 
large gradient in the vorticity, it will spread out into the neighboring fluid. 

This is the term that causes the smoke ring to get thicker as it goes along. 
Also, it shows up nicely if you send a “clean” vortex (a “smokeless” ring made by 
the apparatus described m the last chapter) through a cloud of smoke. When it 
comes out of the cloud, it will have picked up some smoke, and you will see a 
hollow shell of a smoke ring. Some of the U diffuses outward into the smoke, 
while still maintaining its forward motion with the vortex. 

41-3 The Reynolds number 

We will now describe the changes which are made in the character of fluid 
flow as a consequence of the new viscosity term. We will look at two problems 
in some detail. The first of these is the flow of a fluid past a cylinder—a flow which 
we tried to calculate in the previous chapter using the theory for nonviscous flow. 
It turns out that the viscous equations can be solved by man today only for a few 
special cases. So some of what we will tell you is based on experimental measure¬ 
ments—assuming that the experimental model satisfies Eq. (41.17). 

The mathematical problem is this: We would like the solution for the flow of 
an incompressible, viscous fluid past a long cylinder of diameter D. The flow should 
be given by Eq. (41.17) and by 

n = V X v (41.18) 

with the conditions that the velocity at large distances is some constant velocity, 
say V (parallel to the x-axis), and at the surface of the cylinder is zero. That is, 

vv ~ vy = vz = 0 (41.19) 
for 

That specifies completely the mathematical problem. 
If you look at the equations, you see that there are four different parameters 

to the problem: rj, p, D, and V. You might think that we would have to give a 
whole series of cases for different F’s, different D’s, and so on. However, that is 
not the case. All the different possible solutions correspond to different values of 
one parameter. This is the most important general thing we can say about viscous 
flow. To see why this is so, notice first that the viscosity and density appear only 
in the ratio 77/p—the specific viscosity. That reduces the number of independent 
parameters to three. Now suppose we measure all distances in the only length 
that appears in the problem, the diameter D of the cylinder; that is, we substitute 
for x, y, z, the new variables x', y*t zf with 

x — x'Z>, y = y'D, z ~ z'D. 

Then D disappears from (41.19). In the same way, if we measure all velocities in 
terms of K—that is, we set r = r'V—we get rid of the V, and v' is just equal to 1 
at large distances. Since we have fixed our units of length and velocity, our unit 
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of time is now D/V; so we should set 

/=!'£■ (41.20) 

With our new variables, the derivatives in Eq. (41,18) get changed from d/dx 

to (1 /D) d/dx', and so on; so Eq (41,18) becomes 

a = v x v = ^ v' x v' = ~ a'. (41.21) 

Our main equation (41.17) then reads 

IF + v' x (“' x = pZD v-tf. 

All the constants condense into one factor which we write, following tradition, as 

l/ffi: 

(R — VD. (41.22) 
n 

If we just remember that all of our equations are to be written with all quantities 

in the new units, we can omit all the primes. Our equations for the flow are then 

and 

with the conditions 

for 

and 

for 

~ + V x (a x V) = i v2a 

& = V X v 

v = 0 

x2 + y2 ~ 1/4 

Vx = 1, Vy = VZ = 0 

+ T2 + z2 » 1. 

(41.23) 

(41.24) 

What this all means physically is very interesting It means, for example, that 

if we solve the problem of the flow for one velocity V\ and a certain cylinder 

diameter D j, and then ask about the flow for a different diameter D 2 and a different 

fluid, the flow will be the same for the velocity V2 which gives the same Reynolds 

number—that is, when 

Oil = — ViDi = «2 = £2 VoD-2. (41.25) 
^1 V2 

For any two situations which have the same Reynolds number, the flows will 

“look’' the same—in terms of the appropriate scaled xf, y', zf, and f. This is an 

important proposition because it means that we can determine what the behavior 

of the flow of air past an airplane wing will be without having to build an airplane 

and try it. We can, instead, make a model and make measurements using a velocity 

that gives the same Reynolds number. This is the principle which allows us to 

apply the results of “wind-tunnel” measurements on small-scale airplanes, or 

“model-basin” results on scale model boats, to the full-scale objects. Remember, 

however, that we can only do this provided the compressibility of the fluid can be 

neglected. Otherwise, a new quantity enters—the speed of sound. And different 

situations will really correspond to each other only if the ratio of V to the sound 

speed is also the same This latter ratio is called the Mach number So, for veloci¬ 

ties near the speed of sound or above, the flows are the same in two situations 

if both the Mach number and the Reynolds number are the same for both 

situations. 
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Fig. 41-4. The drag coefficient Cd of a circular cylinder as a function of the Reynolds number. 

41-4 Flow past a circular cylinder 

Let’s go back to the problem of low-speed (nearly incompressible) flow over 

the cylinder. We will give a qualitative description of the flow of a real fluid. 

There are many things we might want to know about such a flow—for instance, 

what is the drag force on the cylinder? The drag force on a cylinder is plotted in 

Fig. 41-4 as a function of (R—which is proportional to the air speed V if everything 

else is held fixed. What is actually plotted is the so-called drag coefficient Cd, 

which is a dimensionless number equal to the force divided by ^pV2Dl, where 

D is the diameter, / is the length of the cylinder, and p is the density of the liquid: 

Cd hpV2DI' 

The coefficient of drag varies in a rather complicated way, giving us a pre-hint 

that something rather interesting and complicated is happening m the flow. We will 

now describe the nature of flow for the different ranges of the Reynolds number. 

First, when the Reynolds number is very small, the flow is quite steady; that is, 

the velocity is constant at any place, and the flow goes around the cylinder. The 

actual distribution of the flow lines is, however, not like it is in potential flow. 

They are solutions of a somewhat different equation. When the velocity is very 

low or, what is equivalent, when the viscosity is very high so the stuff is like honey, 

then the inertial terms are negligible and the flow is described by the equation 

V2Q - 0. 

This equation was first solved by Stokes. He also solved the same problem for a p,g. 41-5. Viscous flow (low veloci- 

sphere. If you have a small sphere moving under such conditions of low Reynolds ties) around a circular cylinder. 

number, the force needed to drag it is equal to 67njaV, where a is the radius of the 

sphere and V is its velocity. This is a very useful formula because it tells the speed 

at which tiny grains of dirt (or other particles which can be approximated as 

spheres) move through a fluid under a given force—as, for instance, in a centrifuge, 

or in sedimentation, or diffusion In the low Reynolds number region—for (K less 

than 1—the lines of v around a cylinder are as drawn in Fig 41-5. 

If we now increase the fluid speed to get a Reynolds number somewhat greater 

than 1, we find that the flow is different. There is a circulation behind the sphere, 

as shown in Fig. 4l-6(b). It is still an open question as to whether there is always 
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a circulation there even at the smallest Reynolds number or whether things sud¬ 
denly change at a certain Reynolds number. It used to be thought that the cir¬ 
culation grew continuously. But it is now thought that it appears suddenly, and 
it is certain that the circulation increases with (ft. In any case, there is a different 
character to the flow for (ft in the region from about 10 to 30. There is a pair of 
vortices behind the cylinder. 

The flow changes again by the time we get to a number of 40 or so. There is 
suddenly a complete change in the character of the motion. What happens is that 
one of the vortices behind the cylinder gets so long that it breaks off and travels 
downstream with the fluid. Then the fluid curls around behind the cylinder and 
makes a new vortex. The vortices peel off alternately on each side, so an instan¬ 
taneous view of the flow looks roughly as sketched in Fig. 41-6(c). The stream of 
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Fig. 41-7. Photograph by Ludwig 

Prandtl of the “vortex street" in the flow 

behind a cylinder. 

vortices is called a “Karman vortex street.” They always appear for (ft > 40. 

We show a photograph of such a flow in Fig. 41-7. 

The difference between the two flows in Fig. 41 —6(c) and 41—6(b) or 41-6(a) 

is almost a complete difference m regime In Fig. 41-6(a) or (b), the velocity is 

constant, whereas in Fig 41-6(c), the velocity at any point varies with time There 

is no steady solution above (51 = 40—which we have marked on Fig. 41-4 by a 

dashed line. For these higher Reynolds numbers, the flow vanes with time but in a 

regular, cyclic fashion. 

We can get a physical idea of how these vortices are produced We know 

that the fluid velocity must be zero at the surface of the cylinder and that it also 

increases rapidly away from that surface. Vorticity is created by this large local 

variation in fluid velocity. Now when the main stream velocity is low enough, there 

is sufficient time for this vorticity to diffuse out of the thin region near the solid 

surface where it is produced and to grow into a large region of vorticity. This 

physical picture should help to prepare us for the next change in the nature of the 

flow as the main stream velocity, or (R, is increased still more. 

As the velocity gets higher and higher, there is less and less time for the 

vorticity to diffuse into a larger region of fluid. By the time we reach a Reynolds 

number of several hundred, the vorticity begins to fill in a thin band, as shown in 

Fig. 41-6(d). In this layer the flow is chaotic and irregular. The region is called 

the boundary layer and this irregular flow region works its wa> farther and farther 

upstream as (ft is increased. In the turbulent region, the velocities are very irregular 

and “noisy”; also the flow is no longer two-dimensional but twists and turns in 

all three dimensions. There is still a regular alternating motion superimposed on 

the turbulent one. 

As the Reynolds number is increased further, the turbulent region works its 

way forward until it reaches the point where the flow lines leave the cylinder—for 

flows somewhat above (ft 10\ The flow is as shown in Fig. 41-6(e), and we 

have what is called a “turbulent boundary layer.” Also, there is a drastic change 

in the drag force; it drops by a large factor, as shown in Fig. 41-4. In this speed 

region, the drag force actually decreases with increasing speed. There seems to 

be little evidence of periodicity. 

What happens for still larger Reynolds numbers? As we increase the speed 

further, the wake increases in size again and the drag increases. The latest experi¬ 

ments—which go up to (ft = 107 or so—indicate that a new periodicity appears 

in the wake, either because the whole wake is oscillating back and forth in a gross 

motion or because some new kind of vortex is occurring together with an irregular 

noisy motion. The details are as yet not entirely clear, and are still being studied 

experimentally. 

41-5 The limit of zero viscosity 

We would like to point out that none of the flows we have described are 

anything like the potential flow solution we found in the preceding chapter. This 

is, at first sight, quite surprising. After all, (ft is proportional to 1 /rj. So tj going to 

zero is equivalent to (ft going to infinity. And if we take the limit of large (ft in 

41-9 



Eq. (41.23), we get rid of the right-hand side and get just the equations of the last 

chapter. Yet, you would find it hard to believe that the highly turbulent flow at 

(ft — 107 was approaching the smooth flow computed from the equations of “dry” 

water. How can it be that as we approach (R = the flow described by Eq. 

(41.23) gives a completely different solution from the one we obtained taking 

7) = 0 to start out with ? The answer is very interesting. Note that the right-hand 

term of Eq. (41.23) has 1 /(ft times a second derivative. It is a higher derivative than 

any other derivative in the equation. What happens is that although the coefficient 

1 /(ft is small, there are very rapid variations of ft in the space near the surface. 

These rapid variations compensate for the small coefficient, and the product 

does not go to zero with increasing (ft. The solutions do not approach the limiting 

case as the coefficient of V2ft goes to zero. 

You may be wondering, “What is the fine-grain turbulence and how does it 

maintain itself? How can the vorticity which is made somewhere at the edge of 

the cylinder generate so much noise in the background?” The answer is again 

interesting. Vorticity has a tendency to amplify itself. If we forget for a moment 

about the diffusion of vorticity which causes a loss, the laws of flow say (as we have 

seen) that the vortex lines are carried along with the fluid, at the velocity v. We 

can imagine a certain number of lines of ft which are being distorted and twisted 

by the complicated flow pattern of v. This pulls the lines closer together and mixes 

them all up. Lines that were simple before will get knotted and pulled close 

together. They will be longer and tighter together. The strength of the vorticity 

will increase and its irregularities—the pluses and minuses—will, in general, 

increase. So the magnitude of vorticity in three dimensions increases as we twist 

the fluid about. 

You might well ask, “When is the potential flow a satisfactory theory at all?” 

In the first place, it is satisfactory outside the turbulent region where the vorticity 

has not entered appreciably by diffusion. By making special streamlined bodies, 

we can keep the turbulent region as small as possible; the flow around airplane 

wings—which are carefully designed—is almost entirely true potential flow. 

(c) (d) 

Fig. 41-8. Liquid flow patterns be¬ 

tween two transparent rotating cylinders. 

41-6 Couette flow 

It is possible to demonstrate that the complex and shifting character of the 

flow past a cylinder is not special but that the great variety of flow possibilities 

occurs generally. We have worked out in Section 1 a solution for the viscous 

flow between two cylinders, and we can compare the results with what actually 

happens. If we take two concentric cylinders with an oil in the space between them 

and put a fine aluminum powder as a suspension in the oil, the flow is easy to see. 

Now if we turn the outer cylinder slowly, nothing unexpected happens; see Fig. 

41-8(a). Alternatively, if we turn the inner cylinder slowly, nothing very striking 

occurs. However, if we turn the inner cylinder at a higher rate, we get a surprise. 

The fluid breaks into horizontal bands, as indicated in Fig. 41-8(b). When the 

outer cylinder rotates at a similar rate with the inner one at rest, no such effect 

occurs. How can it be that there is a difference between rotating the inner or the 

out cylinder? After all, the flow pattern we derived in Section 1 depended only 

on wb — o)a. We can get the answer by looking at the cross sections shown in 

Fig, 41-9. When the inner layers of the fluid are moving more rapidly than the 

outer ones, they tend to move outward—the centrifugal force is larger than the 

pressure holding them in place. A whole layer cannot move out uniformly because 

the outer layers are in the way. It must break into cells and circulate, as shown in 

Fig. 41—9(b). It is like the convection currents in a room which has hot air at the 

bottom. When the inner cylinder is at rest and the outer cylinder has a high velocity, 

the centrifugal forces build up a pressure gradient which keeps everything in 

equilibrium—see Fig. 41-9(c) (as in a room with hot air at the top). 

Now let’s speed up the inner cylinder. At first, the number of bands increases. 

Then suddenly you see the bands become wavy, as in Fig. 41-8(c), and the waves 

travel around the cylinder. The speed of these waves is easily measured. For high 

rotation speeds they approach 1/3 the speed of the inner cylinder. And no one 
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Why the flow breaks up into bands. 

knows why! There’s a challenge. A simple number like 1/3, and no explanation 

In fact, the whole mechanism of the wave formation is not very well understood, 

yet it is steady laminar flow. 

If we now start rotating the outer cylinder also—but in the opposite direction— 

the flow pattern starts to break up. We get wavy regions alternating with apparently 

quiet regions, as sketched in Fig. 41-8(d), making a spiral pattern. In these “quiet” 

regions, however, we can see that the flow is really quite irregular; it is, in fact 

completely turbulent. The wavy regions also begin to show irregular turbulent 

flow If the cylinders are rotated still more rapidly, the whole flow becomes 

chaotically turbulent. 

In this simple experiment we see many interesting regimes of flow which are 

quite different, and yet which are all contained in our simple equation for various 

values of the one parameter (R. With our rotating cylinders, we can see many of 

the effects which occur in the flow past a cylinder: first, there is a steady flow, second, 

a flow sets in which varies in time but in a regular, smooth way; finally, the flow 

becomes completely irregular. You have all seen the same effects in the column 

of smoke rising from a cigarette in quiet air. There is a smooth steady column 

followed by a series of twistings as the stream of smoke begins to break up, ending 

finally in an irregular churning cloud of smoke 

The mam lesson to be learned from all of this is that a tremendous vanetv 

of behavior is hidden in the simple set of equations in (41,23). All the solutions 

are for the same equations, only with different values of (R We have no reason 

to think that there are any terms missing from these equations. The only difficulty 

is that we do not have the mathematical power today to analyze them except for 

very small Reynolds numbers—that is, in the completely viscous case. That we 

have written an equation does not remove from the flow of fluids its charm or 

mystery or its surprise. 

If such variety is possible in a simple equation with only one parameter, how 

much more is possible with more complex equations! Perhaps the fundamental 

equation that describes the swirling nebulae and the condensing, revolving, and 

exploding stars and galaxies is just a simple equation for the hydrodynamic 

behavior of nearly pure hydrogen gas. Often, people in some unjustified fear of 

physics say you can’t write an equation for life. Well, perhaps we can. As a matter 

of fact, we very possibly already have the equation to a sufficient approximation 

when we write the equation of quantum mechanics: 

- - 
h 

i dt 

We have just seen that the complexities of things can so easily and dramatically 

escape the simplicity of the equations which describe them. Unaware of the scope 

of simple equations, man has often concluded that nothing short of God, not mere 

equations, is required to explain the complexities of the world. 
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We have written the equations of water flow. From experiment, we find a set 

of concepts and approximations to use to discuss the solution—vortex streets, 

turbulent wakes, boundary layers. When we have similar equations in a less 

familiar situation, and one for which we cannot yet experiment, we try to solve 

the equations in a primitive, halting, and confused way to try to determine what 

new qualitative features may come out, or what new qualitative forms are a con¬ 

sequence of the equations. Our equations for the sun, for example, as a ball of 

hydrogen gas, describe a sun without sunspots, without the rice-grain structure of 

the surface, without prominences, without coronas. Yet, all of these are really 

in the equations; we just haven’t found the way to get them out. 

There are those who are going to be disappointed when no life is found on 

other planets. Not I—I want to be reminded and delighted and surprised once 

again, through interplanetary exploration, with the infinite variety and novelty of 

phenomena that can be generated from such simple principles. The test of science 

is its ability to predict. Had you never visited the earth, could you predict the 

thunderstorms, the volcanos, the ocean waves, the auroras, and the colorful sunset? 

A salutary lesson it will be when we learn of all that goes on on each of those 

dead planets—those eight or ten balls, each agglomerated from the same dust cloud 

and each obeying exactly the same laws of physics. 

The next great era of awakening of human intellect may well produce a method 

of understanding the qualitative content of equations. Today we cannot. Today 

we cannot see that the water flow equations contain such things as the barber pole 

structure of turbulence that one sees between rotating cylinders. Today we cannot 

see whether Schrodinger’s equation contains frogs, musical composers, or morality 

—or whether it does not. We cannot say whether something beyond it like God 

is needed, or not. And so we can all hold strong opinions either way. 
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Three-body problem, 1-10-1 

Three-dimensional waves, II—20—8 f 

Thunderstorms, 11-9-5 ff 

Tides, 1-7-4 f 

Time, 1-2-3, 1-5-1 ff, 1-8-1, 1-8-2 

retarded, 1-28-2 

standard of, 1-5-5 

transformation of, 1-15-5 ff 

Torque, 1-18-4, 1-20-1 ff 
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Galilean, 1-12-11 
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Transmission line, 11-24-1 ff 

Transmitted waves, 11-33-7 ff 

Travelling field, II-18-5 ff 
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Trigonal lattice, 11—30—7 
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Two-dimensional field, 11-7-2 if 

Tycho Brahe, 1-7-! 

Ultraviolet radiation. 1-26-1 
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1-37-9, 1-37-1 1, 1-38-8 f, 11-5-3 

Unit cell, 1-38-5 
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Unworldhness, IT—25— 10 

van de CraafT generator, 11-5-9, 11-8-7 
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Vector algebra, 1-11-6 f 

Vector analysis, 1-1 1-5, 1-52-2 

Vector field, II—1-4 1, II-2-1 ff 
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Vector operator, 11-2-6 
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components of, 1-9-3 

transformation of, 1-16-4 ff 
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Vinci, Leonardo da, 1-36-2 
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Vision, 1-36-1 ff 

binocular, 1-36-4 
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Visual purple, 1-35-9 

Voltmeter, II-16—1 

Volume strain, II—38—3 

Volume stress, II—38—3 
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Vortex lines, 11-40-10 ff 

Vorticity, 11-40-5 

Wall energy, II—37—6 

Wapstra, 1-52-10 
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Wave, 1-51-1 ff, II—20—1 ff 
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Wavefront, T-47-3 
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Wavelength, 1-19—3, 1-26-1 

Wave number, 1-29-2 
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Weber (unit), II-13-1 

“Wet" water, 11-41-1 ff 

Weyl, H., 1-1 1-1 

Wheeler, 11-28-8 
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Work, 1-13-1 ff, 1-14-1 ff 

X-rays, 1-2-5, 1-26-1 

X-ray diffraction, 11-30-1 

Young, 1-35-7 

Young’s modulus, 11—38—2 

Yukawa, H , 1-2-8, 11-28-13 

Yukawa potential, 11-28-13 

Yustova, 1-35-8 
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